1
|
Single-particle chemical force microscopy to characterize virus surface chemistry. Biotechniques 2020; 69:363-370. [DOI: 10.2144/btn-2020-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Two important viral surface characteristics are the hydrophobicity and surface charge, which determine the viral colloidal behavior and mobility. Chemical force microscopy allows the detection of viral surface chemistry in liquid samples with small amounts of virus sample. This single-particle method requires the functionalization of an atomic force microscope (AFM) probe and covalent bonding of viruses to a surface. A hydrophobic methyl-modified AFM probe was used to study the viral surface hydrophobicity, and an AFM probe terminated with either negatively charged carboxyl acid or positively charged quaternary amine was used to study the viral surface charge. With an understanding of viral surface properties, the way in which viruses interact with the environment can be better predicted.
Collapse
|
2
|
Rima XY, Walters N, Nguyen LTH, Reátegui E. Surface engineering within a microchannel for hydrodynamic and self-assembled cell patterning. BIOMICROFLUIDICS 2020; 14:014104. [PMID: 31933714 PMCID: PMC6941948 DOI: 10.1063/1.5126608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/18/2019] [Indexed: 05/27/2023]
Abstract
The applications of cell patterning are widespread due to the high-throughput testing and different resolutions offered by these platforms. Cell patterning has aided in deconvoluting in vivo experiments to better characterize cellular mechanisms and increase therapeutic output. Here, we present a technique for engineering an artificial surface via surface chemistry to form large-scale arrays of cells within a microchannel by employing microstamping. By changing the approach in surface chemistry, H1568 cells were patterned hydrodynamically using immunoaffinity, and neutrophils were patterned through self-assembly via chemotaxis. The high patterning efficiencies (93% for hydrodynamic patterning and 68% for self-assembled patterning) and the lack of secondary adhesion demonstrate the reproducibility of the platform. The interaction between H1568 and neutrophils was visualized and quantified to determine the capability of the platform to encourage cell-cell interaction. With the introduction of H1568 cells into the self-assembled patterning platform, a significant hindrance in the neutrophils' ability to swarm was observed, indicating the important roles of inflammatory mediators within the nonsmall cell lung cancer tumor microenvironment.
Collapse
Affiliation(s)
- Xilal Y. Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Luong T. H. Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
3
|
Benn G, Pyne ALB, Ryadnov MG, Hoogenboom BW. Imaging live bacteria at the nanoscale: comparison of immobilisation strategies. Analyst 2019; 144:6944-6952. [PMID: 31620716 PMCID: PMC7138128 DOI: 10.1039/c9an01185d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Atomic force microscopy (AFM) provides an effective, label-free technique enabling the imaging of live bacteria under physiological conditions with nanometre precision. However, AFM is a surface scanning technique, and the accuracy of its performance requires the effective and reliable immobilisation of bacterial cells onto substrates. Here, we compare the effectiveness of various chemical approaches to facilitate the immobilisation of Escherichia coli onto glass cover slips in terms of bacterial adsorption, viability and compatibility with correlative imaging by fluorescence microscopy. We assess surface functionalisation using gelatin, poly-l-lysine, Cell-Tak™, and Vectabond®. We describe how bacterial immobilisation, viability and suitability for AFM experiments depend on bacterial strain, buffer conditions and surface functionalisation. We demonstrate the use of such immobilisation by AFM images that resolve the porin lattice on the bacterial surface; local degradation of the bacterial cell envelope by an antimicrobial peptide (Cecropin B); and the formation of membrane attack complexes on the bacterial membrane.
Collapse
Affiliation(s)
- Georgina Benn
- London Centre for Nanotechnology
, University College London
,
London WC1H 0AH
, UK
.
- Institute of Structural and Molecular Biology
, University College London
,
London WC1E 6BT
, UK
- National Physical Laboratory
,
Hampton Road
, Teddington TW11 0LW
, UK
| | - Alice L. B. Pyne
- London Centre for Nanotechnology
, University College London
,
London WC1H 0AH
, UK
.
- Department of Materials Science and Engineering
, University of Sheffield
,
S1 3JD
, UK
| | - Maxim G. Ryadnov
- National Physical Laboratory
,
Hampton Road
, Teddington TW11 0LW
, UK
- Department of Physics
, King's College London
,
Strand Lane
, London WC2R 2LS
, UK
| | - Bart W. Hoogenboom
- London Centre for Nanotechnology
, University College London
,
London WC1H 0AH
, UK
.
- Institute of Structural and Molecular Biology
, University College London
,
London WC1E 6BT
, UK
- Department of Physics & Astronomy
, University College London
,
London WC1E 6BT
, UK
| |
Collapse
|
4
|
Jaiswal N, Hens A, Chatterjee M, Mahata N, Chanda N. Ethylenediamine assisted functionalization of self-organized poly (d, l-lactide-co-glycolide) patterned surface to enhance cancer cell isolation. J Colloid Interface Sci 2019; 534:122-130. [DOI: 10.1016/j.jcis.2018.08.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
|
5
|
Santiago ADS, Mendes JS, Dos Santos CA, de Toledo MAS, Beloti LL, Crucello A, Horta MAC, Favaro MTDP, Munar DMM, de Souza AA, Cotta MA, de Souza AP. The Antitoxin Protein of a Toxin-Antitoxin System from Xylella fastidiosa Is Secreted via Outer Membrane Vesicles. Front Microbiol 2016; 7:2030. [PMID: 28066356 PMCID: PMC5167779 DOI: 10.3389/fmicb.2016.02030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022] Open
Abstract
The Xylella fastidiosa subsp pauca strain 9a5c is a Gram-negative, xylem-limited bacterium that is able to form a biofilm and affects citrus crops in Brazil. Some genes are considered to be involved in biofilm formation, but the specific mechanisms involved in this process remain unknown. This limited understanding of how some bacteria form biofilms is a major barrier to our comprehension of the progression of diseases caused by biofilm-producing bacteria. Several investigations have shown that the toxin-antitoxin (TA) operon is related to biofilm formation. This operon is composed of a toxin with RNAse activity and its cognate antitoxin. Previous reports have indicated that the antitoxin is able to inhibit toxin activity and modulate the expression of the operon as well as other target genes involved in oxidative stress and mobility. In this study, we characterize a toxin-antitoxin system consisting of XfMqsR and XfYgiT, respectively, from X. fastidiosa subsp. pauca strain 9a5c. These proteins display a high similarity to their homologs in X. fastidiosa strain Temecula and a predicted tridimensional structure that is similar to MqsR-YgiT from Escherichia coli. The characterization was performed using in vitro assays such as analytical ultracentrifugation (AUC), size exclusion chromatography, isothermal titration calorimetry, and Western blotting. Using a fluorometric assay to detect RNAses, we demonstrated that XfMqsR is thermostable and can degrade RNA. XfMqsR is inhibited by XfYgiT, which interacts with its own promoter. XfYgiT is known to be localized in the intracellular compartment; however, we provide strong evidence that X. fastidiosa secretes wild-type XfYgiT into the extracellular environment via outer membrane vesicles, as confirmed by Western blotting and specific immunofluorescence labeling visualized by fluorescence microscopy. Taken together, our results characterize the TA system from X. fastidiosa strain 9a5c, and we also discuss the possible influence of wild-type XfYgiT in the cell.
Collapse
Affiliation(s)
- André da Silva Santiago
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Juliano S Mendes
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Clelton A Dos Santos
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Marcelo A S de Toledo
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Lilian L Beloti
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Aline Crucello
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Maria A C Horta
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Marianna T de Pinho Favaro
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de Campinas Campinas, Brazil
| | - Duber M M Munar
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas Campinas, Brazil
| | | | - Mônica A Cotta
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas Campinas, Brazil
| | - Anete P de Souza
- Centro de Biologia Molecular e Engenharia Genética, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil; Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil
| |
Collapse
|
6
|
Sharma T, Naik S, Gopal A, Zhang JXJ. Emerging trends in bioenergy harvesters for chronic powered implants. ACTA ACUST UNITED AC 2015. [DOI: 10.1557/mre.2015.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Janissen R, Murillo DM, Niza B, Sahoo PK, Nobrega MM, Cesar CL, Temperini MLA, Carvalho HF, de Souza AA, Cotta MA. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Sci Rep 2015; 5:9856. [PMID: 25891045 PMCID: PMC4402645 DOI: 10.1038/srep09856] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/20/2015] [Indexed: 12/30/2022] Open
Abstract
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.
Collapse
Affiliation(s)
- Richard Janissen
- Applied Physics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Duber M. Murillo
- Applied Physics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Barbara Niza
- Citrus Center APTA ‘Sylvio Moreira’, Agronomic Institute of Campinas, 13490-970, Cordeirópolis, São Paulo, Brazil
| | - Prasana K. Sahoo
- Applied Physics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Marcelo M. Nobrega
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Carlos L. Cesar
- Quantum Electronics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| | - Marcia L. A. Temperini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, 05508-000, São Paulo, Brazil
| | - Hernandes F. Carvalho
- Structural and Functional Biology Department, Institute of Biology, State University of Campinas, 13083-865, Campinas, São Paulo, Brazil
| | - Alessandra A. de Souza
- Citrus Center APTA ‘Sylvio Moreira’, Agronomic Institute of Campinas, 13490-970, Cordeirópolis, São Paulo, Brazil
| | - Monica A. Cotta
- Applied Physics Department, Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Vasdekis AE, Stephanopoulos G. Review of methods to probe single cell metabolism and bioenergetics. Metab Eng 2015; 27:115-135. [PMID: 25448400 PMCID: PMC4399830 DOI: 10.1016/j.ymben.2014.09.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
Abstract
Single cell investigations have enabled unexpected discoveries, such as the existence of biological noise and phenotypic switching in infection, metabolism and treatment. Herein, we review methods that enable such single cell investigations specific to metabolism and bioenergetics. Firstly, we discuss how to isolate and immobilize individuals from a cell suspension, including both permanent and reversible approaches. We also highlight specific advances in microbiology for its implications in metabolic engineering. Methods for probing single cell physiology and metabolism are subsequently reviewed. The primary focus therein is on dynamic and high-content profiling strategies based on label-free and fluorescence microspectroscopy and microscopy. Non-dynamic approaches, such as mass spectrometry and nuclear magnetic resonance, are also briefly discussed.
Collapse
Affiliation(s)
- Andreas E Vasdekis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99354, USA.
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Abstract
Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.
Collapse
Affiliation(s)
- Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
10
|
Günther TJ, Suhr M, Raff J, Pollmann K. Immobilization of microorganisms for AFM studies in liquids. RSC Adv 2014. [DOI: 10.1039/c4ra03874f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Reproducible immobilization method even for living eukaryotes and prokaryotes on polyelectrolyte coated surfaces for high resolution AFM imaging in liquids.
Collapse
Affiliation(s)
- Tobias J. Günther
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute for Resource Ecology and Helmholtz Institute Freiberg for Resource Technology
- 01328 Dresden, Germany
| | - Matthias Suhr
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01328 Dresden, Germany
| | - Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute for Resource Ecology and Helmholtz Institute Freiberg for Resource Technology
- 01328 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
| | - Katrin Pollmann
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute for Resource Ecology and Helmholtz Institute Freiberg for Resource Technology
- 01328 Dresden, Germany
| |
Collapse
|
11
|
Wong I, Ding X, Wu C, Ho CM. Accurate and Effective Live Bacteria Microarray Patterning on Thick Polycationic Polymer Layer Co-Patterned with HMDS. RSC Adv 2012; 2:7673-7676. [PMID: 23418622 DOI: 10.1039/c2ra20938a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new bacteria microarray patterning technique is developed by patterning thick polycationic polymers on glass surface, which generates high-coverage and high-precision E. coli cell patterns. Cell immobilization efficiency is greatly improved, compared to conventional monolayer surface patterning approach. Cell viability tests show very low cytotoxicity of polyethyleneimine (PEI). This advancement should further accelerate biomedical and bacteriological researches in the micro scale.
Collapse
Affiliation(s)
- Ieong Wong
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095-1597, USA. Fax:+1 (310) 206 2302; Tel: +1 (310) 825 9993
| | | | | | | |
Collapse
|
12
|
Ghim CM, Lee SK, Takayama S, Mitchell RJ. The art of reporter proteins in science: past, present and future applications. BMB Rep 2010; 43:451-60. [PMID: 20663405 DOI: 10.5483/bmbrep.2010.43.7.451] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Starting with the first publication of lacZ gene fusion in 1980, reporter genes have just entered their fourth decade. Initial studies relied on the simple fusion of a promoter or gene with a particular reporter gene of interest. Such constructs were then used to determine the promoter activity under specific conditions or within a given cell or organ. Although this protocol was, and still is, very effective, current research shows a paradigm shift has occurred in the use of reporter systems. With the advent of innovative cloning and synthetic biology techniques and microfluidic/nanodroplet systems, reporter genes and their proteins are now finding themselves used in increasingly intricate and novel applications. For example, researchers have used fluorescent proteins to study biofilm formation and discovered that microchannels develop within the biofilm. Furthermore, there has recently been a "fusion" of art and science; through the construction of genetic circuits and regulatory systems, researchers are using bacteria to "paint" pictures based upon external stimuli. As such, this review will discuss the past and current trends in reporter gene applications as well as some exciting potential applications and models that are being developed based upon these remarkable proteins.
Collapse
Affiliation(s)
- Cheol-Min Ghim
- Ulsan National Institute of Science and Technology, Korea
| | | | | | | |
Collapse
|
13
|
Kim MC, Klapperich C. A new method for simulating the motion of individual ellipsoidal bacteria in microfluidic devices. LAB ON A CHIP 2010; 10:2464-71. [PMID: 20532377 DOI: 10.1039/c003627g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To successfully perform biological experiments on bacteria in microfluidic devices, control of micron-scale cell motion in the chip-sized environment is essential. Here we describe a new method for simulating the motion of individual bacterial cells in a microfluidic device using a one-way coupling Lagrangian approach combined with rigid body theory. The cell was assumed to be an elastic, solid ellipsoid, and interactions with solid wall boundaries were considered to occur in one of two collision modes, either a "standing" or "lying" collision mode on the surface. The ordinary differential equations were solved along the cell trajectory for the thirteen unknown variables of the translational cell velocity, cell location vector, rotational angular velocity, and four Euler parameters, using the Rosenbrock method based on an adaptive time-stepping technique. As selected applications, we show how this novel simulation method may be applied to the designs of efficient hydrodynamic cell traps in a microfluidic device for bacterial applications and for cell separations. Modeled designs include optimized U-shaped sieve arrays with a single aperture for the hydrodynamic cell trapping, and three kinds of staggered micropillars for cell separations.
Collapse
Affiliation(s)
- Min-Cheol Kim
- Department of Biomedical Engineering, Boston University, MA 02215, USA
| | | |
Collapse
|
14
|
Wright CJ, Shah MK, Powell LC, Armstrong I. Application of AFM from microbial cell to biofilm. SCANNING 2010; 32:134-49. [PMID: 20648545 DOI: 10.1002/sca.20193] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Atomic Force Microscopy (AFM) has proven itself over recent years as an essential tool for the analysis of microbial systems. This article will review how AFM has been used to study microbial systems to provide unique insight into their behavior and relationship with their environment. Immobilization of live cells has enabled AFM imaging and force measurement to provide understanding of the structure and function of numerous microbial cells. At the macromolecular level AFM investigation into the properties of surface macromolecules and the energies associated with their mechanical conformation and functionality has helped unravel the complex interactions of microbial cells. At the level of the whole cell AFM has provided an integrated analysis of how the microbial cell exploits its environment through its selective, adaptable interface, the cell surface. In addition to these areas of study the AFM investigation of microbial biofilms has been vital for industrial and medical process analysis. There exists a tremendous potential for the future application of AFM to microbial systems and this has been strengthened by the trend to use AFM in combination with other characterization methods, such as confocal microscopy and Raman spectroscopy, to elucidate dynamic cellular processes.
Collapse
Affiliation(s)
- Chris J Wright
- Multidisciplinary Nanotechnology Centre, School of Engineering, Swansea University, Swansea, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Flavel BS, Gross AJ, Garrett DJ, Nock V, Downard AJ. A simple approach to patterned protein immobilization on silicon via electrografting from diazonium salt solutions. ACS APPLIED MATERIALS & INTERFACES 2010; 2:1184-1190. [PMID: 20423137 DOI: 10.1021/am100020a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A highly versatile method utilizing diazonium salt chemistry has been developed for the fabrication of protein arrays. Conventional ultraviolet mask lithography was used to pattern micrometer sized regions into a commercial photoresist on a highly doped p-type silicon (100) substrate. These patterned regions were used as a template for the electrochemical grafting of the in situ generated p-aminobenzenediazonium cation to form patterns of aminophenyl film on silicon. Immobilization of biomolecules was demonstrated by coupling biotin to the aminophenyl regions followed by reaction with fluorescently labeled avidin and visualization with fluorescence microscopy. This simple patterning strategy is promising for future application in biosensor devices.
Collapse
Affiliation(s)
- Benjamin S Flavel
- Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand.
| | | | | | | | | |
Collapse
|
16
|
Bearinger JP, Stone G, Dugan LC, El Dasher B, Stockton C, Conway JW, Kuenzler T, Hubbell JA. Porphyrin-based photocatalytic nanolithography: a new fabrication tool for protein arrays. Mol Cell Proteomics 2009; 8:1823-31. [PMID: 19406753 DOI: 10.1074/mcp.m800585-mcp200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nanoarray fabrication is a multidisciplinary endeavor encompassing materials science, chemical engineering, and biology. We formed nanoarrays via a new technique, porphyrin-based photocatalytic nanolithography. The nanoarrays, with controlled features as small as 200 nm, exhibited regularly ordered patterns and may be appropriate for (a) rapid and parallel proteomics screening of immobilized biomolecules, (b) protein-protein interactions, and/or (c) biophysical and molecular biology studies involving spatially dictated ligand placement. We demonstrated protein immobilization utilizing nanoarrays fabricated via photocatalytic nanolithography on silicon substrates where the immobilized proteins are surrounded by a non-fouling polymer background.
Collapse
Affiliation(s)
- Jane P Bearinger
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
| | | | | | | | | | | | | | | |
Collapse
|