1
|
Garg V, Barmukh R, Chitikineni A, Roorkiwal M, Ojiewo C, Bohra A, Thudi M, Singh VK, Kudapa H, Saxena RK, Fountain J, Mir RR, Bharadwaj C, Chen X, Xin L, Pandey MK. Celebrating Professor Rajeev K. Varshney's transformative research odyssey from genomics to the field on his induction as Fellow of the Royal Society. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1504-1515. [PMID: 38206288 PMCID: PMC11123405 DOI: 10.1111/pbi.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Professor Rajeev K. Varshney's transformative impact on crop genomics, genetics, and agriculture is the result of his passion, dedication, and unyielding commitment to harnessing the potential of genomics to address the most pressing challenges faced by the global agricultural community. Starting from a small town in India and reaching the global stage, Professor Varshney's academic and professional trajectory has inspired many scientists active in research today. His ground-breaking work, especially his effort to list orphan tropical crops to genomic resource-rich entities, has been transformative. Beyond his scientific achievements, Professor Varshney is recognized by his colleagues as an exemplary mentor, fostering the growth of future researchers, building institutional capacity, and strengthening scientific capability. His focus on translational genomics and strengthening seed system in developing countries for the improvement of agriculture has made a tangible impact on farmers' lives. His skills have been best utilized in roles at leading research centres where he has applied his expertise to deliver a new vision for crop improvement. These efforts have now been recognized by the Royal Society with the award of the Fellowship (FRS). As we mark this significant milestone in his career, we not only celebrate Professor Varshney's accomplishments but also his wider contributions that continue to transform the agricultural landscape.
Collapse
Affiliation(s)
- Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rutwik Barmukh
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Annapurna Chitikineni
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl AinUAE
| | - Chris Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT)NairobiKenya
| | - Abhishek Bohra
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | | | - Vikas K. Singh
- International Rice Research Institute (IRRI)‐South‐Asia HubInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Jake Fountain
- Department of Plant PathologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of AgricultureSKUAST‐KashmirWaduraIndia
| | | | - Xiaoping Chen
- Crops Research InstituteGuangdong Academy of Agricultural Sciences (GDAAS)GuangzhouChina
| | | | - Manish K. Pandey
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| |
Collapse
|
2
|
Cha JK, Park H, Kwon Y, Lee SM, Jang SG, Kwon SW, Lee JH. Synergizing breeding strategies via combining speed breeding, phenotypic selection, and marker-assisted backcrossing for the introgression of Glu-B1i in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1402709. [PMID: 38863547 PMCID: PMC11165042 DOI: 10.3389/fpls.2024.1402709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Wheat is a major food crop that plays a crucial role in the human diet. Various breeding technologies have been developed and refined to meet the increasing global wheat demand. Several studies have suggested breeding strategies that combine generation acceleration systems and molecular breeding methods to maximize breeding efficiency. However, real-world examples demonstrating the effective utilization of these strategies in breeding programs are lacking. In this study, we designed and demonstrated a synergized breeding strategy (SBS) that combines rapid and efficient breeding techniques, including speed breeding, speed vernalization, phenotypic selection, backcrossing, and marker-assisted selection. These breeding techniques were tailored to the specific characteristics of the breeding materials and objectives. Using the SBS approach, from artificial crossing to the initial observed yield trial under field conditions only took 3.5 years, resulting in a 53% reduction in the time required to develop a BC2 near-isogenic line (NIL) and achieving a higher recurrent genome recovery of 91.5% compared to traditional field conditions. We developed a new wheat NIL derived from cv. Jokyoung, a leading cultivar in Korea. Milyang56 exhibited improved protein content, sodium dodecyl sulfate-sedimentation value, and loaf volume compared to Jokyoung, which were attributed to introgression of the Glu-B1i allele from the donor parent, cv. Garnet. SBS represents a flexible breeding model that can be applied by breeders for developing breeding materials and mapping populations, as well as analyzing the environmental effects of specific genes or loci and for trait stacking.
Collapse
Affiliation(s)
- Jin-Kyung Cha
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Hyeonjin Park
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Seong-Gyu Jang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, Republic of Korea
| |
Collapse
|
3
|
Nair RM, Chaudhari S, Devi N, Shivanna A, Gowda A, Boddepalli VN, Pradhan H, Schafleitner R, Jegadeesan S, Somta P. Genetics, genomics, and breeding of black gram [ Vigna mungo (L.) Hepper]. FRONTIERS IN PLANT SCIENCE 2024; 14:1273363. [PMID: 38288416 PMCID: PMC10822891 DOI: 10.3389/fpls.2023.1273363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
Black gram [Vigna mungo (L.) Hepper] is a highly nutritious grain legume crop, mainly grown in South and Southeast Asia, with the largest area in India, where the crop is challenged by several biotic and abiotic stresses leading to significant yield losses. Improving genetic gains to increase on-farm yields is the primary goal of black gram breeding programs. This could be achieved by developing varieties resistant to major diseases like mungbean yellow mosaic disease, urdbean leaf crinkle virus, Cercospora leaf spot, anthracnose, powdery mildew, and insect pests such as whitefly, cowpea aphids, thrips, stem flies, and bruchids. Along with increasing on-farm yields, incorporating market-preferred traits ensures the adoption of improved varieties. Black gram breeding programs rely upon a limited number of parental lines, leading to a narrow genetic base of the developed varieties. For accelerating genetic gain, there is an urgent need to include more diverse genetic material for improving traits for better adaptability and stress resistance in breeding populations. The present review summarizes the importance of black gram, the major biotic and abiotic stresses, available genetic and genomic resources, major traits for potential crop improvement, their inheritance, and the breeding approaches being used in black gram for the development of new varieties.
Collapse
|
4
|
Sinha D, Maurya AK, Abdi G, Majeed M, Agarwal R, Mukherjee R, Ganguly S, Aziz R, Bhatia M, Majgaonkar A, Seal S, Das M, Banerjee S, Chowdhury S, Adeyemi SB, Chen JT. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals. Genes (Basel) 2023; 14:1484. [PMID: 37510388 PMCID: PMC10380062 DOI: 10.3390/genes14071484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Rapidly rising population and climate changes are two critical issues that require immediate action to achieve sustainable development goals. The rising population is posing increased demand for food, thereby pushing for an acceleration in agricultural production. Furthermore, increased anthropogenic activities have resulted in environmental pollution such as water pollution and soil degradation as well as alterations in the composition and concentration of environmental gases. These changes are affecting not only biodiversity loss but also affecting the physio-biochemical processes of crop plants, resulting in a stress-induced decline in crop yield. To overcome such problems and ensure the supply of food material, consistent efforts are being made to develop strategies and techniques to increase crop yield and to enhance tolerance toward climate-induced stress. Plant breeding evolved after domestication and initially remained dependent on phenotype-based selection for crop improvement. But it has grown through cytological and biochemical methods, and the newer contemporary methods are based on DNA-marker-based strategies that help in the selection of agronomically useful traits. These are now supported by high-end molecular biology tools like PCR, high-throughput genotyping and phenotyping, data from crop morpho-physiology, statistical tools, bioinformatics, and machine learning. After establishing its worth in animal breeding, genomic selection (GS), an improved variant of marker-assisted selection (MAS), has made its way into crop-breeding programs as a powerful selection tool. To develop novel breeding programs as well as innovative marker-based models for genetic evaluation, GS makes use of molecular genetic markers. GS can amend complex traits like yield as well as shorten the breeding period, making it advantageous over pedigree breeding and marker-assisted selection (MAS). It reduces the time and resources that are required for plant breeding while allowing for an increased genetic gain of complex attributes. It has been taken to new heights by integrating innovative and advanced technologies such as speed breeding, machine learning, and environmental/weather data to further harness the GS potential, an approach known as integrated genomic selection (IGS). This review highlights the IGS strategies, procedures, integrated approaches, and associated emerging issues, with a special emphasis on cereal crops. In this domain, efforts have been taken to highlight the potential of this cutting-edge innovation to develop climate-smart crops that can endure abiotic stresses with the motive of keeping production and quality at par with the global food demand.
Collapse
Affiliation(s)
- Dwaipayan Sinha
- Department of Botany, Government General Degree College, Mohanpur 721436, India
| | - Arun Kumar Maurya
- Department of Botany, Multanimal Modi College, Modinagar, Ghaziabad 201204, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Muhammad Majeed
- Department of Botany, University of Gujrat, Punjab 50700, Pakistan
| | - Rachna Agarwal
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rashmi Mukherjee
- Research Center for Natural and Applied Sciences, Department of Botany (UG & PG), Raja Narendralal Khan Women's College, Gope Palace, Midnapur 721102, India
| | - Sharmistha Ganguly
- Department of Dravyaguna, Institute of Post Graduate Ayurvedic Education and Research, Kolkata 700009, India
| | - Robina Aziz
- Department of Botany, Government, College Women University, Sialkot 51310, Pakistan
| | - Manika Bhatia
- TERI School of Advanced Studies, New Delhi 110070, India
| | - Aqsa Majgaonkar
- Department of Botany, St. Xavier's College (Autonomous), Mumbai 400001, India
| | - Sanchita Seal
- Department of Botany, Polba Mahavidyalaya, Polba 712148, India
| | - Moumita Das
- V. Sivaram Research Foundation, Bangalore 560040, India
| | - Swastika Banerjee
- Department of Botany, Kairali College of +3 Science, Champua, Keonjhar 758041, India
| | - Shahana Chowdhury
- Department of Biotechnology, Faculty of Engineering Sciences, German University Bangladesh, TNT Road, Telipara, Chandona Chowrasta, Gazipur 1702, Bangladesh
| | - Sherif Babatunde Adeyemi
- Ethnobotany/Phytomedicine Laboratory, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin P.M.B 1515, Nigeria
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| |
Collapse
|
5
|
Geng L, Zhang W, Zou T, Du Q, Ma X, Cui D, Han B, Zhang Q, Han L. Integrating linkage mapping and comparative transcriptome analysis for discovering candidate genes associated with salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1065334. [PMID: 36760644 PMCID: PMC9904508 DOI: 10.3389/fpls.2023.1065334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Salinity is one of the most widespread abiotic stresses affecting rice productivity worldwide. Understanding the genetic basis of salt tolerance is key for breeding salt-tolerant rice varieties. Numerous QTLs have been identified to help dissect rice salt-tolerance genetic mechanisms, yet only rare genes located in significant QTLs have been thoroughly studied or fine-mapped. Here, a combination of linkage mapping and transcriptome profiling analysis was used to identify salt tolerance-related functional candidate genes underlying stable QTLs. A recombinant inbred line (RIL) population derived from a cross between Jileng 1 (salt-sensitive) and Milyang 23 (salt-tolerant) was constructed. Subsequently, a high-density genetic map was constructed by using 2921 recombination bin markers developed from whole genome resequencing. A total of twelve QTLs controlling the standard evaluation score under salt stress were identified by linkage analysis and distributed on chromosomes 2, 3, 4, 6, 8 and 11. Notably, five QTL intervals were detected as environmentally stable QTLs in this study, and their functions were verified by comparative transcriptome analysis. By comparing the transcriptome profiles of the two parents and two bulks, we found 551 salt stress-specific differentially expressed genes. Among them, fifteen DEGs located in stable QTL intervals were considered promising candidate genes for salt tolerance. According to gene annotations, the gene OsRCI2-8(Os06g0184800) was the most promising, as it is known to be associated with salt stress, and its differential expression between the tolerant and sensitive RIL bulks highlights its important role in salt stress response pathways. Our findings provide five stable salt tolerance-related QTLs and one promising candidate gene, which will facilitate breeding for improved salt tolerance in rice varieties and promote the exploration of salt stress tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Leiyue Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Wei Zhang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Tuo Zou
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Qi Du
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qixing Zhang
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Tangshan, China
- Tangshan Key Laboratory of Rice Breeding, Tangshan, China
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Rai MK. Start codon targeted (SCoT) polymorphism marker in plant genome analysis: current status and prospects. PLANTA 2023; 257:34. [PMID: 36622439 DOI: 10.1007/s00425-023-04067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The present review illustrates a comprehensive overview of the start codon targeted (SCoT) polymorphism marker and their utilization in various applications related to genetic and genomic studies. Start codon targeted (SCoT) polymorphism marker, a targeted fingerprinting marker technique, has gained considerable importance in plant genetics, genomics, and molecular breeding due to its many desirable features. SCoT marker targets the region flanking the start codon, a highly conserved region in plant genes. Therefore, it can distinguish genetic variations in a specific gene that link to a specific trait. It is a simple, novel, cost-effective, highly polymorphic, and reproducible molecular marker for which there is no need for prior sequence information. In the recent past, SCoT markers have been employed in many commercially important and underutilized plant species for a variety of applications, including genetic diversity analysis, interspecific/generic genetic relationships, cultivar/hybrid/species identification, sex determination, construction of linkage map, association mapping/analysis, differential gene expression, and genetic fidelity analysis of tissue culture-raised plants. The main aim of this review is to provide up-to-date information on SCoT markers and their application in many commercially important and underutilized plant species, mainly progress made in the last 8-10 years.
Collapse
Affiliation(s)
- Manoj K Rai
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, MP, 484887, India.
| |
Collapse
|
7
|
Transgenic Improvement for Biotic Resistance of Crops. Int J Mol Sci 2022; 23:ijms232214370. [PMID: 36430848 PMCID: PMC9697442 DOI: 10.3390/ijms232214370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Biotic constraints, including pathogenic fungi, viruses and bacteria, herbivory insects, as well as parasitic nematodes, cause significant yield loss and quality deterioration of crops. The effect of conventional management of these biotic constraints is limited. The advances in transgenic technologies provide a direct and directional approach to improve crops for biotic resistance. More than a hundred transgenic events and hundreds of cultivars resistant to herbivory insects, pathogenic viruses, and fungi have been developed by the heterologous expression of exogenous genes and RNAi, authorized for cultivation and market, and resulted in a significant reduction in yield loss and quality deterioration. However, the exploration of transgenic improvement for resistance to bacteria and nematodes by overexpression of endogenous genes and RNAi remains at the testing stage. Recent advances in RNAi and CRISPR/Cas technologies open up possibilities to improve the resistance of crops to pathogenic bacteria and plant parasitic nematodes, as well as other biotic constraints.
Collapse
|
8
|
Wohor OZ, Rispail N, Ojiewo CO, Rubiales D. Pea Breeding for Resistance to Rhizospheric Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:2664. [PMID: 36235530 PMCID: PMC9572552 DOI: 10.3390/plants11192664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Pea (Pisum sativum L.) is a grain legume widely cultivated in temperate climates. It is important in the race for food security owing to its multipurpose low-input requirement and environmental promoting traits. Pea is key in nitrogen fixation, biodiversity preservation, and nutritional functions as food and feed. Unfortunately, like most crops, pea production is constrained by several pests and diseases, of which rhizosphere disease dwellers are the most critical due to their long-term persistence in the soil and difficulty to manage. Understanding the rhizosphere environment can improve host plant root microbial association to increase yield stability and facilitate improved crop performance through breeding. Thus, the use of various germplasm and genomic resources combined with scientific collaborative efforts has contributed to improving pea resistance/cultivation against rhizospheric diseases. This improvement has been achieved through robust phenotyping, genotyping, agronomic practices, and resistance breeding. Nonetheless, resistance to rhizospheric diseases is still limited, while biological and chemical-based control strategies are unrealistic and unfavourable to the environment, respectively. Hence, there is a need to consistently scout for host plant resistance to resolve these bottlenecks. Herein, in view of these challenges, we reflect on pea breeding for resistance to diseases caused by rhizospheric pathogens, including fusarium wilt, root rots, nematode complex, and parasitic broomrape. Here, we will attempt to appraise and harmonise historical and contemporary knowledge that contributes to pea resistance breeding for soilborne disease management and discuss the way forward.
Collapse
Affiliation(s)
- Osman Z. Wohor
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
- Savanna Agriculture Research Institute, CSIR, Nyankpala, Tamale Post TL52, Ghana
| | - Nicolas Rispail
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Chris O. Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue—Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
9
|
Development of SLAF-Sequence and Multiplex SNaPshot Panels for Population Genetic Diversity Analysis and Construction of DNA Fingerprints for Sugarcane. Genes (Basel) 2022; 13:genes13081477. [PMID: 36011388 PMCID: PMC9408448 DOI: 10.3390/genes13081477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
A genetic diversity analysis and identification of plant germplasms and varieties are important and necessary for plant breeding. Deoxyribonucleotide (DNA) fingerprints based on genomic molecular markers play an important role in accurate germplasm identification. In this study, Specific-Locus Amplified Fragment Sequencing (SLAF-seq) was conducted for a sugarcane population with 103 cultivated and wild accessions. In total, 105,325 genomic single nucleotide polymorphisms (SNPs) were called successfully to analyze population components and genetic diversity. The genetic diversity of the population was complex and clustered into two major subpopulations. A principal component analysis (PCA) showed that these accessions could not be completely classified based on geographical origin. After filtration, screening, and comparison, 192 uniformly-distributed SNP loci were selected for the 32 chromosomes of sugarcane. An SNP complex genotyping detection system was established using the SNaPshot typing method and used for the precise genotyping and identification of 180 sugarcane germplasm samples. According to the stability and polymorphism of the SNPs, 32 high-quality SNP markers were obtained and successfully used to construct the first SNP fingerprinting and quick response codes (QR codes) for sugarcane. The results provide new insights for genotyping, classifying, and identifying germplasm and resources for sugarcane breeding
Collapse
|
10
|
Nerkar G, Devarumath S, Purankar M, Kumar A, Valarmathi R, Devarumath R, Appunu C. Advances in Crop Breeding Through Precision Genome Editing. Front Genet 2022; 13:880195. [PMID: 35910205 PMCID: PMC9329802 DOI: 10.3389/fgene.2022.880195] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The global climate change and unfavourable abiotic and biotic factors are limiting agricultural productivity and therefore intensifying the challenges for crop scientists to meet the rising demand for global food supply. The introduction of applied genetics to agriculture through plant breeding facilitated the development of hybrid varieties with improved crop productivity. However, the development of new varieties with the existing gene pools poses a challenge for crop breeders. Genetic engineering holds the potential to broaden genetic diversity by the introduction of new genes into crops. But the random insertion of foreign DNA into the plant's nuclear genome often leads to transgene silencing. Recent advances in the field of plant breeding include the development of a new breeding technique called genome editing. Genome editing technologies have emerged as powerful tools to precisely modify the crop genomes at specific sites in the genome, which has been the longstanding goal of plant breeders. The precise modification of the target genome, the absence of foreign DNA in the genome-edited plants, and the faster and cheaper method of genome modification are the remarkable features of the genome-editing technology that have resulted in its widespread application in crop breeding in less than a decade. This review focuses on the advances in crop breeding through precision genome editing. This review includes: an overview of the different breeding approaches for crop improvement; genome editing tools and their mechanism of action and application of the most widely used genome editing technology, CRISPR/Cas9, for crop improvement especially for agronomic traits such as disease resistance, abiotic stress tolerance, herbicide tolerance, yield and quality improvement, reduction of anti-nutrients, and improved shelf life; and an update on the regulatory approval of the genome-edited crops. This review also throws a light on development of high-yielding climate-resilient crops through precision genome editing.
Collapse
Affiliation(s)
- Gauri Nerkar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - Suman Devarumath
- Vidya Pratishthan's College of Agricultural Biotechnology, Baramati, India
| | - Madhavi Purankar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - Atul Kumar
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - R Valarmathi
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Rachayya Devarumath
- Molecular Biology and Genetic Engineering Laboratory, Vasantdada Sugar Institute, Pune, India
| | - C Appunu
- ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|
11
|
Ishwarya Lakshmi VG, Sreedhar M, JhansiLakshmi V, Gireesh C, Rathod S, Bohar R, Deshpande S, Laavanya R, Kiranmayee KNSU, Siddi S, Vanisri S. Development and Validation of Diagnostic KASP Markers for Brown Planthopper Resistance in Rice. Front Genet 2022; 13:914131. [PMID: 35899197 PMCID: PMC9309266 DOI: 10.3389/fgene.2022.914131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Rice (Oryza sativa L.) is an important source of nutrition for the world's burgeoning population that often faces yield loss due to infestation by the brown planthopper (BPH, Nilaparvata lugens (Stål)). The development of rice cultivars with BPH resistance is one of the crucial precedences in rice breeding programs. Recent progress in high-throughput SNP-based genotyping technology has made it possible to develop markers linked to the BPH more quickly than ever before. With this view, a genome-wide association study was undertaken for deriving marker-trait associations with BPH damage scores and SNPs from genotyping-by-sequencing data of 391 multi-parent advanced generation inter-cross (MAGIC) lines. A total of 23 significant SNPs involved in stress resistance pathways were selected from a general linear model along with 31 SNPs reported from a FarmCPU model in previous studies. Of these 54 SNPs, 20 were selected in such a way to cover 13 stress-related genes. Kompetitive allele-specific PCR (KASP) assays were designed for the 20 selected SNPs and were subsequently used in validating the genotypes that were identified, six SNPs, viz, snpOS00912, snpOS00915, snpOS00922, snpOS00923, snpOS00927, and snpOS00929 as efficient in distinguishing the genotypes into BPH-resistant and susceptible clusters. Bph17 and Bph32 genes that are highly effective against the biotype 4 of the BPH have been validated by gene specific SNPs with favorable alleles in M201, M272, M344, RathuHeenati, and RathuHeenati accession. These identified genotypes could be useful as donors for transferring BPH resistance into popular varieties with marker-assisted selection using these diagnostic SNPs. The resistant lines and the significant SNPs unearthed from our study can be useful in developing BPH-resistant varieties after validating them in biparental populations with the potential usefulness of SNPs as causal markers.
Collapse
Affiliation(s)
- V. G. Ishwarya Lakshmi
- Department of Genetics and Plant Breeding, College of Agriculture, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - M. Sreedhar
- Administrative Office, PJTSAU, Hyderabad, India
| | | | - C. Gireesh
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Santosha Rathod
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Rajaguru Bohar
- CGIAR Excellence in Breeding (EiB), CIMMYT-ICRISAT, Hyderabad, India
| | - Santosh Deshpande
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - R. Laavanya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | | | - Sreedhar Siddi
- Agricultural Research Station, PJTSAU, Peddapalli, India
| | - S. Vanisri
- Institute of Biotechnology, PJTSAU, Hyderabad, India
| |
Collapse
|
12
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
13
|
de Carvalho Paulino JF, de Almeida CP, Song Q, Carbonell SAM, Chiorato AF, Benchimol-Reis LL. Genetic diversity and inter-gene pool introgression of Mesoamerican Diversity Panel in common beans. J Appl Genet 2021; 62:585-600. [PMID: 34386968 DOI: 10.1007/s13353-021-00657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Brazil is among the largest producers and consumers of common bean (Phaseolus vulgaris L.) and can be considered a secondary center of diversity for the species. The aim of this study was to estimate the genetic diversity, population structure, and relationships among 288 common bean accessions in an American Diversity Panel (ADP) genotyped with 4,042 high-quality single nucleotide polymorphisms (SNPs). The results showed inter-gene pool hybridization (hybrids) between the two main gene pools (i.e., Mesoamerican and Andean), based on principal component analysis (PCA), discriminant analysis of principal components (DAPC), and STRUCTURE analysis. The genetic diversity parameters showed that the Mesoamerican group has higher values of diversity and allelic richness in comparison with the Andean group. Considering the optimal clusters (K), clustering was performed according to the type of grain (i.e., market group), the institution of origin, the period of release, and agronomic traits. A new subset was selected and named the Mesoamerican Diversity Panel (MDP), with 205 Mesoamerican accessions. Analysis of molecular variance (AMOVA) showed low genetic variance between the two panels (i.e., ADP and MDP) with the highest percentage of the limited variance among accessions in each group. The ADP showed occurrence of high genetic differentiation between populations (i.e., Mesoamerican and Andean) and introgression between gene pools in hybrids based on a set of diagnostic SNPs. The MDP showed better linkage disequilibrium (LD) decay. The availability of genetic variation from inter-gene pool hybridizations presents a potential opportunity for breeders towards the development of superior common bean cultivars.
Collapse
Affiliation(s)
| | - Caléo Panhoca de Almeida
- Common Bean Genetic Group, Natural Center of Plant Genetics, Agronomic Institute (IAC), Campinas, SP, Brazil
| | - Qijian Song
- Soybean Genomics and Improvement Lab, USDA-ARS, Beltsville, MD, USA
| | | | | | | |
Collapse
|
14
|
Sokolkova AB, Bulyntsev SV, Chang PL, Carrasquila-Garcia N, Cook DR, von Wettberg E, Vishnyakova MA, Nuzhdin SV, Samsonova MG. The Search for Agroislands in the Chickpea Genome. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921030192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Thudi M, Palakurthi R, Schnable JC, Chitikineni A, Dreisigacker S, Mace E, Srivastava RK, Satyavathi CT, Odeny D, Tiwari VK, Lam HM, Hong YB, Singh VK, Li G, Xu Y, Chen X, Kaila S, Nguyen H, Sivasankar S, Jackson SA, Close TJ, Shubo W, Varshney RK. Genomic resources in plant breeding for sustainable agriculture. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153351. [PMID: 33412425 PMCID: PMC7903322 DOI: 10.1016/j.jplph.2020.153351] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
Climate change during the last 40 years has had a serious impact on agriculture and threatens global food and nutritional security. From over half a million plant species, cereals and legumes are the most important for food and nutritional security. Although systematic plant breeding has a relatively short history, conventional breeding coupled with advances in technology and crop management strategies has increased crop yields by 56 % globally between 1965-85, referred to as the Green Revolution. Nevertheless, increased demand for food, feed, fiber, and fuel necessitates the need to break existing yield barriers in many crop plants. In the first decade of the 21st century we witnessed rapid discovery, transformative technological development and declining costs of genomics technologies. In the second decade, the field turned towards making sense of the vast amount of genomic information and subsequently moved towards accurately predicting gene-to-phenotype associations and tailoring plants for climate resilience and global food security. In this review we focus on genomic resources, genome and germplasm sequencing, sequencing-based trait mapping, and genomics-assisted breeding approaches aimed at developing biotic stress resistant, abiotic stress tolerant and high nutrition varieties in six major cereals (rice, maize, wheat, barley, sorghum and pearl millet), and six major legumes (soybean, groundnut, cowpea, common bean, chickpea and pigeonpea). We further provide a perspective and way forward to use genomic breeding approaches including marker-assisted selection, marker-assisted backcrossing, haplotype based breeding and genomic prediction approaches coupled with machine learning and artificial intelligence, to speed breeding approaches. The overall goal is to accelerate genetic gains and deliver climate resilient and high nutrition crop varieties for sustainable agriculture.
Collapse
Affiliation(s)
- Mahendar Thudi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; University of Southern Queensland, Toowoomba, Australia
| | - Ramesh Palakurthi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Emma Mace
- Agri-Science Queensland, Department of Agriculture & Fisheries (DAF), Warwick, Australia
| | - Rakesh K Srivastava
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C Tara Satyavathi
- Indian Council of Agricultural Research (ICAR)- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Damaris Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | | | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yan Bin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Vikas K Singh
- South Asia Hub, International Rice Research Institute (IRRI), Hyderabad, India
| | - Guowei Li
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CYMMIT), Mexico DF, Mexico; Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sanjay Kaila
- Department of Biotechnology, Ministry of Science and Technology, Government of India, India
| | - Henry Nguyen
- National Centre for Soybean Research, University of Missouri, Columbia, USA
| | - Sobhana Sivasankar
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | | | - Wan Shubo
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
16
|
Bohra A, Chand Jha U, Godwin ID, Kumar Varshney R. Genomic interventions for sustainable agriculture. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2388-2405. [PMID: 32875704 PMCID: PMC7680532 DOI: 10.1111/pbi.13472] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/21/2020] [Accepted: 08/16/2020] [Indexed: 05/05/2023]
Abstract
Agricultural production faces a Herculean challenge to feed the increasing global population. Food production systems need to deliver more with finite land and water resources while exerting the least negative influence on the ecosystem. The unpredictability of climate change and consequent changes in pests/pathogens dynamics aggravate the enormity of the challenge. Crop improvement has made significant contributions towards food security, and breeding climate-smart cultivars are considered the most sustainable way to accelerate food production. However, a fundamental change is needed in the conventional breeding framework in order to respond adequately to the growing food demands. Progress in genomics has provided new concepts and tools that hold promise to make plant breeding procedures more precise and efficient. For instance, reference genome assemblies in combination with germplasm sequencing delineate breeding targets that could contribute to securing future food supply. In this review, we highlight key breakthroughs in plant genome sequencing and explain how the presence of these genome resources in combination with gene editing techniques has revolutionized the procedures of trait discovery and manipulation. Adoption of new approaches such as speed breeding, genomic selection and haplotype-based breeding could overcome several limitations of conventional breeding. We advocate that strengthening varietal release and seed distribution systems will play a more determining role in delivering genetic gains at farmer's field. A holistic approach outlined here would be crucial to deliver steady stream of climate-smart crop cultivars for sustainable agriculture.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR‐Indian Institute of Pulses Research (IIPR)KanpurIndia
| | - Uday Chand Jha
- ICAR‐Indian Institute of Pulses Research (IIPR)KanpurIndia
| | - Ian D. Godwin
- Centre for Crop ScienceQueensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandBrisbaneQldAustralia
| | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- The UWA Institute of AgricultureThe University of Western AustraliaPerthAustralia
| |
Collapse
|