1
|
Krycer JR, Lor M, Fitzsimmons RL, Hudson JE. A cell culture platform for quantifying metabolic substrate oxidation in bicarbonate-buffered medium. J Biol Chem 2021; 298:101547. [PMID: 34971704 PMCID: PMC8819040 DOI: 10.1016/j.jbc.2021.101547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022] Open
Abstract
Complex diseases such as cancer and diabetes are underpinned by changes in metabolism, specifically by which and how nutrients are catabolized. Substrate utilization can be directly examined by measuring a metabolic endpoint rather than an intermediate (such as tricarboxylic cycle metabolite). For instance, oxidation of specific substrates can be measured in vitro by incubation of live cultures with substrates containing radiolabeled carbon and measuring radiolabeled carbon dioxide. To increase throughput, we previously developed a miniaturized platform to measure substrate oxidation of both adherent and suspension cells using multiwell plates rather than flasks. This enabled multiple conditions to be examined simultaneously, ideal for drug screens and mechanistic studies. However, like many metabolic assays, this was not compatible with bicarbonate-buffered media, which is susceptible to alkalinization upon exposure to gas containing little carbon dioxide such as air. While other buffers such as HEPES can overcome this problem, bicarbonate has additional biological roles as a metabolic substrate and in modulating hormone signaling. Here, we create a bicarbonate-buffered well-plate platform to measure substrate oxidation. This was achieved by introducing a sealed environment within each well that was equilibrated with carbon dioxide, enabling bicarbonate buffering. As proof of principle, we assessed metabolic flux in cultured adipocytes, demonstrating that bicarbonate-buffered medium increased lipogenesis, glucose oxidation, and sensitivity to insulin in comparison to HEPES-buffered medium. This convenient and high-throughput method facilitates the study and screening of metabolic activity under more physiological conditions to aid biomedical research.
Collapse
Affiliation(s)
- James R Krycer
- QIMR Berghofer Medical Research Institute; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology
| | - Mary Lor
- QIMR Berghofer Medical Research Institute
| | | | - James E Hudson
- QIMR Berghofer Medical Research Institute; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland.
| |
Collapse
|
2
|
Krycer JR, Quek LE, Francis D, Zadoorian A, Weiss FC, Cooke KC, Nelson ME, Diaz-Vegas A, Humphrey SJ, Scalzo R, Hirayama A, Ikeda S, Shoji F, Suzuki K, Huynh K, Giles C, Varney B, Nagarajan SR, Hoy AJ, Soga T, Meikle PJ, Cooney GJ, Fazakerley DJ, James DE. Insulin signaling requires glucose to promote lipid anabolism in adipocytes. J Biol Chem 2020; 295:13250-13266. [PMID: 32723868 DOI: 10.1074/jbc.ra120.014907] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism. Examining lipogenesis in cultured adipocytes, glucose was essential for insulin to stimulate the synthesis of fatty acids and glyceride-glycerol. Importantly, glucose was dispensable for lipogenesis in the absence of insulin, suggesting that distinct carbon sources are used with or without insulin. Metabolic tracing studies revealed that glucose was required for insulin to stimulate pathways providing carbon substrate, NADPH, and glycerol 3-phosphate for lipid synthesis and storage. Glucose also displaced leucine as a lipogenic substrate and was necessary to suppress fatty acid oxidation. Together, glucose provided substrates and metabolic control for insulin to promote lipogenesis in adipocytes. This contrasted with the suppression of lipolysis by insulin signaling, which occurred independently of glucose. Given previous observations that signal transduction acts primarily before glucose uptake in adipocytes, these data are consistent with a model whereby insulin initially utilizes protein phosphorylation to stimulate lipid anabolism, which is sustained by subsequent glucose metabolism. Consequently, lipid abundance was sensitive to glucose availability, both during adipogenesis and in Drosophila flies in vivo Together, these data highlight the importance of glucose metabolism to support insulin action, providing a complementary regulatory mechanism to signal transduction to stimulate adipose anabolism.
Collapse
Affiliation(s)
- James R Krycer
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Lake-Ee Quek
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Deanne Francis
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Armella Zadoorian
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Fiona C Weiss
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Kristen C Cooke
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Marin E Nelson
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Richard Scalzo
- Faculty of Engineering and Information Technologies, University of Sydney, Sydney, New South Wales, Australia
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Otemachi, Chiyoda-Ku, Tokyo, Japan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Futaba Shoji
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kumi Suzuki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Bianca Varney
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Otemachi, Chiyoda-Ku, Tokyo, Japan
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gregory J Cooney
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - David E James
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Krycer JR, Quek LE, Francis D, Fazakerley DJ, Elkington SD, Diaz-Vegas A, Cooke KC, Weiss FC, Duan X, Kurdyukov S, Zhou PX, Tambar UK, Hirayama A, Ikeda S, Kamei Y, Soga T, Cooney GJ, James DE. Lactate production is a prioritized feature of adipocyte metabolism. J Biol Chem 2020; 295:83-98. [PMID: 31690627 PMCID: PMC6952601 DOI: 10.1074/jbc.ra119.011178] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue is essential for whole-body glucose homeostasis, with a primary role in lipid storage. It has been previously observed that lactate production is also an important metabolic feature of adipocytes, but its relationship to adipose and whole-body glucose disposal remains unclear. Therefore, using a combination of metabolic labeling techniques, here we closely examined lactate production of cultured and primary mammalian adipocytes. Insulin treatment increased glucose uptake and conversion to lactate, with the latter responding more to insulin than did other metabolic fates of glucose. However, lactate production did not just serve as a mechanism to dispose of excess glucose, because we also observed that lactate production in adipocytes did not solely depend on glucose availability and even occurred independently of glucose metabolism. This suggests that lactate production is prioritized in adipocytes. Furthermore, knocking down lactate dehydrogenase specifically in the fat body of Drosophila flies lowered circulating lactate and improved whole-body glucose disposal. These results emphasize that lactate production is an additional metabolic role of adipose tissue beyond lipid storage and release.
Collapse
Affiliation(s)
- James R Krycer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lake-Ee Quek
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Deanne Francis
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Sarah D Elkington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kristen C Cooke
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fiona C Weiss
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaowen Duan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sergey Kurdyukov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ping-Xin Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Uttam K Tambar
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-Ku, Tokyo 100-0004, Japan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Yushi Kamei
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1 Otemachi, Chiyoda-Ku, Tokyo 100-0004, Japan
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia.
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
4
|
Krycer JR, Elkington SD, Diaz-Vegas A, Cooke KC, Burchfield JG, Fisher-Wellman KH, Cooney GJ, Fazakerley DJ, James DE. Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes. J Biol Chem 2020; 295:99-110. [PMID: 31744882 PMCID: PMC6952605 DOI: 10.1074/jbc.ra119.011695] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 11/06/2022] Open
Abstract
Insulin action in adipose tissue is crucial for whole-body glucose homeostasis, with insulin resistance being a major risk factor for metabolic diseases such as type 2 diabetes. Recent studies have proposed mitochondrial oxidants as a unifying driver of adipose insulin resistance, serving as a signal of nutrient excess. However, neither the substrates for nor sites of oxidant production are known. Because insulin stimulates glucose utilization, we hypothesized that glucose oxidation would fuel respiration, in turn generating mitochondrial oxidants. This would impair insulin action, limiting further glucose uptake in a negative feedback loop of "glucose-dependent" insulin resistance. Using primary rat adipocytes and cultured 3T3-L1 adipocytes, we observed that insulin increased respiration, but notably this occurred independently of glucose supply. In contrast, glucose was required for insulin to increase mitochondrial oxidants. Despite rising to similar levels as when treated with other agents that cause insulin resistance, glucose-dependent mitochondrial oxidants failed to cause insulin resistance. Subsequent studies revealed a temporal relationship whereby mitochondrial oxidants needed to increase before the insulin stimulus to induce insulin resistance. Together, these data reveal that (a) adipocyte respiration is principally fueled from nonglucose sources; (b) there is a disconnect between respiration and oxidative stress, whereby mitochondrial oxidant levels do not rise with increased respiration unless glucose is present; and (c) mitochondrial oxidative stress must precede the insulin stimulus to cause insulin resistance, explaining why short-term, insulin-dependent glucose utilization does not promote insulin resistance. These data provide additional clues to mechanistically link nutrient excess to adipose insulin resistance.
Collapse
Affiliation(s)
- James R Krycer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sarah D Elkington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexis Diaz-Vegas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kristen C Cooke
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - James G Burchfield
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Gregory J Cooney
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Daniel J Fazakerley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
5
|
A modified gas-trapping method for high-throughput metabolic experiments in Drosophila melanogaster. Biotechniques 2019; 67:123-125. [PMID: 31385711 DOI: 10.2144/btn-2019-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metabolism is often studied in animal models, with the Drosophila melanogaster fruit fly model offering ease of genetic manipulation and high-throughput studies. Fly metabolism is typically studied using end-point assays that are simple but destructive, and do not provide information on the utilization of specific nutrients. To address these limitations, we adapted existing gas-trapping protocols to measure the oxidation of radiolabeled substrates (such as glucose) in multi-well plates. This protocol is cost effective, simple, and offers precise control over experimental diet and measurement time, thus being amenable to high-throughput studies. Furthermore, it is nondestructive, enabling time-course experiments and multiplexing with other parameters. Overall, this protocol is useful for merging fly genetics with metabolic studies to understand whole organism responses to different macronutrients.
Collapse
|