1
|
Yasin NM, Pancho F, Yasin M, Van Impe JFM, Akkermans S. Novel methods to monitor the biodegradation of polylactic acid (PLA) by Amycolatopsis orientalis and Amycolatopsis thailandensis. Front Bioeng Biotechnol 2024; 12:1355050. [PMID: 38655392 PMCID: PMC11035760 DOI: 10.3389/fbioe.2024.1355050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Plastics are essential in modern life, but their conventional production is problematic due to environmental pollution and waste management issues. Polylactic acid (PLA) is a widely used bioplastic that is bio-based and biodegradable, making it a key player in the bioeconomy. PLA has been proven to be degradable in various settings, including aqueous, soil, and compost environments. However, monitoring and optimizing PLA biodegradation remains challenging. This study proposes methods to improve the quantification of PLA biodegradation by Amycolatopsis spp. Ultrasound treatments (10 s) significantly improved the enumeration of viable Amycolatopsis cells by breaking the pellets into quantifiable individual cells. A separation technique combining ultrasound (120 s) and 40 μm cell strainers effectively isolated PLA particles from biomass to quantify PLA weight loss. This enabled the monitoring of PLA biofragmentation. Finally, CO2 production was measured according to ISO 14852 to quantify mineralization. Integrating these methods provides an improved quantification for PLA biodegradation along its different stages. In a case study, this led to the construction of a carbon balance where 85.1% of initial carbon content was successfully tracked. The developed techniques for monitoring of PLA biodegradation are essential to design future waste management strategies for biodegradable plastics.
Collapse
Affiliation(s)
- Najwa Mat Yasin
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- Faculty of Ocean Engineering and Informatics, Universiti Malaysia Terengganu (UMT), Kuala Nerus, Terengganu, Malaysia
| | - Farlash Pancho
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
| | - Md Yasin
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
| | - Jan F. M. Van Impe
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+ - Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
| |
Collapse
|
2
|
Shinohara Y, Komiya Y, Morimoto K, Endo Y, Terashima M, Suzuki T, Takino T, Ninomiya I, Yamada H, Uto Y. Development of UTX-143, a selective sodium-hydrogen exchange subtype 5 inhibitor, using amiloride as a lead compound. Bioorg Med Chem 2024; 99:117603. [PMID: 38246115 DOI: 10.1016/j.bmc.2024.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
NHE5, an isoform of the Na+/H+ exchanger (NHE) protein, is an ion-transporting membrane protein that regulates intracellular pH and is highly expressed in colorectal adenocarcinoma. Therefore, we hypothesized that NHE5 inhibitors can be used as anticancer drugs. However, because NHE1 is ubiquitously expressed in all cells, it is extremely important to demonstrate its selective inhibitory activity against NHE5. We used amiloride, an NHE non-selective inhibitor, as a lead compound and created UTX-143, which has NHE5-selective inhibitory activity, using a structure-activity relationship approach. UTX-143 showed selective cytotoxic effects on cancer cells and reduced the migratory and invasive abilities of cancer cells. These results suggest a new concept wherein drugs exhibit cancer-specific cytotoxic effects through selective inhibition of NHE5 and the possibility of UTX-143 as a lead NHE5-selective inhibitor.
Collapse
Affiliation(s)
- Yusei Shinohara
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan
| | - Yuki Komiya
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan
| | - Kashin Morimoto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan
| | - Yoshio Endo
- Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Minoru Terashima
- Division of Functional Geneomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeshi Suzuki
- Division of Functional Geneomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan
| | - Itasu Ninomiya
- Director of Central Medical Center and Department of Surgery, Fukui Prefectural Hospital, Yotsui-2, Fukui 910-0846, Japan
| | - Hisatsugu Yamada
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan.
| |
Collapse
|
3
|
Yamahana H, Terashima M, Takatsuka R, Asada C, Suzuki T, Uto Y, Takino T. TGF-β1 facilitates MT1-MMP-mediated proMMP-9 activation and invasion in oral squamous cell carcinoma cells. Biochem Biophys Rep 2021; 27:101072. [PMID: 34381878 PMCID: PMC8339144 DOI: 10.1016/j.bbrep.2021.101072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinase
- Con A, concanavalin A
- DMEM, Dulbecco's modified Eagle's medium
- ECM
- ECM, extracellular matrix
- FBS, fetal bovine serum
- Invasion
- MAPK, mitogen-activated protein kinase
- MMP
- MMP, matrix metalloproteinase
- MT1-MMP, membrane type-1 MMP
- OSCC, oral squamous cell carcinoma
- Oral cancer
- PBS, phosphate-buffered saline
- TGF, transforming growth factor
- TGF-β1
- TIMP, tissue inhibitor of MMP
Collapse
Affiliation(s)
- Hirari Yamahana
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Minoru Terashima
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Risa Takatsuka
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chikako Asada
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
4
|
Takino T, Suzuki T, Seiki M. Isolation of Highly Migratory and Invasive Cells in Three-Dimensional Gels. ACTA ACUST UNITED AC 2021; 86:e103. [PMID: 32022994 DOI: 10.1002/cpcb.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We developed a modified invasion assay in three-dimensional (3D) gels that permits isolation of invading cells as living cells, termed an invading cell-trapping (iCT) assay. A small cell strainer consisting of nylon mesh with pores of 40-µm square is used in this assay. A layer of gel composed of extracellular-matrix components is formed on each side of the nylon mesh, which permits cell migration or invasion from one gel layer to the other. At the end of the assay, the two gel layers are removed from the apparatus and easily separated from each other. Invading cells from the primary gel are trapped in the secondary gel, which maintains the morphology and other properties of the invasive cells in a 3D matrix. The cells that have invaded are observed and counted with a standard light microscope without cell staining. There is no need for a specialized microscope, imaging analysis software, or advanced cell-biological technical knowledge in this assay. This assay can also reduce measurement of nonspecific cell invasion by monitoring the upward invasion of cells. The viability of both invading and non-invading cells trapped in the gels can be assessed by typical colorimetric assays, if desired. This assessment characterizes the total number of cells (invading and non-invading cells) and the ratio of invading cells to total cells. By repeating the iCT assay, further enrichment of invasive and noninvasive cells can be attained. Thus, this assay improves comparative analyses between invasive and noninvasive cells. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Measuring upward cell invasion into collagen gel Basic Protocol 2: Measuring cell invasion from Matrigel into collagen gel Basic Protocol 3: Isolation and enrichment of highly invasive cells.
Collapse
Affiliation(s)
- Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Motoharu Seiki
- Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Yamahana H, Takino T, Endo Y, Yamada H, Suzuki T, Uto Y. A novel celecoxib analog UTX-121 inhibits HT1080 cell invasion by modulating membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun 2020; 521:137-144. [DOI: 10.1016/j.bbrc.2019.10.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 11/12/2022]
|