1
|
Khan P, Idrees D, Moxley MA, Corbett JA, Ahmad F, von Figura G, Sly WS, Waheed A, Hassan MI. Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Appl Biochem Biotechnol 2014; 173:333-55. [PMID: 24752935 PMCID: PMC4426882 DOI: 10.1007/s12010-014-0850-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/06/2014] [Indexed: 12/28/2022]
Abstract
Chemiluminescence (CL) is an important method for quantification and analysis of various macromolecules. A wide range of CL agents such as luminol, hydrogen peroxide, fluorescein, dioxetanes and derivatives of oxalate, and acridinium dyes are used according to their biological specificity and utility. This review describes the application of luminol chemiluminescence (LCL) in forensic, biomedical, and clinical sciences. LCL is a very useful detection method due to its selectivity, simplicity, low cost, and high sensitivity. LCL has a dynamic range of applications, including quantification and detection of macro and micromolecules such as proteins, carbohydrates, DNA, and RNA. Luminol-based methods are used in environmental monitoring as biosensors, in the pharmaceutical industry for cellular localization and as biological tracers, and in reporter gene-based assays and several other immunoassays. Here, we also provide information about different compounds that may enhance or inhibit the LCL along with the effect of pH and concentration on LCL. This review covers most of the significant information related to the applications of luminol in different fields.
Collapse
Affiliation(s)
- Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Danish Idrees
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Michael A. Moxley
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., DRC Room 615, St. Louis, MO, USA
| | - John A. Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Guido von Figura
- Department of Internal Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - William S. Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., DRC Room 615, St. Louis, MO, USA
| | - Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., DRC Room 615, St. Louis, MO, USA
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
2
|
Su YA, Yang J, Tao L, Nguyen H, He P. Undetectable and Decreased Expression of KIAA1949 (Phostensin) Encoded on Chromosome 6p21.33 in Human Breast Cancers Revealed by Transcriptome Analysis. J Cancer 2010; 1:38-50. [PMID: 20842223 PMCID: PMC2931353 DOI: 10.7150/jca.1.38] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cytogenetic aberration and loss of heterozygosity (LOH) are documented on chromosome 6 in many cancers and the introduction of a neo-tagged chromosome 6 into breast cancer cell lines mediates suppression of tumorigenicity. In this study, we described the identification of KIAA1949 (phostensin) as a putative tumor suppressor gene. Our microarray analysis screened 25,985 cDNAs between a tumorigenic and metastatic breast cancer cell line MDA-MB-231 and the chromosome 6-mediated suppressed, non-tumorigenic and non-metastatic derivative cell line MDA/H6, resulting in the identification of 651 differentially expressed genes. Using customized microarrays containing these 651 cDNAs and 117 controls, we identified 200 frequently dysregulated genes in 10 breast cancer cell lines and 5 tumor tissues using MDA/H6 as reference. Our bioinformatics analysis revealed that chromosome 6 encodes 25 of these 200 genes, with 4 downregulation and 21 upergulation. Northern analysis validated microarray results and was used to detect the size and number of RNA species of 2 downregulated (KIAA1949, PTK7) and 2 upregulated (SFRS3, HMGN3) genes in the cell lines. Particularly, the KIAA1949 gene at 6p21.33, a band region with the frequent cytogenetic aberration and LOH encodes 4 poly(A)-RNA species (4.6-, 4-, 3- and 1.5-kb) in multiple normal and breast cancer samples. Microarray analysis revealed KIAA1949 downregulation in 86.7% (n=15) of breast cancer cell lines and tumor tissues. Northern analysis demonstrated undetectable and decreased expression of KIAA1949 in 100% (n=10) of breast cancer cell lines. Taken together, these results strongly suggest KIAA1949 is a novel candidate breast cancer suppressor gene.
Collapse
Affiliation(s)
- Yan A Su
- 1. GenProMarkers Inc., Rockville, Maryland 20850, USA
| | | | | | | | | |
Collapse
|
3
|
Mourlevat S, Debeir T, Ferrario JE, Delbe J, Caruelle D, Lejeune O, Depienne C, Courty J, Raisman-Vozari R, Ruberg M. Pleiotrophin mediates the neurotrophic effect of cyclic AMP on dopaminergic neurons: analysis of suppression-subtracted cDNA libraries and confirmation in vitro. Exp Neurol 2005; 194:243-54. [PMID: 15899261 DOI: 10.1016/j.expneurol.2005.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Revised: 02/22/2005] [Accepted: 02/24/2005] [Indexed: 11/21/2022]
Abstract
To better understand the particular vulnerability of mesencephalic dopaminergic neurons to toxins or gene mutations causing parkinsonism, we have taken advantage of a primary cell culture system in which these neurons die selectively. Antimitotic agents, such as cytosine arabinoside or cAMP, prevent the death of the neurons by arresting astrocyte proliferation. To identify factors implicated in either the death of the dopaminergic neurons or in the neuroprotective effect of cAMP, we constructed cDNA libraries enriched by subtractive hybridization and suppressive PCR in transcripts that are preferentially expressed in either control or cAMP-treated cultures. Differentially expressed transcripts were identified by hybridization of the enriched cDNAs with a commercially available cDNA expression array. The proteoglycan receptors syndecan-3 and the receptor protein tyrosine phosphatase zeta/beta were found among the transcripts preferentially expressed under control conditions, and their ligand, the cytokine pleiotrophin, was highly represented in the cDNA libraries for both conditions. Since pleiotrophin is expressed during embryonic and perinatal neural development and following lesions in the adult brain, we investigated its role in our cell culture model. Pleiotrophin was not responsible for the death of dopaminergic neurons under control conditions, or for their survival in cAMP-treated cultures. It was, however, implicated in the initial and cAMP-dependent enhancement of the differentiation of the dopaminergic neurons in our cultures. In addition, our experiments have provided evidence for a cAMP-dependent regulatory pathway leading to protease activation, and the identification of pleiotrophin as a target of this pathway.
Collapse
Affiliation(s)
- Sophie Mourlevat
- INSERM U679, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cao W, Epstein C, Liu H, DeLoughery C, Ge N, Lin J, Diao R, Cao H, Long F, Zhang X, Chen Y, Wright PS, Busch S, Wenck M, Wong K, Saltzman AG, Tang Z, Liu L, Zilberstein A. Comparing gene discovery from Affymetrix GeneChip microarrays and Clontech PCR-select cDNA subtraction: a case study. BMC Genomics 2004; 5:26. [PMID: 15113399 PMCID: PMC415544 DOI: 10.1186/1471-2164-5-26] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 04/27/2004] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Several high throughput technologies have been employed to identify differentially regulated genes that may be molecular targets for drug discovery. Here we compared the sets of differentially regulated genes discovered using two experimental approaches: a subtracted suppressive hybridization (SSH) cDNA library methodology and Affymetrix GeneChip technology. In this "case study" we explored the transcriptional pattern changes during the in vitro differentiation of human monocytes to myeloid dendritic cells (DC), and evaluated the potential for novel gene discovery using the SSH methodology. RESULTS The same RNA samples isolated from peripheral blood monocyte precursors and immature DC (iDC) were used for GeneChip microarray probing and SSH cDNA library construction. 10,000 clones from each of the two-way SSH libraries (iDC-monocytes and monocytes-iDC) were picked for sequencing. About 2000 transcripts were identified for each library from 8000 successful sequences. Only 70% to 75% of these transcripts were represented on the U95 series GeneChip microarrays, implying that 25% to 30% of these transcripts might not have been identified in a study based only on GeneChip microarrays. In addition, about 10% of these transcripts appeared to be "novel", although these have not yet been closely examined. Among the transcripts that are also represented on the chips, about a third were concordantly discovered as differentially regulated between iDC and monocytes by GeneChip microarray transcript profiling. The remaining two thirds were either not inferred as differentially regulated from GeneChip microarray data, or were called differentially regulated but in the opposite direction. This underscores the importance both of generating reciprocal pairs of SSH libraries, and of real-time RT-PCR confirmation of the results. CONCLUSIONS This study suggests that SSH could be used as an alternative and complementary transcript profiling tool to GeneChip microarrays, especially in identifying novel genes and transcripts of low abundance.
Collapse
Affiliation(s)
- Wuxiong Cao
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | | | - Hong Liu
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | | | - Nanxiang Ge
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | - Jieyi Lin
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | - Rong Diao
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | - Hui Cao
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | - Fan Long
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | - Xin Zhang
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | - Yangde Chen
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | | | - Steve Busch
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | | | - Karen Wong
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | | | - Zhihua Tang
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | - Li Liu
- Aventis Pharmaceuticals, Bridgewater, NJ 08887, USA
| | | |
Collapse
|
5
|
|
6
|
Susztak K, Sharma K, Schiffer M, McCue P, Ciccone E, Böttinger EP. Genomic strategies for diabetic nephropathy. J Am Soc Nephrol 2003; 14:S271-8. [PMID: 12874445 DOI: 10.1097/01.asn.0000078035.81397.8a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Insight into the molecular mechanisms that underlie the origin and progression of diabetic nephropathy remains limited in part because conventional research tools have restricted investigators to focus on single genes or isolated pathways. Microarray technologies provide opportunities for evaluating genetic factors and environmental effects at a genomic scale during the pathogenesis of diabetic nephropathy. Despite the enormous power of the microarray technology, there are several pitfalls that need to be considered. This article discusses conceptual, practical, statistical, and logistical considerations for the use of microarrays in studies of experimental and human diabetic renal disease. New knowledge in this field will facilitate new approaches for molecular diagnosis and drug discovery.
Collapse
Affiliation(s)
- Katalin Susztak
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Beck MT, Peirce SK, Chen WY. Regulation of bcl-2 gene expression in human breast cancer cells by prolactin and its antagonist, hPRL-G129R. Oncogene 2002; 21:5047-55. [PMID: 12140755 DOI: 10.1038/sj.onc.1205637] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Revised: 04/24/2002] [Accepted: 04/29/2002] [Indexed: 11/08/2022]
Abstract
To gain insight into the molecular basis of human prolactin (hPRL) antagonist induced apoptosis, we compared the differential gene expression profile of four human breast cancer cell lines following treatment with hPRL and its antagonist (hPRL-G129R). Among the genes identified, the bcl-2 gene was of particular interest. We found that bcl-2 mRNA was up regulated in three of the four cell lines that were treated with hPRL. To further confirm these results, real time RT-PCR and ELISA analyses were used to detect bcl-2 mRNA and Bcl-2 protein, respectively, in 11 different breast cancer cell lines after hPRL or hPRL-G129R treatment. Our data suggests that Bcl-2 is up-regulated in response to hPRL stimulation and is competitively inhibited by hPRL-G129R in the majority of the cell lines tested. Thus, we propose that the anti-apoptotic role of hPRL in breast cancer is mediated, at least in part, through regulation of Bcl-2.
Collapse
Affiliation(s)
- Michael T Beck
- Department of Microbiology and Molecular Medicine, Clemson University, Clemson, South Carolina, SC 29630, USA
| | | | | |
Collapse
|
8
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447281 DOI: 10.1002/cfg.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|