1
|
Zhao Y, Huang F, Wang W, Gao R, Fan L, Wang A, Gao SH. Application of high-throughput sequencing technologies and analytical tools for pathogen detection in urban water systems: Progress and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165867. [PMID: 37516185 DOI: 10.1016/j.scitotenv.2023.165867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The ubiquitous presence of pathogenic microorganisms, such as viruses, bacteria, fungi, and protozoa, in urban water systems poses a significant risk to public health. The emergence of infectious waterborne diseases mediated by urban water systems has become one of the leading global causes of mortality. However, the detection and monitoring of these pathogenic microorganisms have been limited by the complexity and diversity in the environmental samples. Conventional methods were restricted by long assay time, high benchmarks of identification, and narrow application sceneries. Novel technologies, such as high-throughput sequencing technologies, enable potentially full-spectrum detection of trace pathogenic microorganisms in complex environmental matrices. This review discusses the current state of high-throughput sequencing technologies for identifying pathogenic microorganisms in urban water systems with a concise summary. Furthermore, future perspectives in pathogen research emphasize the need for detection methods with high accuracy and sensitivity, the establishment of precise detection standards and procedures, and the significance of bioinformatics software and platforms. We have compiled a list of pathogens analysis software/platforms/databases that boast robust engines and high accuracy for preference. We highlight the significance of analyses by combining targeted and non-targeted sequencing technologies, short and long reads technologies, sequencing technologies, and bioinformatic tools in pursuing upgraded biosafety in urban water systems.
Collapse
Affiliation(s)
- Yanmei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Fang Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Rui Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
2
|
Pradhan S, Apaydin S, Bucevičius J, Gerasimaitė R, Kostiuk G, Lukinavičius G. Sequence-specific DNA labelling for fluorescence microscopy. Biosens Bioelectron 2023; 230:115256. [PMID: 36989663 DOI: 10.1016/j.bios.2023.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The preservation of nucleus structure during microscopy imaging is a top priority for understanding chromatin organization, genome dynamics, and gene expression regulation. In this review, we summarize the sequence-specific DNA labelling methods that can be used for imaging in fixed and/or living cells without harsh treatment and DNA denaturation: (i) hairpin polyamides, (ii) triplex-forming oligonucleotides, (iii) dCas9 proteins, (iv) transcription activator-like effectors (TALEs) and (v) DNA methyltransferases (MTases). All these techniques are capable of identifying repetitive DNA loci and robust probes are available for telomeres and centromeres, but visualizing single-copy sequences is still challenging. In our futuristic vision, we see gradual replacement of the historically important fluorescence in situ hybridization (FISH) by less invasive and non-destructive methods compatible with live cell imaging. Combined with super-resolution fluorescence microscopy, these methods will open the possibility to look into unperturbed structure and dynamics of chromatin in living cells, tissues and whole organisms.
Collapse
|
3
|
Ramadan AA. Bacterial typing methods from past to present: A comprehensive overview. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Esmek FM, Erichlandwehr T, Brkovic N, Pranzner NP, Teuber JP, Fernandez-Cuesta I. Pillar-structured 3D inlets fabricated by dose-modulated e-beam lithography and nanoimprinting for DNA analysis in passive, clogging-free, nanofluidic devices. NANOTECHNOLOGY 2022; 33:385301. [PMID: 35696945 DOI: 10.1088/1361-6528/ac780d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
We present the fabrication of three-dimensional inlets with gradually decreasing widths and depths and with nanopillars on the slope, all defined in just one lithography step. In addition, as an application, we show how these micro- and nanostructures can be used for micro- and nanofluidics and lab-on-a-chip devices to facilitate the flow and analyze single molecules of DNA. For the fabrication of 3D inlets in a single layer process, dose-modulated electron beam lithography was used, producing depths between 750 nm and 50 nm along a 30 μm long inlet, which is additionally structured with nanometer-scale pillars randomly distributed on top, as a result of incomplete exposure and underdevelopment of the resist. The fabrication conditions affect the slope of the inlet, the nanopillar density and coverage. The key parameters are the dose used for the electron beam exposure and the development conditions, like the developer's dilution, stirring and development time. The 3D inlets with nanostructured pillars were integrated into fluidic devices, acting as a transition between micro and nanofluidic structures for pre-stretching and unfolding DNA molecules, avoiding the intrusion of folded molecules and clogging the analysis channel. After patterning these structures in silicon, they can be replicated in polymer by UV nanoimprinting. We show here how the inlets with pillars slow down the molecules before they enter the nanochannels, resulting in a 3-fold decrease in speed, which would translate to an improvement in the resolution for DNA optical mapping.
Collapse
Affiliation(s)
- Franziska M Esmek
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Tim Erichlandwehr
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Nico Brkovic
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Nathalie P Pranzner
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Jeremy P Teuber
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
| | - Irene Fernandez-Cuesta
- Universität Hamburg, Institute of Nanostructure and Solid State Physics, HARBOR Bldg 610, Luruper Chaussee 149, Hamburg D-22761, Germany
- Hamburg Centre for Ultrafast Imaging, Germany
| |
Collapse
|
5
|
A simple cut and stretch assay to detect antimicrobial resistance genes on bacterial plasmids by single-molecule fluorescence microscopy. Sci Rep 2022; 12:9301. [PMID: 35660772 PMCID: PMC9166776 DOI: 10.1038/s41598-022-13315-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance (AMR) is a fast-growing threat to global health. The genes conferring AMR to bacteria are often located on plasmids, circular extrachromosomal DNA molecules that can be transferred between bacterial strains and species. Therefore, effective methods to characterize bacterial plasmids and detect the presence of resistance genes can assist in managing AMR, for example, during outbreaks in hospitals. However, existing methods for plasmid analysis either provide limited information or are expensive and challenging to implement in low-resource settings. Herein, we present a simple assay based on CRISPR/Cas9 excision and DNA combing to detect antimicrobial resistance genes on bacterial plasmids. Cas9 recognizes the gene of interest and makes a double-stranded DNA cut, causing the circular plasmid to linearize. The change in plasmid configuration from circular to linear, and hence the presence of the AMR gene, is detected by stretching the plasmids on a glass surface and visualizing by fluorescence microscopy. This single-molecule imaging based assay is inexpensive, fast, and in addition to detecting the presence of AMR genes, it provides detailed information on the number and size of plasmids in the sample. We demonstrate the detection of several β-lactamase-encoding genes on plasmids isolated from clinical samples. Furthermore, we demonstrate that the assay can be performed using standard microbiology and clinical laboratory equipment, making it suitable for low-resource settings.
Collapse
|
6
|
Smith SE, Huang W, Tiamani K, Unterer M, Khan Mirzaei M, Deng L. Emerging technologies in the study of the virome. Curr Opin Virol 2022; 54:101231. [DOI: 10.1016/j.coviro.2022.101231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
7
|
Jeffet J, Margalit S, Michaeli Y, Ebenstein Y. Single-molecule optical genome mapping in nanochannels: multidisciplinarity at the nanoscale. Essays Biochem 2021; 65:51-66. [PMID: 33739394 PMCID: PMC8056043 DOI: 10.1042/ebc20200021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
The human genome contains multiple layers of information that extend beyond the genetic sequence. In fact, identical genetics do not necessarily yield identical phenotypes as evident for the case of two different cell types in the human body. The great variation in structure and function displayed by cells with identical genetic background is attributed to additional genomic information content. This includes large-scale genetic aberrations, as well as diverse epigenetic patterns that are crucial for regulating specific cell functions. These genetic and epigenetic patterns operate in concert in order to maintain specific cellular functions in health and disease. Single-molecule optical genome mapping is a high-throughput genome analysis method that is based on imaging long chromosomal fragments stretched in nanochannel arrays. The access to long DNA molecules coupled with fluorescent tagging of various genomic information presents a unique opportunity to study genetic and epigenetic patterns in the genome at a single-molecule level over large genomic distances. Optical mapping entwines synergistically chemical, physical, and computational advancements, to uncover invaluable biological insights, inaccessible by sequencing technologies. Here we describe the method's basic principles of operation, and review the various available mechanisms to fluorescently tag genomic information. We present some of the recent biological and clinical impact enabled by optical mapping and present recent approaches for increasing the method's resolution and accuracy. Finally, we discuss how multiple layers of genomic information may be mapped simultaneously on the same DNA molecule, thus paving the way for characterizing multiple genomic observables on individual DNA molecules.
Collapse
Affiliation(s)
- Jonathan Jeffet
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sapir Margalit
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Michaeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, Center for Nanoscience and Nanotechnology, Center for Light Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Abid HZ, Young E, McCaffrey J, Raseley K, Varapula D, Wang HY, Piazza D, Mell J, Xiao M. Customized optical mapping by CRISPR-Cas9 mediated DNA labeling with multiple sgRNAs. Nucleic Acids Res 2021; 49:e8. [PMID: 33231685 PMCID: PMC7826249 DOI: 10.1093/nar/gkaa1088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023] Open
Abstract
Whole-genome mapping technologies have been developed as a complementary tool to provide scaffolds for genome assembly and structural variation analysis (1,2). We recently introduced a novel DNA labeling strategy based on a CRISPR-Cas9 genome editing system, which can target any 20bp sequences. The labeling strategy is specifically useful in targeting repetitive sequences, and sequences not accessible to other labeling methods. In this report, we present customized mapping strategies that extend the applications of CRISPR-Cas9 DNA labeling. We first design a CRISPR-Cas9 labeling strategy to interrogate and differentiate the single allele differences in NGG protospacer adjacent motifs (PAM sequence). Combined with sequence motif labeling, we can pinpoint the single-base differences in highly conserved sequences. In the second strategy, we design mapping patterns across a genome by selecting sets of specific single-guide RNAs (sgRNAs) for labeling multiple loci of a genomic region or a whole genome. By developing and optimizing a single tube synthesis of multiple sgRNAs, we demonstrate the utility of CRISPR-Cas9 mapping with 162 sgRNAs targeting the 2Mb Haemophilus influenzae chromosome. These CRISPR-Cas9 mapping approaches could be particularly useful for applications in defining long-distance haplotypes and pinpointing the breakpoints in large structural variants in complex genomes and microbial mixtures.
Collapse
MESH Headings
- Alleles
- Base Sequence
- Benzoxazoles/analysis
- CRISPR-Cas Systems
- Chromosome Mapping/methods
- Chromosomes, Bacterial/genetics
- Computer Simulation
- Conserved Sequence/genetics
- DNA-Directed RNA Polymerases
- Drug Resistance, Bacterial/genetics
- Fluorescent Dyes/analysis
- Gene Editing/methods
- Genome, Bacterial
- Genome, Human
- Haemophilus influenzae/drug effects
- Haemophilus influenzae/genetics
- Haplotypes/genetics
- Humans
- Lab-On-A-Chip Devices
- Nalidixic Acid/pharmacology
- Novobiocin/pharmacology
- Nucleotide Motifs/genetics
- Polymorphism, Single Nucleotide
- Quinolinium Compounds/analysis
- RNA, Guide, CRISPR-Cas Systems/chemical synthesis
- RNA, Guide, CRISPR-Cas Systems/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Alignment
- Staining and Labeling/methods
- Viral Proteins
Collapse
Affiliation(s)
- Heba Z Abid
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eleanor Young
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Jennifer McCaffrey
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kaitlin Raseley
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Dharma Varapula
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Hung-Yi Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Danielle Piazza
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA
- Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Drexel University, Philadelphia, PA, USA
| | - Joshua Mell
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA
- Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Drexel University, Philadelphia, PA, USA
| | - Ming Xiao
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Yuan Y, Chung CYL, Chan TF. Advances in optical mapping for genomic research. Comput Struct Biotechnol J 2020; 18:2051-2062. [PMID: 32802277 PMCID: PMC7419273 DOI: 10.1016/j.csbj.2020.07.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
Recent advances in optical mapping have allowed the construction of improved genome assemblies with greater contiguity. Optical mapping also enables genome comparison and identification of large-scale structural variations. Association of these large-scale genomic features with biological functions is an important goal in plant and animal breeding and in medical research. Optical mapping has also been used in microbiology and still plays an important role in strain typing and epidemiological studies. Here, we review the development of optical mapping in recent decades to illustrate its importance in genomic research. We detail its applications and algorithms to show its specific advantages. Finally, we discuss the challenges required to facilitate the optimization of optical mapping and improve its future development and application.
Collapse
Key Words
- 3D, three-dimensional
- DBG, de Bruijn graph
- DLS, direct label and strain
- DNA, deoxyribonucleic acid
- Genome assembly
- Hi-C, high-throughput chromosome conformation capture
- Mb, million base pair
- Next generation sequencing
- OLC, overlap-layout-consensus
- Optical mapping
- PCR, polymerase chain reaction
- PacBio, Pacific Biosciences
- SRS, short-read sequencing
- SV, structural variation
- Structural variation
- bp, base pair
- kb, kilobase pair
Collapse
Affiliation(s)
- Yuxuan Yuan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Claire Yik-Lok Chung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020; 1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.
Collapse
|
11
|
Bouwens A, Deen J, Vitale R, D’Huys L, Goyvaerts V, Descloux A, Borrenberghs D, Grussmayer K, Lukes T, Camacho R, Su J, Ruckebusch C, Lasser T, Van De Ville D, Hofkens J, Radenovic A, Frans Janssen KP. Identifying microbial species by single-molecule DNA optical mapping and resampling statistics. NAR Genom Bioinform 2020; 2:lqz007. [PMID: 33575560 PMCID: PMC7671359 DOI: 10.1093/nargab/lqz007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Single-molecule DNA mapping has the potential to serve as a powerful complement to high-throughput sequencing in metagenomic analysis. Offering longer read lengths and forgoing the need for complex library preparation and amplification, mapping stands to provide an unbiased view into the composition of complex viromes and/or microbiomes. To fully enable mapping-based metagenomics, sensitivity and specificity of DNA map analysis and identification need to be improved. Using detailed simulations and experimental data, we first demonstrate how fluorescence imaging of surface stretched, sequence specifically labeled DNA fragments can yield highly sensitive identification of targets. Second, a new analysis technique is introduced to increase specificity of the analysis, allowing even closely related species to be resolved. Third, we show how an increase in resolution improves sensitivity. Finally, we demonstrate that these methods are capable of identifying species with long genomes such as bacteria with high sensitivity.
Collapse
Affiliation(s)
- Arno Bouwens
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jochem Deen
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Raffaele Vitale
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- LASIR CNRS, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Laurens D’Huys
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Vince Goyvaerts
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Adrien Descloux
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | - Kristin Grussmayer
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tomas Lukes
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rafael Camacho
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Jia Su
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Cyril Ruckebusch
- LASIR CNRS, Université de Lille, 59655 Villeneuve d’Ascq, France
| | - Theo Lasser
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Department of Radiology and Medical Informatics, Université de Genève, 1205 Genève, Switzerland
| | - Johan Hofkens
- Department of Chemistry, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Aleksandra Radenovic
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
12
|
Sousa TDJ, Parise D, Profeta R, Parise MTD, Gomide ACP, Kato RB, Pereira FL, Figueiredo HCP, Ramos R, Brenig B, Costa da Silva ALD, Ghosh P, Barh D, Góes-Neto A, Azevedo V. Re-sequencing and optical mapping reveals misassemblies and real inversions on Corynebacterium pseudotuberculosis genomes. Sci Rep 2019; 9:16387. [PMID: 31705053 PMCID: PMC6841979 DOI: 10.1038/s41598-019-52695-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
The number of draft genomes deposited in Genbank from the National Center for Biotechnology Information (NCBI) is higher than the complete ones. Draft genomes are assemblies that contain fragments of misassembled regions (gaps). Such draft genomes present a hindrance to the complete understanding of the biology and evolution of the organism since they lack genomic information. To overcome this problem, strategies to improve the assembly process are developed continuously. Also, the greatest challenge to the assembly progress is the presence of repetitive DNA regions. This article highlights the use of optical mapping, to detect and correct assembly errors in Corynebacterium pseudotuberculosis. We also demonstrate that choosing a reference genome should be done with caution to avoid assembly errors and loss of genetic information.
Collapse
Affiliation(s)
- Thiago de Jesus Sousa
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Doglas Parise
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Profeta
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Bentos Kato
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Luiz Pereira
- National Reference Laboratory for Aquatic Animal Diseases (AQUACEN) of Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Cesar Pereira Figueiredo
- National Reference Laboratory for Aquatic Animal Diseases (AQUACEN) of Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rommel Ramos
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University Göttingen, Göttingen, Germany
| | | | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, United States
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri West Bengal, India
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Slatko BE, Gardner AF, Ausubel FM. Overview of Next-Generation Sequencing Technologies. ACTA ACUST UNITED AC 2019; 122:e59. [PMID: 29851291 DOI: 10.1002/cpmb.59] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High throughput DNA sequencing methodology (next generation sequencing; NGS) has rapidly evolved over the past 15 years and new methods are continually being commercialized. As the technology develops, so do increases in the number of corresponding applications for basic and applied science. The purpose of this review is to provide a compendium of NGS methodologies and associated applications. Each brief discussion is followed by web links to the manufacturer and/or web-based visualizations. Keyword searches, such as with Google, may also provide helpful internet links and information. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | | | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Abstract
Long-read genomic applications, such as genome mapping in nanochannels, require long DNA that is free of small-DNA impurities. We have developed a chip-based system based on entropic trapping that can simultaneously concentrate and purify a long DNA sample under the alternating application of an applied pressure (for sample injection) and an electric field (for filtration and concentration). In contrast, short DNA tends to pass through the filter owing to its comparatively weak entropic penalty for entering the nanoslit. The single-stage prototype developed here, which operates in a continuous pulsatile manner, achieves selectivities of up to 3.5 for λ-phage DNA (48.5 kilobase pairs) compared to a 2 kilobase pair standard based on experimental data for the fraction filtered using pure samples of each species. The device is fabricated in fused silica using standard clean-room methods, making it compatible for integration with long-read genomics technologies.
Collapse
Affiliation(s)
- Pranav Agrawal
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
15
|
Abbasian F, Ghafar-Zadeh E, Magierowski S. Microbiological Sensing Technologies: A Review. Bioengineering (Basel) 2018; 5:E20. [PMID: 29498670 PMCID: PMC5874886 DOI: 10.3390/bioengineering5010020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Microorganisms have a significant influence on human activities and health, and consequently, there is high demand to develop automated, sensitive, and rapid methods for their detection. These methods might be applicable for clinical, industrial, and environmental applications. Although different techniques have been suggested and employed for the detection of microorganisms, and the majority of these methods are not cost effective and suffer from low sensitivity and low specificity, especially in mixed samples. This paper presents a comprehensive review of microbiological techniques and associated challenges for bioengineering researchers with an engineering background. Also, this paper reports on recent technological advances and their future prospects for a variety of microbiological applications.
Collapse
Affiliation(s)
- Firouz Abbasian
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Sebastian Magierowski
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
16
|
Abstract
Stretching of DNA in nanoscale confinement allows for several important studies. The genetic contents of the DNA can be visualized on the single DNA molecule level and both the polymer physics of confined DNA and also DNA/protein and other DNA/DNA-binding molecule interactions can be explored. This chapter describes the basic steps to fabricate the nanostructures, perform the experiments and analyze the data.
Collapse
|