1
|
Ram S, More-Adate P, Tagalpallewar AA, Pawar AT, Nagar S, Baheti AM. An in-silico investigation and network pharmacology based approach to explore the anti-breast-cancer potential of Tecteria coadunata (Wall.) C. Chr. J Biomol Struct Dyn 2024; 42:9650-9661. [PMID: 37655689 DOI: 10.1080/07391102.2023.2252091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Uncontrolled cell proliferation is a common definition of cancer. After lung carcinoma, breast neoplasm is the second-most prevalent kind of cancer. The majority of breast cancer cells and healthy breast cells both have receptors for circulating oestrogen and progesterone. In order to promote the development and division of cancer cells, oestrogen and progesterone bind to the receptors and may collaborate with growth factors (such as oncogenes and mutant tumour suppressor genes). As per the literature, Tecteria coadunata (Wall.) C. Chr. has anticancer, antioxidant and anti-inflammatory potential. After the hydroalcoholic extraction of this rhizome, total of 200 phytochemicals were retrieved from HR-LCMS analysis. In this current study, Network pharmacology was carried out to explore the rationale of Tecteria coadunata (Wall.) C. Chr. by using different database using Cytoscape software. The network depicted the interaction of Bioactives with their targets and their association with several disease, especially breast cancer. Tecteria coadunata (Wall.) C. Chr. has offered new relationship with variety of genes and its applications in different types of breast cancers. Further Gene Ontology was carried out and it showed key targets were TP53, BRCA2, PGR and CHEK 2. Further Signalling pathways were also enriched. Flex-X software was used for molecular docking studies, and it verified that Dopaxanthin, Dantrolene and Orotidin shows the highest binding affinities with key targets. Additionally, Pharmacokinetic analysis revealed that all top three lead compounds which follows the Lipinski Rule (Rule of three) without interrupting the conditions of bioavailability with minimal toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shraddha Ram
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT-World Peace University, Pune, Maharashtra, India
| | - Pallavi More-Adate
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT-World Peace University, Pune, Maharashtra, India
| | - Amol A Tagalpallewar
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT-World Peace University, Pune, Maharashtra, India
| | - Anil T Pawar
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT-World Peace University, Pune, Maharashtra, India
| | - Shuchi Nagar
- Bioinformatics Research Centre, Dr. D.Y. Patil. Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Akshay M Baheti
- School of Health Sciences and Technology, Dr. Vishwanath Karad MIT-World Peace University, Pune, Maharashtra, India
| |
Collapse
|
2
|
Heriz MH, Mahmood AAR, Yasin SR, Saleh KM, AlSakhen MF, Kanaan SI, Himsawi N, Saleh AM, Tahtamouni LH. Synthesis, docking study, and antitumor evaluation of benzamides and oxadiazole derivatives of 3-phenoxybenzoic acid as VEGFR-2 inhibitors. Drug Dev Res 2024; 85:e22186. [PMID: 38643351 DOI: 10.1002/ddr.22186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
Current chemotherapeutic agents have several limitations, including lack of selectivity, the development of undesirable side effects, and chemoresistance. As a result, there is an unmet need for the development of novel small molecules with minimal side effects and the ability to specifically target tumor cells. A new series of 3-phenoxybenzoic acid derivatives, including 1,3,4-oxadiazole derivatives (4a-d) and benzamides derivatives (5a-e) were synthesized; their chemical structures were confirmed by Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass spectra; and various physicochemical properties were determined. The antiproliferative activities of the new derivatives were evaluated by means of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Three compounds (4b, 4c, and 4d) exhibited cytotoxicity against two of the three cell lines tested, five compounds (3, 4a, 5a, 5b, and 5e) were toxic to one cell line, while two compounds (5c and 5d) were not cytotoxic to any of the three cell lines tested in the current study. Based on docking scores, MTT assay findings, and vascular endothelial growth factor receptor 2 (VEGFR-2) kinase activity data, Compound 4d was selected for further biological investigation. Flow cytometry was used to determine the mode of cell death (apoptosis vs. necrosis) and the effect on cell cycle progression. Compound 4d arrested HepG2 hepatocellular carcinoma cells in the G2/M phase and activated both the intrinsic and extrinsic apoptosis pathways. In conclusion, Compound 4d has shown promising results for future research as a potent VEGFR-2 tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Mohammad H Heriz
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Ammar A R Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Salem R Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Khaled M Saleh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mai F AlSakhen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sana I Kanaan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Epidemiological Surveillance Unit, Aweash El-Hagar Family Medicine Center, MOHP, Mansoura, Egypt
| | - Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Liu Y, Liu J, Yan P, Kachanuban K, Liu P, Jia A, Zhu W. Carbazole and Quinazolinone Derivatives from a Fluoride-Tolerant Streptomyces Strain OUCMDZ-5511. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6424-6431. [PMID: 38470989 DOI: 10.1021/acs.jafc.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Six new 9H-carbazole derivatives (1-6) and nine previously reported compounds (7-15) were isolated from a fermented solid medium of the Thailand mangrove-derived Streptomyces strain, OUCMDZ-5511, under fluoride stress. Compounds 2-5, 12, and 15 were exclusively present in the fluoride-supplemented fermentation medium, while compounds 7-9, 13, and 14 were newly discovered natural products. The molecular structures of the compounds were identified by a spectroscopic analysis. The new compound 2 displayed antiquorum sensing activity against Chromobacterium violaceum ATCC 12472 by reducing the violacein production and inhibiting the biofilm formation in a concentration-dependent manner. The study revealed that compound 2 could be a novel potential inhibitor of quorum sensing.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junsheng Liu
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Pengcheng Yan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Konthorn Kachanuban
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Department of Fishery Product, Faculty of Fisheries of Kasetsart University, Bangkok 10900, Thailand
| | - Peipei Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Aiqun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
4
|
Sadeghian S, Zare F, Saghaie L, Fassihi A, Zare P, Sabet R. New 3-Hydroxypyridine-4-one Analogues: Their Synthesis, Antimicrobial Evaluation, Molecular Docking, and In Silico ADME Prediction. Med Chem 2024; 20:900-911. [PMID: 38840401 DOI: 10.2174/0115734064307744240523112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION Drug resistance to existing antimicrobial drugs has become a serious threat to human health, which highlights the need to develop new antimicrobial agents. METHODS In this study, a new set of 3-hydroxypyridine-4-one derivatives (6a-j) was synthesized, and the antimicrobial effects of these derivatives were evaluated against a variety of microorganisms using the microdilution method. The antimicrobial evaluation indicated that compound 6c, with an electron-donating group -OCH3 at the meta position of the phenyl ring, was the most active compound against S. aureus and E. coli species with an MIC value of 32 μg/mL. Compound 6c was more potent than ampicillin as a reference drug. RESULTS The in vitro antifungal results showed that the studied derivatives had moderate effects (MIC = 128-512 μg/mL) against C. albicans and A. niger species. The molecular modeling studies revealed the possible mechanism and suitable interactions of these derivatives with the target protein. CONCLUSION The obtained biological results offer valuable insights into the design of more effective antimicrobial agents.
Collapse
Affiliation(s)
- Sara Sadeghian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pooria Zare
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Hussain R, Rubab SL, Maryam A, Ashraf T, Arshad M, Lal K, Sumrra SH, Ashraf S, Ali B. Synthesis, Spectroscopic and Nonlinear Optical Properties, and Antimicrobial Activity of Cu(II), Co(II), and Ni(II) Complexes: Experimental and Theoretical Studies. ACS OMEGA 2023; 8:42598-42609. [PMID: 38024690 PMCID: PMC10652729 DOI: 10.1021/acsomega.3c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Currently, we report the preparation of transition metal complexes Co(II), Ni(II), and Cu(II) of hydrazone Schiff base ligands, which are obtained by the condensation reaction of substituted salicylaldehyde and hydrazines. The synthesized hydrazone ligands and their metal complexes were characterized by spectroscopic methods such as Fourier transform infrared (FT-IR), UV-vis, nuclear magnetic resonance (1H NMR and C13 NMR), and mass spectrometry analyses. All of the quantum chemistry calculations were performed using DFT executed in the Gaussian 09 software package. The geometry was optimized by using the density functional theory (DFT) approximation at the B3LYP level with a basis set of 6-31G (d, p). There was excellent agreement between the FT-IR values obtained experimentally and those obtained theoretically for the test compounds. It is worth noting that none of the optimized geometries for any of the Schiff base and metal complexes had any eigenvalues that were negative, indicating that these geometries represent the true minimum feasible energy surfaces. We also analyzed the electrostatic potential of the molecule and NBO calculation at the same level of theory. Gauss View 6 was utilized for the file organization of the input data. Gauss View 6.0, Avogadro, and Chemcraft were used to determine the data. Additionally, synthesized compounds were screened for antimicrobial activity against Gram-negative bacteria (Salmonella typhi, Escherichia coli) and Gram-positive bacteria (Bacillus halodurans, Micrococcus luteus) and two fungal strains (Aspergillus flavus, Aspergillus niger). These research findings have established the potential of ligands and their metal complexes as antimicrobial agents. Additionally, the compounds demonstrated promising nonlinear optical (NLO) properties, with potential applications across a wide range of contemporary technologies.
Collapse
Affiliation(s)
- Riaz Hussain
- Department
of Chemistry, The Education University Lahore
D.G Khan campus, Dera Ghazi Khan32200,Pakistan
| | - Syed Laila Rubab
- Department
of Chemistry, The Education University Lahore
D.G Khan campus, Dera Ghazi Khan32200,Pakistan
| | - Afifa Maryam
- Institute
of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim
Yar Khan 64200, Pakistan
| | - Tuba Ashraf
- Institute
of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim
Yar Khan 64200, Pakistan
| | - Muhammad Arshad
- Department
of Chemical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia
| | - Kiran Lal
- Department
of Chemistry, The Women University Multan, Multan 60000, Pakistan
| | - Sajjad H. Sumrra
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Shafaq Ashraf
- Institute
of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim
Yar Khan 64200, Pakistan
| | - Bakhat Ali
- Institute
of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim
Yar Khan 64200, Pakistan
| |
Collapse
|
6
|
Nautiyal M, Sekaran K, Sekaran S, Rengasamy G, Veeraraghavan VP, Eswaramoorthy R. Molecular docking analysis of Indole based diaza-sulphonamides with JAK-3 protein. Bioinformation 2023; 19:74-78. [PMID: 37720295 PMCID: PMC10504512 DOI: 10.6026/97320630019074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
JAK-3 gene is a part of an important signalling pathway in oral cancer. Therefore, it is of interest to evaluate the inhibitory properties of new indole based diaza-sulphonamides compounds against JAK3 gene. Molecular docking analysis showed that among the selected compounds (1-9), the compounds 1-4 turned out to be the most potentially capable ones to be used as ant-cancer drugs. Also, they are proved to be non-toxic.
Collapse
Affiliation(s)
- Manya Nautiyal
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Kavitha Sekaran
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Surya Sekaran
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077
| | - Gayathri Rengasamy
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai-600077
| |
Collapse
|
7
|
Parthiban K, Veeraraghavan VP, Sekaran S, Rengasamy G, Eswaramoorthy R. Molecular docking analysis of a virulence factor protein dentilisin from Treponema denticola with oxazole piperazine derivatives. Bioinformation 2023; 19:57-62. [PMID: 37720272 PMCID: PMC10504502 DOI: 10.6026/97320630019057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 09/19/2023] Open
Abstract
Dentilisin is a surface protease synthesized by the cell wall of Treponema denticola. This protein aids in the invasion of the periodontal tissue by causing infection. To identify drug molecules that have better results, homology modeling of the dentilisin protein was constructed, and molecular docking was performed with the oxazole compounds (1-6) taken from previous studies that are not yet clinically used. Data shows that compounds 1, 2, 3 show better inhibiting properties.
Collapse
Affiliation(s)
- Kandeeban Parthiban
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Surya Sekaran
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-600077
| | - Gayathri Rengasamy
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600077
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials (Green lab), Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-600077
| |
Collapse
|
8
|
Guru A, Manjunathan T, Sudhakaran G, Juliet A, Gopinath P, Arockiaraj J. 6-Gingerdione Reduces Apoptotic Conditions in HepG2 Cells and Inhibits Inflammatory Cytokine Gene Expression in Alcoholic Liver Injured Zebrafish Larvae. Chem Biodivers 2023; 20:e202200959. [PMID: 36574474 DOI: 10.1002/cbdv.202200959] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
Antioxidant natural products and their analogs especially phenolic compounds, exhibit diverse biological properties, including anti-inflammatory, antioxidant, and anticancer activities. Ginger which is widely used worldwide for various beneficial effects also contains several phenolic antioxidants, and 6-gingerol is one of the natural products studied extensively. However, the molecular mechanism of synthetically synthesized 6-gingerdione (compound 1) from 6-gingerol was not known. In this study, compound 1 and methylated 6-gingerdione (compound 2) were obtained semi synthetically from 6-gingerol. Compound 1 and 2 are subjected to SwissADME prediction. Then the protective effect of compound 1 was analyzed in 2 % EtOH induced HepG2 cells and zebrafish larvae. Hydroxyl and nitric oxide scavenging assays reveal that compound 1 showed more antioxidant activity than compound 2 at 50 μM. Moreover, compound 1 exhibited good anti-inflammatory activity via lipoxygenase inhibition and proteinase inhibition. Apoptosis and oxidative stress in HepG2 cells were induced by 2 % EtOH and treated with compound 1. Compound 1 significantly inhibited the EtOH induced nitric oxide production, apoptosis, and ROS generation in HepG2 cells. Encouraged by the in-vitro antioxidant and anti-inflammatory activities, compound 1 was then investigated for its protective effect in 2 % EtOH induced ALD zebrafish larva. Compound 1 protected the zebrafish larvae from liver injury by suppressing inflammatory (COX-2, TNF-α, and IL-1β) and lipogenic genes (C/EBP-α, SREBP1, and IL-1β) while upregulating the antioxidant gene. Our findings indicate that compound 1 synthesized from 6-gingerol ameliorated liver injury that likely, contributes to its potential antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Tamilvelan Manjunathan
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Annie Juliet
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai 600 097, Tamil Nadu, India
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
9
|
Siswodihardjo S, Pratama MRF, Praditapuspa EN, Kesuma D, Poerwono H, Widiandani T. Boesenbergia Pandurata as an Anti-Breast Cancer Agent: Molecular Docking
and ADMET Study. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666211220111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Boesenbergia pandurata or fingerroot is known to have various pharmacological
activities, including anticancer properties. Extracts from these plants are known to inhibit the growth of
cancer cells, including breast cancer. Anti-breast cancer activity is significantly influenced by the inhibition
of two receptors: ER-α and HER2. However, it is unknown which metabolites of B. pandurata play
the most crucial role in exerting anticancer activity.
Objective:
This study aimed to determine the metabolites of B. pandurata with the best potential as ER-α
and HER2 inhibitors.
Method:
The method used was molecular docking of several B. pandurata metabolites to ER-α and
HER2 receptors, followed by an ADMET study of several metabolites with the best docking results.
Results:
The docking results showed eight metabolites with the best docking results for the two receptors
based on the docking score and ligand-receptor interactions. Of these eight compounds, compounds 11
((2S)-7,8-dihydro-5-hydroxy-2-methyl-2-(4''-methyl-3''-pentenyl)-8-phenyl-2H,6H-benzo(1,2-b-5,4-
b')dipyran-6-one) and 34 (geranyl-2,4-dihydroxy-6-phenethylbenzoate) showed the potential to inhibit
both receptors. Both ADMET profiles also showed mixed results; however, there is a possibility of further
development.
Conclusion:
In conclusion, the metabolites of B. pandurata, especially compounds 11 and 34, can be
developed as anti-breast cancer agents by inhibiting ER-α and HER2.
Collapse
Affiliation(s)
- Siswandono Siswodihardjo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| | - Mohammad Rizki Fadhil Pratama
- Doctoral Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Pharmacy, Faculty of Health Science, Universitas Muhammadiyah Palangkaraya, Palangka Raya
73111, Indonesia
| | - Ersanda Nurma Praditapuspa
- Master Program of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| | - Dini Kesuma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Surabaya, Surabaya
60293, Indonesia
| | - Hadi Poerwono
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| | - Tri Widiandani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
60115, Indonesia
| |
Collapse
|
10
|
Saeed A, Ejaz SA, Sarfraz M, Tamam N, Siddique F, Riaz N, Qais FA, Chtita S, Iqbal J. Discovery of Phenylcarbamoylazinane-1,2,4-Triazole Amides Derivatives as the Potential Inhibitors of Aldo-Keto Reductases (AKR1B1 & AKRB10): Potential Lead Molecules for Treatment of Colon Cancer. Molecules 2022; 27:molecules27133981. [PMID: 35807227 PMCID: PMC9268700 DOI: 10.3390/molecules27133981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Both members of the aldo-keto reductases (AKRs) family, AKR1B1 and AKR1B10, are over-expressed in various type of cancer, making them potential targets for inflammation-mediated cancers such as colon, lung, breast, and prostate cancers. This is the first comprehensive study which focused on the identification of phenylcarbamoylazinane-1, 2,4-triazole amides (7a−o) as the inhibitors of aldo-keto reductases (AKR1B1, AKR1B10) via detailed computational analysis. Firstly, the stability and reactivity of compounds were determined by using the Guassian09 programme in which the density functional theory (DFT) calculations were performed by using the B3LYP/SVP level. Among all the derivatives, the 7d, 7e, 7f, 7h, 7j, 7k, and 7m were found chemically reactive. Then the binding interactions of the optimized compounds within the active pocket of the selected targets were carried out by using molecular docking software: AutoDock tools and Molecular operation environment (MOE) software, and during analysis, the Autodock (academic software) results were found to be reproducible, suggesting this software is best over the MOE (commercial software). The results were found in correlation with the DFT results, suggesting 7d as the best inhibitor of AKR1B1 with the energy value of −49.40 kJ/mol and 7f as the best inhibitor of AKR1B10 with the energy value of −52.84 kJ/mol. The other potent compounds also showed comparable binding energies. The best inhibitors of both targets were validated by the molecular dynamics simulation studies where the root mean square value of <2 along with the other physicochemical properties, hydrogen bond interactions, and binding energies were observed. Furthermore, the anticancer potential of the potent compounds was confirmed by cell viability (MTT) assay. The studied compounds fall into the category of drug-like properties and also supported by physicochemical and pharmacological ADMET properties. It can be suggested that the further synthesis of derivatives of 7d and 7f may lead to the potential drug-like molecules for the treatment of colon cancer associated with the aberrant expression of either AKR1B1 or AKR1B10 and other associated malignancies.
Collapse
Affiliation(s)
- Amna Saeed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
- Correspondence: (S.A.E.); (J.I.)
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain Campus, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates;
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O Box 84428, Riyadh 11671, Saudi Arabia;
| | - Farhan Siddique
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden;
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan 60000, Pakistan
| | - Naheed Riaz
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, UP, India;
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othmane, Casablanca BP7955, Morocco;
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, Abbottabad Campus, COMSATS University Islamabad, Abbotabad 22060, Pakistan
- Correspondence: (S.A.E.); (J.I.)
| |
Collapse
|
11
|
Siddhu NSS, Guru A, Satish Kumar RC, Almutairi BO, Almutairi MH, Juliet A, Vijayakumar TM, Arockiaraj J. Pro-inflammatory cytokine molecules from Boswellia serrate suppresses lipopolysaccharides induced inflammation demonstrated in an in-vivo zebrafish larval model. Mol Biol Rep 2022; 49:7425-7435. [PMID: 35716287 DOI: 10.1007/s11033-022-07544-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Boswellia serrate is an ancient and highly valued ayurvedic herb. Its extracts have been used in medicine for centuries to treat a wide variety of chronic inflammatory diseases. However, the mechanism by which B. serrata hydro alcoholic extract inhibited pro-inflammatory cytokines in zebrafish (Danio rerio) larvae with LPS-induced inflammation remained unknown. METHODS LC-MS analysis was used to investigate the extract's phytochemical components. To determine the toxicity of B. serrata extract, cytotoxicity and embryo toxicity tests were performed. The in-vivo zebrafish larvae model was used to evaluate the antioxidant and anti-inflammatory activity of B. serrata extract. RESULTS According to an in silico study using molecular docking and ADMET, the compounds acetyl-11-keto-boswellic and 11-keto-beta-boswellic acid present in the extract had higher binding affinity for the inflammatory specific receptor, and it is predicted to be an orally active molecule. In both in-vitro L6 cells and in-vivo zebrafish larvae, 160 µg/mL concentration of extract caused a high rate of lethality. The extract was found to have a protective effect against LPS-induced inflammation at concentrations ranged between 10 and 80 µg/mL. In zebrafish larvae, 80 µg/mL of treatment significantly lowered the level of intracellular ROS, apoptosis, lipid peroxidation, and nitric oxide. Similarly, zebrafish larvae treated with B. serrata extract (80 µg/mL) showed an increased anti-inflammatory activity by lowering inflammatory specific gene expression (iNOS, TNF-α, COX-2, and IL-1). CONCLUSIONS Overall, our findings suggest that B. serrata can act as a potent redox scavenger against LPS-induced inflammation in zebrafish larvae and an inhibitor of specific inflammatory genes.
Collapse
Affiliation(s)
- N Sai Supra Siddhu
- Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, 603 203, Kattankulathur, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, 603203, Kattankulathur, Chennai, Tamil Nadu, India
| | - Rajappan Chandra Satish Kumar
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, 603 203, Kattankulathur, Chennai, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, University Station A4800, 78712, Austin, Texas, USA
| | - Thangavel Mahalingam Vijayakumar
- Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, 603 203, Kattankulathur, Chennai, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, 603203, Kattankulathur, Chennai, Tamil Nadu, India.
| |
Collapse
|
12
|
Ghannay S, Aouadi K, Kadri A, Snoussi M. GC-MS Profiling, Vibriocidal, Antioxidant, Antibiofilm, and Anti-Quorum Sensing Properties of Carum carvi L. Essential Oil: In Vitro and In Silico Approaches. PLANTS (BASEL, SWITZERLAND) 2022; 11:1072. [PMID: 35448799 PMCID: PMC9032858 DOI: 10.3390/plants11081072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 05/12/2023]
Abstract
The main objectives of the present study were to investigate anti-Vibrio spp., antibiofilms, and anti-quorum-sensing (anti-QS) properties of caraway essential oil in relation to their phytochemical composition. The results obtained show the identification of twelve compounds, with carvone (58.2%) and limonene (38.5%) being the main ones. The obtained essential oil (EO) is particularly active against all Vibrio spp. species, with bacteriostatic action against all tested strains (MBC/MIC ratio ≥ 4) and with inhibition zones with high diameters of growth, ranging from 8.66 ± 0.58 mm for V. furnisii ATCC 35016 to 37.33 ± 0.58 mm for V. alginolyticus ATCC 17749. Caraway essential oil (Carvone/limonene chemotype) exhibits antioxidant activities by using four tests (DPPH = 15 ± 0.23 mg/mL; reducing power = 7.8 ± 0.01 mg/mL; β-carotene = 3.9 ± 0.025 mg/mL; chelating power = 6.8 ± 0.05 mg/mL). This oil is particularly able to prevent cell-to-cell communication by inhibiting swarming motility, production of elastase and protease in Pseudomonas aeruginosa PAO1, and violacein production in C. violaceum in a concentration-dependent manner. A molecular docking approach shows good interaction of the identified bioactive molecules in caraway EO, with known target enzymes involved in antioxidant, antibacterial, and anti-QS activities having high binding energy. Overall, the obtained results highlight the possible use of caraway essential oil against pathogenic Vibrio species and to attenuate the secretion of virulence-related factors controlled by QS systems in Gram-negative bacteria. Therefore, this oil can be used by food industries to prevent biofilm formation on abiotic surfaces by Vibrio strains.
Collapse
Affiliation(s)
- Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.G.); (K.A.)
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (S.G.); (K.A.)
- Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, BP1171, Sfax 3000, Tunisia;
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, Hail University, P.O. Box 2440, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
13
|
Salaria D, Rolta R, Mehta J, Awofisayo O, Fadare OA, Kaur B, Kumar B, Araujo da Costa R, Chandel SR, Kaushik N, Choi EH, Kaushik NK. Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach. PLoS One 2022; 17:e0265420. [PMID: 35298541 PMCID: PMC8929605 DOI: 10.1371/journal.pone.0265420] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Human papillomavirus (HPV) induced cervical cancer is becoming a major cause of mortality in women. The present research aimed to identify the natural inhibitors of HPV-18 E1 protein (1R9W) from Himalayan herbs with lesser toxicity and higher potency. In this study, one hundred nineteen phytoconstituents of twenty important traditional medicinal plants of Northwest Himalayas were selected for molecular docking with the target protein 1R9W of HPV-18 E1 Molecular docking was performed by AutoDock vina software. ADME/T screening of the bioactive phytoconstituents was done by SwissADME, admetSAR, and Protox II. A couple of best protein-ligand complexes were selected for 100 ns MD simulation. Molecular docking results revealed that among all the selected phytoconstituents only thirty-five phytoconstituents showed the binding affinity similar or more than the standard anti-cancer drugs viz. imiquimod (-6.1 kJ/mol) and podofilox (-6.9 kJ/mol). Among all the selected thirty-five phytoconstituents, eriodictyol-7-glucuronide, stigmasterol, clicoemodin and thalirugidine showed the best interactions with a docking score of -9.1, -8.7, -8.4, and -8.4 kJ/mol. Based on the ADME screening, only two phytoconstituents namely stigmasterol and clicoemodin selected as the best inhibitor of HPV protein. MD simulation study also revealed that stigmasterol and clicoemodin were stable inside the binding pocket of 1R9W, Stigmasterol and clicoemodin can be used as a potential investigational drug to cure HPV infections.
Collapse
Affiliation(s)
- Deeksha Salaria
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Jyoti Mehta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Oladoja Awofisayo
- Department of Pharmaceutical and Medical Chemistry, University of Uyo, Uyo, Nigeria
| | - Olatomide A. Fadare
- Organic Chemistry Research Lab, Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Baljinder Kaur
- Department of Biotechnology, Punjabi University Patiala, Patiala, Punjab, India
| | - Balvir Kumar
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | | | - Shikha Rangra Chandel
- Division of Microbiology, School of Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, University of Suwon, Hwaseong-si, South Korea
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center & Applied Plasma Medicine Center, Kwangwoon University, Seoul, South Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center & Applied Plasma Medicine Center, Kwangwoon University, Seoul, South Korea
| |
Collapse
|
14
|
Damena T, Zeleke D, Desalegn T, Demissie TB, Eswaramoorthy R. Synthesis, Characterization, and Biological Activities of Novel Vanadium(IV) and Cobalt(II) Complexes. ACS OMEGA 2022; 7:4389-4404. [PMID: 35155932 PMCID: PMC8829937 DOI: 10.1021/acsomega.1c06205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/18/2022] [Indexed: 05/08/2023]
Abstract
Herein, we report novel Co(II) and V(IV) complexes synthesized from an (E)-2-(((2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethan-1-ol ligand (L), cobalt(II) chloride hexahydrate, and vanadyl(IV) sulfate in methanolic solutions. The ligand and the complexes were characterized by 1H NMR spectroscopy,13C NMR spectroscopy, UV-visible spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), mass spectroscopy (MS), thermal analysis, and molar conductance. The FT-IR spectral data showed that the ligand adopted a tridentate fashion when binding with the metal ions via the nitrogen atoms of the imine (C=N) and amine (N-H), and the oxygen atom of the hydroxyl group (O-H). The PXRD and SEM results indicated that the complexes are amorphous in nature. The density functional theory (DFT) calculated absorption and IR spectra agree very well with the corresponding experimental results. The antibacterial activities of the free ligand and its complexes were evaluated using a paper disk diffusion method. The complexes have better percent activitiy index than the free ligand. The cobalt complex exhibited a more recognizable antibacterial activity than the vanadium complex, specifically against Pseudomonas aeruginosa with a mean inhibition zone of 18.62 ± 0.19 mm, when compared with the positive control, ciprofloxacin, with a mean inhibition zone of 22.98 ± 0.08 mm at the same concentration. Furthermore, the antioxidant activities of the free ligand and its metal complexes were also determined in vitro using 2,2-diphenyl-1-picrylhydrazyl. The ligand exhibited less in vitro antioxidant activity than its transition metal complexes, in which the cobalt complex has a better antioxidant activity with half-inhibitory concentrations (IC50 of 16.01 μg/mL) than the ligand and the vanadium complex. Quantum molecular descriptors from the DFT calculations further support the experimental results. Molecular docking analysis also shed more light on the biological activities of the novel cobalt and vanadium complexes.
Collapse
Affiliation(s)
- Tadewos Damena
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 1888 Ethiopia
| | - Digafie Zeleke
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 1888 Ethiopia
- Department
of Chemistry, Jigjiga University, P.O.Box 1020, Jigjiga 1020, Ethiopia
| | - Tegene Desalegn
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 1888 Ethiopia
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, Notwane Rd, P/bag UB 00704 Gaborone, Botswana
| | - Rajalakshmanan Eswaramoorthy
- Department
of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai 602117, India
| |
Collapse
|
15
|
Alafeef M, Dighe K, Moitra P, Pan D. Monitoring the Viral Transmission of SARS-CoV-2 in Still Waterbodies Using a Lanthanide-Doped Carbon Nanoparticle-Based Sensor Array. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:245-258. [PMID: 35036178 PMCID: PMC8751013 DOI: 10.1021/acssuschemeng.1c06066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/13/2021] [Indexed: 05/02/2023]
Abstract
The latest epidemic of extremely infectious coronavirus disease 2019 (COVID-19) has created a significant public health concern. Despite substantial efforts to contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific location, shortcomings in the surveillance of predominantly asymptomatic infections constrain attempts to identify the epidemiological spread of the virus. Continuous surveillance of wastewater streams, including sewage, offers opportunities to track the spread of SARS-CoV-2, which is believed to be found in fecal waste. To demonstrate the feasibility of SARS-CoV-2 detection in wastewater systems, we herein present a novel facilely constructed fluorescence sensing array based on a panel of three different lanthanide-doped carbon nanoparticles (LnCNPs). The differential fluorescence response pattern due to the counterion-ligand interactions allowed us to employ powerful pattern recognition to effectively detect SARS-CoV-2 and differentiate it from other viruses or bacteria. The sensor results were benchmarked to the gold standard RT-qPCR, and the sensor showed excellent sensitivity (1.5 copies/μL) and a short sample-to-results time of 15 min. This differential response of the sensor array was also explained from the differential mode of binding of the LnCNPs with the surface proteins of the studied bacteria and viruses. Therefore, the developed sensor array provides a cost-effective, community diagnostic tool that could be potentially used as a novel epidemiologic surveillance approach to mitigate the spread of COVID-19.
Collapse
Affiliation(s)
- Maha Alafeef
- Bioengineering
Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Biomedical
Engineering Department, Jordan University
of Science and Technology, Irbid 22110, Jordan
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences
Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201, United
States
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| | - Ketan Dighe
- Bioengineering
Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| | - Parikshit Moitra
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences
Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201, United
States
| | - Dipanjan Pan
- Bioengineering
Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments
of Diagnostic Radiology and Nuclear Medicine and Pediatrics, University of Maryland Baltimore, Health Sciences
Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201, United
States
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250, United
States
| |
Collapse
|
16
|
Lemilemu F, Bitew M, Demissie TB, Eswaramoorthy R, Endale M. Synthesis, antibacterial and antioxidant activities of Thiazole-based Schiff base derivatives: a combined experimental and computational study. BMC Chem 2021; 15:67. [PMID: 34949213 PMCID: PMC8697436 DOI: 10.1186/s13065-021-00791-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thiazole-based Schiff base compounds display significant pharmacological potential with an ability to modulate the activity of many enzymes involved in metabolism. They also demonstrated to have antibacterial, antifungal, anti-inflammatory, antioxidant, and antiproliferative activities. In this work, conventional and green approaches using ZnO nanoparticles as catalyst were used to synthesize thiazole-based Schiff base compounds. RESULTS Among the synthesized compounds, 11 showed good activities towards Gram-negative E. coli (14.40 ± 0.04), and Gram-positive S. aureus (15.00 ± 0.01 mm), respectively, at 200 μg/mL compared to amoxicillin (18.00 ± 0.01 mm and 17.00 ± 0.04). Compounds 7 and 9 displayed better DPPH radical scavenging potency with IC50 values of 3.6 and 3.65 μg/mL, respectively, compared to ascorbic acid (3.91 μg/mL). The binding affinity of the synthesized compounds against DNA gyrase B is within - 7.5 to - 6.0 kcal/mol, compared to amoxicillin (- 6.1 kcal/mol). The highest binding affinity was achieved for compounds 9 and 11 (- 6.9, and - 7.5 kcal/mol, respectively). Compounds 7 and 9 displayed the binding affinity values of - 5.3 to - 5.2 kcal/mol, respectively, against human peroxiredoxin 5. These values are higher than that of ascorbic acid (- 4.9 kcal/mol), in good agreement with the experimental findings. In silico cytotoxicity predictions showed that the synthesized compounds Lethal Dose (LD50) value are class three (50 ≤ LD50 ≤ 300), indicating that the compounds could be categorized under toxic class. Density functional theory calculations showed that the synthesized compounds have small band gap energies ranging from 1.795 to 2.242 eV, demonstrating that the compounds have good reactivities. CONCLUSIONS The synthesized compounds showed moderate to high antibacterial and antioxidant activities. The in vitro antibacterial activity and molecular docking analysis showed that compound 11 is a promising antibacterial therapeutics agent against E. coli, whereas compounds 7 and 9 were found to be promising antioxidant agents. Moreover, the green synthesis approach using ZnO nanoparticles as catalyst was found to be a very efficient method to synthesize biologically active compounds compared to the conventional method.
Collapse
Affiliation(s)
- Fitsum Lemilemu
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| | - Mamaru Bitew
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Taye B Demissie
- Department of Chemistry, University of Botswana, Notwane Rd, P/bag UB 00704, Gaborone, Botswana
| | | | - Milkyas Endale
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia.
| |
Collapse
|
17
|
HUSSEİN K, ESWARAMOORTHY R, MELAKU Y, ENDALE ANNİSA M. Antibacterial and Antioxidant Activity of Isoflavans from the Roots of Rhynchosia ferruginea and In Silico Study on DNA Gyrase and Human Peroxiredoxin. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2021. [DOI: 10.21448/ijsm.962120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Anza M, Endale M, Cardona L, Cortes D, Eswaramoorthy R, Zueco J, Rico H, Trelis M, Abarca B. Antimicrobial Activity, in silico Molecular Docking, ADMET and DFT Analysis of Secondary Metabolites from Roots of Three Ethiopian Medicinal Plants. Adv Appl Bioinform Chem 2021; 14:117-132. [PMID: 34447254 PMCID: PMC8384431 DOI: 10.2147/aabc.s323657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Uvaria scheffleri (Annonaceae), Clematis burgensis (Ranunculaceae), and Euphorbia schimperiana (Euphorbiaceae) are medicinal plants traditionally used to treat cough, tuberculosis, asthma, sore throat and skin infections. METHODS Silica gel column chromatographic separation was used to isolate compounds. Crude extract and isolated compounds were evaluated for antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans via the broth dilution method. Docking studies were performed with E. coli DNA-Gyrase B and human DNA topoisomerase IIα by using AutoDock Vina. ADMET were predicted by SwissADME, PreADMET, and OSIRIS Property predictions. The optimized structures and molecular electrostatic potential surface of the isolated compounds were predicted by DFT analysis using B3LYP/6-31G basis levels. RESULTS Silica gel column chromatographic separation afforded five compounds 1-5 of which N-methyl-2,3-bis(2-hydroxybenzyl)-1Н-indol (1) is reported herein for the first time, along with known C-benzylated dihydrochalcone uvaretin (2), bis(2-ethylheptyl) phthalate (3), lupeol (4) and suberosin derivative (5). Dichloromethane roots extract of U. scheffleri showed potent antibacterial activity against S. aureus (MIC = 6.25 µg/mL) compared to gentamicin (MIC=5 µg/mL). In silico, molecular docking analysis of compounds (1and 3-5) showed strong interaction with E. coli DNA gyrase B with a binding energy value ranging from -6.9 to -6.0 kcal/mol compared to ciprofloxacin -7.2 kcal/mol, whereas analysis against human topoisomerase IIα showed binding energy value ranging from -5.9 to -5.3 kcal/mol compared to vosaroxin (-6.2 kcal/mol). CONCLUSION The results obtained suggest that N-methyl-2,3-bis(2-hydroxybenzyl)-1Н-indol (1) and coumarin (5) are potential topoisomerase II α inhibitors and might be used as anticancer agents. The ADMET studies showed the highest drug-likeness properties for studied compounds other than bis(2-ethylheptyl) phthalate (3). DFT calculations suggested that studied compounds showed the lowest gap energy and were chemically reactive, and isolated compounds may serve as potential drug candidates that corroborate with the traditional uses of studied plants.
Collapse
Affiliation(s)
- Mathewos Anza
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Milkyas Endale
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Luz Cardona
- Department of Organic Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Spain
| | - Diego Cortes
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Rajalakshmanan Eswaramoorthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Jesus Zueco
- Department of Microbiology and Ecology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Hortensia Rico
- Department of Microbiology and Ecology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Maria Trelis
- Parasites and Health Research Group, Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Belen Abarca
- Department of Organic Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Spain
| |
Collapse
|
19
|
Chang Y, Zhang D, Yang G, Zheng Y, Guo L. Screening of Anti-Lipase Components of Artemisia argyi Leaves Based on Spectrum-Effect Relationships and HPLC-MS/MS. Front Pharmacol 2021; 12:675396. [PMID: 34025435 PMCID: PMC8138579 DOI: 10.3389/fphar.2021.675396] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Pancreatic lipase is a key lipase for triacylglyceride digestion and absorption, which is recognized as a promising target for treatment of metabolic disorders. Natural phytochemicals are hopeful sources for pancreatic lipase inhibitors. The leaves of Artemisia argyi H.Lév. and Vaniot (AL) is commonly used as herbal medicine or food supplement in China and other Asian countries for hundreds of years. AL mainly contains essential oils, phenolic acids, flavonoids and terpenoids, which exhibit many pharmacological activities such as antioxidant, anti-inflammatory, antimicrobial, analgetic, anti-cancer, anti-diabetes and immunomodulatory effects. However, the anti-lipase activity of AL was lack of study and the investigation of anti-lipase ingredients from AL was also insufficient. In the present study, the anti-lipase activity of AL was evaluated in vitro and the potentially pancreatic lipase inhibitors of AL were investigated. High performance liquid chromatography was used to establish fingerprints of AL samples, and fifteen peaks were selected. The anti-lipase activities of AL samples were evaluated by a pancreatic lipase inhibition assay. Then, the spectrum-effect relationships between fingerprints and pancreatic lipase inhibitory activities were investigated to identify the anti-lipase constitutes in AL. As the results, four caffeoylquinic acids, which were identified as neochlorogenic acid, chlorogenic acid, isochlorogenic acid B, and isochlorogenic acid A by high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry, were selected as potential pancreatic lipase inhibitors in AL. Moreover, anti-lipase activity assessment and molecular docking study of the four compounds were performed to validate the potential lipase inhibitors in AL. The results revealed that the four caffeoylquinic acids in AL as bioactive compounds displayed with anti-lipase activity. The present research provided evidences for the anti-lipase activity of AL, and suggested that some bioactive compounds in AL could be used as lead compounds for discovering of new pancreatic lipase inhibitors.
Collapse
Affiliation(s)
- Yaqing Chang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dan Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Guiya Yang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Chemical and Pharmaceutical College, Shijiazhuang, China
| | - Long Guo
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|