1
|
Chang C, Yang H, Bi W, Huang C, Xu Z. Cryopreservable Through-Hole Arrays for the High-Throughput Three-Dimensional Smartphone-Based Cell Colorimetric Assay. ACS Sens 2023; 8:543-554. [PMID: 36705290 DOI: 10.1021/acssensors.2c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro assays are an important platform for cancer research as they allow high-throughput experimentation that is not possible using in vivo animals. Although various in vitro assays are developed to study cell viability or migration, many of these assays are often limited to two dimensions, involving complex procedures or relying specialized equipment, etc. Here, we designed a simple colorimetric assay that accommodates automatic liquid samples loading, high-throughput generation of chemical concentration gradient, three-dimensional (3D) cell culture establishment, and smartphone-based colorimetric readouts. This assay is based on through-hole arrays in the poly(methyl methacrylate) (PMMA) layers. Liquid samples can be automatically loaded into through-hole arrays in PMMA layers by capillary force. Different drug concentrations can be generated by aligning and stacking to mix the contents of the corresponding through-holes with different volumes. 3D culture of cancer cells can be established by the rapid absorption of cell suspensions into the macroporous gels. After exposing the 3D cultured cells to different drug concentrations, the number of viable cells and migrated cells was reflected by the color change of Alamar blue, which enable on-site readout by a smartphone. This assay can study cell viability as well as cell migration, the two main characteristics of cancer cells, using one device. Interestingly, HeLa cells remained with high viability after cryopreservation at -80 °C, which allows for storage and distribution using dry ice. The simple protocol, along with the cryopreservability at -80 °C facilitates its ease of use to study cell viability together with cell migration in common laboratories or clinical settings.
Collapse
Affiliation(s)
- Chunqi Chang
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Haoyi Yang
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Wenchuan Bi
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Cuier Huang
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Zhen Xu
- School of Biomedical Engineering Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Hayes CJ, Dalton TM. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery. BIOMOLECULAR DETECTION AND QUANTIFICATION 2015; 4:22-32. [PMID: 27077035 PMCID: PMC4822205 DOI: 10.1016/j.bdq.2015.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 01/02/2023]
Abstract
PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA) in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits.
Collapse
Affiliation(s)
- Christopher J Hayes
- Stokes Institute, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland; Department of Life Sciences, University of Limerick, Limerick, Ireland
| | - Tara M Dalton
- Stokes Institute, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
3
|
Mayer-Blackwell K, Azizian MF, Machak C, Vitale E, Carpani G, de Ferra F, Semprini L, Spormann AM. Nanoliter qPCR platform for highly parallel, quantitative assessment of reductive dehalogenase genes and populations of dehalogenating microorganisms in complex environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9659-9667. [PMID: 25046033 DOI: 10.1021/es500918w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Idiosyncratic combinations of reductive dehalogenase (rdh) genes are a distinguishing genomic feature of closely related organohalogen-respiring bacteria. This feature can be used to deconvolute the population structure of organohalogen-respiring bacteria in complex environments and to identify relevant subpopulations, which is important for tracking interspecies dynamics needed for successful site remediation. Here we report the development of a nanoliter qPCR platform to identify organohalogen-respiring bacteria and populations by quantifying major orthologous reductive dehalogenase gene groups. The qPCR assays can be operated in parallel within a 5184-well nanoliter qPCR (nL-qPCR) chip at a single annealing temperature and buffer condition. We developed a robust bioinformatics approach to select from thousands of computationally proposed primer pairs those that are specific to individual rdh gene groups and compatible with a single amplification condition. We validated hundreds of the most selective qPCR assays and examined their performance in a trichloroethene-degrading bioreactor, revealing population structures as well as their unexpected shifts in abundance and community dynamics.
Collapse
Affiliation(s)
- Koshlan Mayer-Blackwell
- Civil and Environmental Engineering, §Geological and Environmental Sciences, and ⊥Chemical Engineering, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Advances in genomics for flatfish aquaculture. GENES AND NUTRITION 2012; 8:5-17. [PMID: 22903900 DOI: 10.1007/s12263-012-0312-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Fish aquaculture is considered to be one of the most sustainable sources of protein for humans. Many different species are cultured worldwide, but among them, marine flatfishes comprise a group of teleosts of high commercial interest because of their highly prized white flesh. However, the aquaculture of these fishes is seriously hampered by the scarce knowledge on their biology. In recent years, various experimental 'omics' approaches have been applied to farmed flatfishes to increment the genomic resources available. These tools are beginning to identify genetic markers associated with traits of commercial interest, and to unravel the molecular basis of different physiological processes. This article summarizes recent advances in flatfish genomics research in Europe. We focus on the new generation sequencing technologies, which can produce a massive amount of DNA sequencing data, and discuss their potentials and applications for de novo genome sequencing and transcriptome analysis. The relevance of these methods in nutrigenomics and foodomics approaches for the production of healthy animals, as well as high quality and safety products for the consumer, is also briefly discussed.
Collapse
|
5
|
Methodological approaches to cytochrome P450 profiling in embryos. Methods Mol Biol 2012. [PMID: 22669670 DOI: 10.1007/978-1-61779-867-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cytochrome P450 enzymes (CYPs) are heme thiolate proteins essential for vertebrate development and also play important roles in toxicology as well as normal metabolic function. CYP enzymes catalyze the oxidative biotransformation of many endogenous and exogenous chemicals, including steroids and eicosanoids, and drugs and other xenobiotic toxicants. Many CYPs have known for their potential roles in development, and many chemicals that cause developmental abnormalities are substrates for CYPs. The roles and regulation of most xenobiotic metabolizing CYPs during development are unknown, impeding understanding of mechanisms of developmental toxicity. The zebrafish (Danio rerio) has become one of the premier models in vertebrate developmental biology, in large part because of the logistical advantages of rapid external development, high adult maintenance density, and significant (bio)technological tool availability. The increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of CYP gene regulation and function. Here, we present methods to examine CYP expression during early development in zebrafish, with an emphasis on developmental microarrays.
Collapse
|
6
|
Massingham LJ, Johnson KL, Bianchi DW, Pei S, Peter I, Cowan JM, Tantravahi U, Morrison TB. Proof of concept study to assess fetal gene expression in amniotic fluid by nanoarray PCR. J Mol Diagn 2011; 13:565-70. [PMID: 21827969 DOI: 10.1016/j.jmoldx.2011.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
Microarray analysis of cell-free RNA in amniotic fluid (AF) supernatant has revealed differential fetal gene expression as a function of gestational age and karyotype. Once informative genes are identified, research moves to a more focused platform such as quantitative reverse transcriptase-PCR. Standardized NanoArray PCR (SNAP) is a recently developed gene profiling technology that enables the measurement of transcripts from samples containing reduced quantities or degraded nucleic acids. We used a previously developed SNAP gene panel as proof of concept to determine whether fetal functional gene expression could be ascertained from AF supernatant. RNA was extracted and converted to cDNA from 19 AF supernatant samples of euploid fetuses between 15 to 20 weeks of gestation, and transcript abundance of 21 genes was measured. Statistically significant differences in expression, as a function of advancing gestational age, were observed for 5 of 21 genes. ANXA5, GUSB, and PPIA showed decreasing gene expression over time, whereas CASC3 and ZNF264 showed increasing gene expression over time. Statistically significantly increased expression of MTOR and STAT2 was seen in female compared with male fetuses. This study demonstrates the feasibility of focused fetal gene expression analysis using SNAP technology. In the future, this technique could be optimized to examine specific genes instrumental in fetal organ system function, which could be a useful addition to prenatal care.
Collapse
Affiliation(s)
- Lauren J Massingham
- Division of Genetics, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL. Oncogene 2011; 31:1493-503. [PMID: 21822309 DOI: 10.1038/onc.2011.336] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fos-related antigen 1 (Fra-1) is a Fos family member overexpressed in several types of human cancers. Here, we report that Fra-1 is highly expressed in the muscle-invasive form of the carcinoma of the bladder (80%) and to a lesser extent in superficial bladder cancer (42%). We demonstrate that in this type of cancer Fra-1 is regulated via a C-terminal instability signal and C-terminal phosphorylation. We show that manipulation of Fra-1 expression levels in bladder cancer cell lines affects cell morphology, motility and proliferation. The gene coding for AXL tyrosine kinase is directly upregulated by Fra-1 in bladder cancer and in other cell lines. Importantly, our data demonstrate that AXL mediates the effect of Fra-1 on tumour cell motility but not on cell proliferation. We suggest that AXL may represent an attractive therapeutic target in cancers expressing high Fra-1 levels.
Collapse
|
8
|
Devonshire AS, Elaswarapu R, Foy CA. Applicability of RNA standards for evaluating RT-qPCR assays and platforms. BMC Genomics 2011; 12:118. [PMID: 21332979 PMCID: PMC3052187 DOI: 10.1186/1471-2164-12-118] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/18/2011] [Indexed: 12/22/2022] Open
Abstract
The availability of diverse RT-qPCR assay formats and technologies hinder comparability of data between platforms. Reference standards to facilitate platform evaluation and comparability are needed. We have explored using universal RNA standards for comparing the performance of a novel qPCR platform (Fluidigm® BioMark™) against the widely used ABI 7900HT system. Our results show that such standards may form part of a toolkit to evaluate the key performance characteristics of platforms.
Collapse
|