1
|
Donadoni E, Frigerio G, Siani P, Motta S, Vertemara J, De Gioia L, Bonati L, Di Valentin C. Molecular Dynamics for the Optimal Design of Functionalized Nanodevices to Target Folate Receptors on Tumor Cells. ACS Biomater Sci Eng 2023; 9:6123-6137. [PMID: 37831005 PMCID: PMC10646887 DOI: 10.1021/acsbiomaterials.3c00942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Atomistic details on the mechanism of targeting activity by biomedical nanodevices of specific receptors are still scarce in the literature, where mostly ligand/receptor pairs are modeled. Here, we use atomistic molecular dynamics (MD) simulations, free energy calculations, and machine learning approaches on the case study of spherical TiO2 nanoparticles (NPs) functionalized with folic acid (FA) as the targeting ligand of the folate receptor (FR). We consider different FA densities on the surface and different anchoring approaches, i.e., direct covalent bonding of FA γ-carboxylate or through polyethylene glycol spacers. By molecular docking, we first identify the lowest energy conformation of one FA inside the FR binding pocket from the X-ray crystal structure, which becomes the starting point of classical MD simulations in a realistic physiological environment. We estimate the binding free energy to be compared with the existing experimental data. Then, we increase complexity and go from the isolated FA to a nanosystem decorated with several FAs. Within the simulation time framework, we confirm the stability of the ligand-receptor interaction, even in the presence of the NP (with or without a spacer), and no significant modification of the protein secondary structure is observed. Our study highlights the crucial role played by the spacer, FA protonation state, and density, which are parameters that can be controlled during the nanodevice preparation step.
Collapse
Affiliation(s)
- Edoardo Donadoni
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Giulia Frigerio
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Paulo Siani
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Stefano Motta
- Dipartimento
di Scienze dell’Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Jacopo Vertemara
- Dipartimento
di Biotecnologie e Bioscienze, Università
di Milano-Bicocca, Piazza
della Scienza 1, 20126 Milano, Italy
| | - Luca De Gioia
- Dipartimento
di Biotecnologie e Bioscienze, Università
di Milano-Bicocca, Piazza
della Scienza 1, 20126 Milano, Italy
| | - Laura Bonati
- Dipartimento
di Scienze dell’Ambiente e del Territorio, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Cristiana Di Valentin
- Dipartimento
di Scienza dei Materiali, Università
di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
- BioNanoMedicine
Center NANOMIB, Università di Milano-Bicocca, via R. Follereau 3, 20854 Vedano al Lambro, Italy
| |
Collapse
|
2
|
Durojaye OA, Okoro NO, Odiba AS, Nwanguma BC. MasitinibL shows promise as a drug-like analog of masitinib that elicits comparable SARS-Cov-2 3CLpro inhibition with low kinase preference. Sci Rep 2023; 13:6972. [PMID: 37117213 PMCID: PMC10141821 DOI: 10.1038/s41598-023-33024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
SARS-CoV-2 infection has led to several million deaths worldwide and ravaged the economies of many countries. Hence, developing therapeutics against SARS-CoV-2 remains a core priority in the fight against COVID-19. Most of the drugs that have received emergency use authorization for treating SARS-CoV-2 infection exhibit a number of limitations, including side effects and questionable efficacy. This challenge is further compounded by reinfection after vaccination and the high likelihood of mutations, as well as the emergence of viral escape mutants that render SARS-CoV-2 spike glycoprotein-targeting vaccines ineffective. Employing de novo drug synthesis or repurposing to discover broad-spectrum antivirals that target highly conserved pathways within the viral machinery is a focus of current research. In a recent drug repurposing study, masitinib, a clinically safe drug against the human coronavirus OC43 (HCoV-OC43), was identified as an antiviral agent with effective inhibitory activity against the SARS-CoV-2 3CLpro. Masitinib is currently under clinical trial in combination with isoquercetin in hospitalized patients (NCT04622865). Nevertheless, masitinib has kinase-related side effects; hence, the development of masitinib analogs with lower anti-tyrosine kinase activity becomes necessary. In this study, in an attempt to address this limitation, we executed a comprehensive virtual workflow in silico to discover drug-like compounds matching selected pharmacophore features in the SARS-CoV-2 3CLpro-bound state of masitinib. We identified a novel lead compound, "masitinibL", a drug-like analog of masitinib that demonstrated strong inhibitory properties against the SARS-CoV-2 3CLpro. In addition, masitinibL further displayed low selectivity for tyrosine kinases, which strongly suggests that masitinibL is a highly promising therapeutic that is preferable to masitinib.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, Anhui, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria
| | - Nkwachukwu Oziamara Okoro
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Arome Solomon Odiba
- Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| | - Bennett Chima Nwanguma
- Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria.
| |
Collapse
|
3
|
PacDOCK: A Web Server for Positional Distance-Based and Interaction-Based Analysis of Docking Results. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206884. [PMID: 36296477 PMCID: PMC9610523 DOI: 10.3390/molecules27206884] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Molecular docking is a key method for structure-based drug design used to predict the conformations assumed by small drug-like ligands when bound to their target. However, the evaluation of molecular docking studies can be hampered by the lack of a free and easy to use platform for the complete analysis of results obtained by the principal docking programs. To this aim, we developed PacDOCK, a freely available and user-friendly web server that comprises a collection of tools for positional distance-based and interaction-based analysis of docking results, which can be provided in several file formats. PacDOCK allows a complete analysis of molecular docking results through root mean square deviation (RMSD) calculation, molecular visualization, and cluster analysis of docked poses. The RMSD calculation compares docked structures with a reference structure, also when atoms are randomly labelled, and their conformational and positional differences can be visualised. In addition, it is possible to visualise a ligand into the target binding pocket and investigate the key receptor–ligand interactions. Moreover, PacDOCK enables the clustering of docking results by identifying a restrained number of clusters from many docked poses. We believe that PacDOCK will contribute to facilitating the analysis of docking results to improve the efficiency of computer-aided drug design.
Collapse
|
4
|
Hendrix E, Motta S, Gahl RF, He Y. Insight into the Initial Stages of the Folding Process in Onconase Revealed by UNRES. J Phys Chem B 2022; 126:7934-7942. [PMID: 36179061 DOI: 10.1021/acs.jpcb.2c04770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unfolded state of proteins presents many challenges to elucidate the structural basis for biological function. This state is characterized by a large degree of structural heterogeneity which makes it difficult to generate structural models. However, recent experiments into the initial folding events of the 104-residue ribonuclease homologue onconase (ONC) were able to identify the regions in the protein that participate in the initial folding of this protein. Therefore, to gain additional structural insight into the unfolded state of proteins, this study utilized molecular dynamics simulations using the UNited-RESidue (UNRES) force field to evaluate whether there is a good agreement between the experimentally determined initial structures and the structures identified by computer simulations along a folding pathway. Indeed, these UNRES simulations accurately identified the two regions experimentally observed to form the initial native structure along the folding pathway of ONC. In addition, these regions are determined to be chain folding initiation sites (CFIS) according to methods developed previously. Subsequent self-organization maps (SOM) analysis has revealed key structural states involved in these early folding events.
Collapse
Affiliation(s)
- Emily Hendrix
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico87131, United States
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan20126, Italy
| | - Robert F Gahl
- Division of Extramural Activities, National Cancer Institute, National Institutes of Health, Bethesda, Maryland20850, United States
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico87131, United States.,Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico87131, United States
| |
Collapse
|
5
|
Pacheco DF, Alonso D, Ceballos LG, Castro AZ, Brown Roldán S, García Díaz M, Villa Testa A, Wagner SF, Piloto-Ferrer J, García YC, Olea AF, Espinoza L. Synthesis of Four Steroidal Carbamates with Antitumor Activity against Mouse Colon Carcinoma CT26WT Cells: In Vitro and In Silico Evidence. Int J Mol Sci 2022; 23:ijms23158775. [PMID: 35955909 PMCID: PMC9369283 DOI: 10.3390/ijms23158775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers worldwide. If detected on time, surgery can expand life expectations of patients up to five more years. However, if metastasis has grown deliberately, the use of chemotherapy can play a crucial role in CRC control. Moreover, the lack of selectivity of current anticancer drugs, plus mutations that occur in cancerous cells, demands the development of new chemotherapeutic agents. Several steroids have shown their potentiality as anticancer agents, while some other compounds, such as Taxol and its derivatives bearing a carbamate functionality, have reached the market. In this article, the synthesis, characterization, and antiproliferative activity of four steroidal carbamates on mouse colon carcinoma CT26WT cells are described. Carbamate synthesis occurred via direct reaction between diosgenin, its B-ring modified derivative, and testosterone with phenyl isocyanate under a Brønsted acid catalysis. All obtained compounds were characterized by 1H and 13C Nuclear Magnetic Resonance (NMR), High Resolution Mass Spectroscopy (HRMS); their melting points are also reported. Results obtained from antiproliferative activity assays indicated that carbamates compounds have inhibitory effects on the growth of this colon cancer cell line. A molecular docking study carried out on Human Prostaglandin E Receptor (EP4) showed a high affinity between carbamates and protein, thus providing a valuable theoretical explanation of the in vitro results.
Collapse
Affiliation(s)
- Daylin Fernández Pacheco
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | - Dayana Alonso
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Leonardo González Ceballos
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Armando Zaldo Castro
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | | | - Mairelys García Díaz
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
| | | | | | | | - Yamilet Coll García
- Center for Natural Product Research, Faculty of Chemistry, University of Havana, Zapata and G, Havana 10400, Cuba
- Correspondence: (Y.C.G.); (L.E.); Tel.: +53-52952050 (Y.C.G.); +56-32-2654225 (L.E.)
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, San Miguel, Santiago 7500912, Chile
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Correspondence: (Y.C.G.); (L.E.); Tel.: +53-52952050 (Y.C.G.); +56-32-2654225 (L.E.)
| |
Collapse
|
6
|
Motta S, Callea L, Bonati L, Pandini A. PathDetect-SOM: A Neural Network Approach for the Identification of Pathways in Ligand Binding Simulations. J Chem Theory Comput 2022; 18:1957-1968. [PMID: 35213804 PMCID: PMC8908765 DOI: 10.1021/acs.jctc.1c01163] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Understanding the
process of ligand–protein recognition
is important to unveil biological mechanisms and to guide drug discovery
and design. Enhanced-sampling molecular dynamics is now routinely
used to simulate the ligand binding process, resulting in the need
for suitable tools for the analysis of large data sets of binding
events. Here, we designed, implemented, and tested PathDetect-SOM,
a tool based on self-organizing maps to build concise visual models
of the ligand binding pathways sampled along single simulations or
replicas. The tool performs a geometric clustering of the trajectories
and traces the pathways over an easily interpretable 2D map and, using
an approximate transition matrix, it can build a graph model of concurrent
pathways. The tool was tested on three study cases representing different
types of problems and simulation techniques. A clear reconstruction
of the sampled pathways was derived in all cases, and useful information
on the energetic features of the processes was recovered. The tool
is available at https://github.com/MottaStefano/PathDetect-SOM.
Collapse
Affiliation(s)
- Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Lara Callea
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Alessandro Pandini
- Department of Computer Science, Brunel University London, Uxbridge UB8 3PH, U.K.,The Thomas Young Centre for Theory and Simulation of Materials, London SW7 2AZ, U.K
| |
Collapse
|
7
|
Guo X, Xuan N, Liu G, Xie H, Lou Q, Arnaud P, Offmann B, Picimbon JF. An Expanded Survey of the Moth PBP/GOBP Clade in Bombyx mori: New Insight into Expression and Functional Roles. Front Physiol 2021; 12:712593. [PMID: 34776998 PMCID: PMC8582636 DOI: 10.3389/fphys.2021.712593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/13/2021] [Indexed: 02/01/2023] Open
Abstract
We studied the expression profile and ontogeny (from the egg stage through the larval stages and pupal stages, to the elderly adult age) of four OBPs from the silkworm moth Bombyx mori. We first showed that male responsiveness to female sex pheromone in the silkworm moth B. mori does not depend on age variation; whereas the expression of BmorPBP1, BmorPBP2, BmorGOBP1, and BmorGOBP2 varies with age. The expression profile analysis revealed that the studied OBPs are expressed in non-olfactory tissues at different developmental stages. In addition, we tested the effect of insecticide exposure on the expression of the four OBPs studied. Exposure to a toxic macrolide insecticide endectocide molecule (abamectin) led to the modulated expression of all four genes in different tissues. The higher expression of OBPs was detected in metabolic tissues, such as the thorax, gut, and fat body. All these data strongly suggest some alternative functions for these proteins other than olfaction. Finally, we carried out ligand docking studies and reported that PBP1 and GOBP2 have the capacity of binding vitamin K1 and multiple different vitamins.
Collapse
Affiliation(s)
- Xia Guo
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongyan Xie
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qinian Lou
- Shandong Silkworm Institute, Shandong Academy of Agricultural Sciences, Yantai, China
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, UMR CNRS 6286, University of Nantes, Nantes, France
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Bioengineering, QILU University of Technology, Jinan, China
| |
Collapse
|
8
|
Herrera-Mayorga V, Lara-Ramírez EE, Chacón-Vargas KF, Aguirre-Alvarado C, Rodríguez-Páez L, Alcántara-Farfán V, Cordero-Martínez J, Nogueda-Torres B, Reyes-Espinosa F, Bocanegra-García V, Rivera G. Structure-Based Virtual Screening and In Vitro Evaluation of New Trypanosoma cruzi Cruzain Inhibitors. Int J Mol Sci 2019; 20:ijms20071742. [PMID: 30970549 PMCID: PMC6479639 DOI: 10.3390/ijms20071742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Chagas disease (CD), or American trypanosomiasis, causes more than 10,000 deaths per year in the Americas. Current medical therapy for CD has low efficacy in the chronic phase of the disease and serious adverse effects; therefore, it is necessary to search for new pharmacological treatments. In this work, the ZINC15 database was filtered using the N-acylhydrazone moiety and a subsequent structure-based virtual screening was performed using the cruzain enzyme of Trypanosoma cruzi to predict new potential cruzain inhibitors. After a rational selection process, four compounds, Z2 (ZINC9873043), Z3 (ZINC9870651), Z5 (ZINC9715287), and Z6 (ZINC9861447), were chosen to evaluate their in vitro trypanocidal activity and enzyme inhibition. Compound Z5 showed the best trypanocidal activity against epimatigote (IC50 = 36.26 ± 9.9 μM) and trypomastigote (IC50 = 166.21 ± 14.5 μM and 185.1 ± 8.5 μM on NINOA and INC-5 strains, respectively) forms of Trypanosoma cruzi. In addition, Z5 showed a better inhibitory effect on Trypanosoma cruzi proteases than S1 (STK552090, 8-chloro-N-(3-morpholinopropyl)-5H-pyrimido[5,4-b]-indol-4-amine), a known cruzain inhibitor. This study encourages the use of computational tools for the rational search for trypanocidal drugs.
Collapse
Affiliation(s)
- Verónica Herrera-Mayorga
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico.
- Departamento de Ingeniería Bioquímica, Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Mante 89840, Mexico.
| | - Edgar E Lara-Ramírez
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social (IMSS), Zacatecas 98000, Mexico.
| | - Karla F Chacón-Vargas
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Ciudad de México 11340, Mexico.
| | - Charmina Aguirre-Alvarado
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
- Unidad de Investigación en Infectología e Inmunología, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 029990, Mexico.
| | - Lorena Rodríguez-Páez
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Verónica Alcántara-Farfán
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Joaquín Cordero-Martínez
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Ciudad de México 11340, Mexico.
| | - Francisco Reyes-Espinosa
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico.
| | - Virgilio Bocanegra-García
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico.
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico.
| |
Collapse
|
9
|
Bouvier G, Simenel C, Jang J, Kalia NP, Choi I, Nilges M, Pethe K, Izadi-Pruneyre N. Target Engagement and Binding Mode of an Antituberculosis Drug to Its Bacterial Target Deciphered in Whole Living Cells by NMR. Biochemistry 2019; 58:526-533. [PMID: 30521325 DOI: 10.1021/acs.biochem.8b00975] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detailed information on hit-target interaction is very valuable for drug discovery efforts and indispensable for rational hit to lead optimization. We developed a new approach combining NMR in whole-cells in-cell NMR) and docking to characterize hit-target interaction at the atomic level. By using in-cell NMR, we validated target engagement of the antituberculosis imidazopyridine amide (IPA) series with the subunit b of the cytochrome bc1:aa3, the major respiratory terminal oxidase in mycobacteria. The most advanced IPA called Q203 is currently in clinical trial. Using its derivative IPA317, we identified the atoms of the drug interacting with the cytochrome b in whole cells. NMR data and the self-organizing map algorithm were used to cluster a large set of drug-target complex models. The selected ensemble revealed IPA317 in a transient cavity of the cytochrome b, interacting directly with the residue T313, which is the site of spontaneous mutation conferring resistance to the IPA series. Our approach constitutes a pipeline to obtain atomic information on hit-target interactions in the cellular context.
Collapse
Affiliation(s)
- Guillaume Bouvier
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry , Institut Pasteur, CNRS UMR3528, C3BI , USR3756 Paris , France
| | - Catherine Simenel
- NMR of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, CNRS , UMR3528 Paris , France
| | - Jichan Jang
- Institut Pasteur Korea , 13488 Gyeonggi-do , Korea.,Division of Life Science, Research Institute of Life Science , Gyeongsang National University , Jinju , Korea 52828
| | - Nitin P Kalia
- Lee Kong Chian School of Medicine and School of Biological Sciences , Nanyang Technological University , 636921 Singapore
| | - Inhee Choi
- Institut Pasteur Korea , 13488 Gyeonggi-do , Korea
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry , Institut Pasteur, CNRS UMR3528, C3BI , USR3756 Paris , France
| | - Kevin Pethe
- Institut Pasteur Korea , 13488 Gyeonggi-do , Korea.,Lee Kong Chian School of Medicine and School of Biological Sciences , Nanyang Technological University , 636921 Singapore
| | - Nadia Izadi-Pruneyre
- NMR of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, CNRS , UMR3528 Paris , France
| |
Collapse
|
10
|
de Carvalho Gallo JC, de Mattos Oliveira L, Araújo JSC, Santana IB, Dos Santos Junior MC. Virtual screening to identify Leishmania braziliensis N-myristoyltransferase inhibitors: pharmacophore models, docking, and molecular dynamics. J Mol Model 2018; 24:260. [PMID: 30159742 DOI: 10.1007/s00894-018-3791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/12/2018] [Indexed: 01/20/2023]
Abstract
Leishmaniasis is caused by several protozoa species belonging to genus Leishmania that are hosted by humans and other mammals. Millions of new cases are recorded every year and the drugs available on the market do not show satisfactory efficacy and safety. A hierarchical virtual screening approach based on the pharmacophore model, molecular docking, and molecular dynamics was conducted to identify possible Leishmania braziliensis N-misristoyltransferase (LbNMT) inhibitors. The adopted pharmacophore model had three main features: four hydrophobic centers, four hydrogen-bond acceptor atoms, and one positive nitrogen center. The molecules (n=15,000) were submitted to alignment with the pharmacophore model and only 27 molecules aligned to model. Six molecules were submitted to molecular docking, using receptor PDB ID 5A27. After docking, the ZINC35426134 was a top-ranked molecule (- 64.61 kcal/mol). The molecule ZINC35426134 shows hydrophobic interactions with Phe82, Tyr209, Val370, and Leu391 and hydrogen bonds with Asn159, Tyr318, and Val370. Molecular dynamics simulations were performed with the protein in its APO and HOLO forms for 37 ns in order to assess the stability of the protein-ligand complex. Results showed that the HOLO form was more stable than the APO one, and it suggests that the ZINC35426134 binding stabilizes the enzyme. Therefore, the selected molecule has the potential to meet the herein proposed target.
Collapse
Affiliation(s)
- Juliana Cecília de Carvalho Gallo
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.
| | - Larissa de Mattos Oliveira
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Janay Stefany Carneiro Araújo
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Isis Bugia Santana
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Manoelito Coelho Dos Santos Junior
- Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
11
|
Fereidoonnezhad M, Mostoufi A, Eskandari M, Zali S, Aliyan F. Multitarget Drug Design, Molecular Docking and PLIF Studies of Novel Tacrine-Coumarin Hybrids for the Treatment of Alzheimer's Disease. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:1217-1228. [PMID: 30568682 PMCID: PMC6269558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
Alzheimer's disease (AD) as a complicated and progressive neurodegenerative disorder is the most common form of dementia and memory loss. On account of the multifactorial etiology of AD, the multi-target-directed ligand (MTDL) approach is a promising method in searching new drug candidates for this disease. Here, in this paper more than 500 tacrine-coumarin hybrids have been designed and drug-likeness, molecular docking and descriptor analysis of them were performed to find out a drug candidate with less toxicity and better binding affinity than tacrine. The docking analysis was carried out using human acetylcholineesterase (1ACJ), human butyrylcholineesterase (4BDS) and β-secretase (BACE1) (1W51) enzymes using AutoDock 4.2 and Vina. The promising results were obtained on the types of interactions. Based on docking on three targets and PLIF studies, the compounds that have better results were introduced as good candidates for synthesis. The validity of docking protocols was verified using a set of known active ligands and decoys on these targets.
Collapse
|
12
|
Molecular Docking and PLIF Studies of Novel Tacrine-Naphtoquinone Hybrids Based on Multi-Target-Directed Ligand Approach for Alzheimer’s Disease. Jundishapur J Nat Pharm Prod 2017. [DOI: 10.5812/jjnpp.65048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Lung J, Chen KL, Hung CH, Chen CC, Hung MS, Lin YC, Wu CY, Lee KD, Shih NY, Tsai YH. In silico-based identification of human α-enolase inhibitors to block cancer cell growth metabolically. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3281-3290. [PMID: 29180852 PMCID: PMC5695255 DOI: 10.2147/dddt.s149214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Unlimited growth of cancer cells requires an extensive nutrient supply. To meet this demand, cancer cells drastically upregulate glucose uptake and metabolism compared to normal cells. This difference has made the blocking of glycolysis a fascinating strategy to treat this malignant disease. α-enolase is not only one of the most upregulated glycolytic enzymes in cancer cells, but also associates with many cellular processes or conditions important to cancer cell survival, such as cell migration, invasion, and hypoxia. Targeting α-enolase could simultaneously disturb cancer cells in multiple ways and, therefore, is a good target for anticancer drug development. In the current study, more than 22 million chemical structures meeting the criteria of Lipinski’s rule of five from the ZINC database were docked to α-enolase by virtual screening. Twenty-four chemical structures with docking scores better than that of the enolase substrate, 2-phosphoglycerate, were further screened by the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties prediction. Four of them were classified as non-mutagenic, non-carcinogenic, and capable of oral administration where they showed steady interactions to α-enolase that were comparable, even superior, to the currently available inhibitors in molecular dynamics (MD) simulation. These compounds may be considered promising leads for further development of the α-enolase inhibitors and could help fight cancer metabolically.
Collapse
Affiliation(s)
- Jrhau Lung
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi
| | | | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan
| | - Chih-Cheng Chen
- Division of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi.,Department of Medicine, Chang Gung University, Taoyuan
| | - Ming-Szu Hung
- Department of Medicine, Chang Gung University, Taoyuan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi.,Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine
| | - Yu-Ching Lin
- Department of Medicine, Chang Gung University, Taoyuan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi.,Division of Thoracic Oncology, Department of Pulmonary and Critical Care Medicine
| | - Ching-Yuan Wu
- Department of Chinese Medicine; Chang Gung Memorial Hospital, Chiayi
| | - Kuan-Der Lee
- Department of Hematology and Oncology, Taipei Medical University Hospital, Taipei
| | - Neng-Yao Shih
- National Institute of Cancer Research, National Health Research Institutes, Tainan
| | - Ying Huang Tsai
- Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Fereidoonnezhad M, Faghih Z, Mojaddami A, Rezaei Z, Sakhteman A. A Comparative QSAR Analysis, Molecular Docking and PLIF Studies of Some N-arylphenyl-2, 2-Dichloroacetamide Analogues as Anticancer Agents. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:981-998. [PMID: 29535790 PMCID: PMC5610753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dichloroacetate (DCA) is a simple and small anticancer drug that arouses the activity of the enzyme pyruvate dehydrogenase (PDH) through inhibition of the enzyme pyruvate dehydrogenase kinases (PDK1-4). DCA can selectively promote mitochondria-regulated apoptosis, depolarizing the hyperpolarized inner mitochondrial membrane potential to normal levels, inhibit tumor growth and reduce proliferation by shifting the glucose metabolism in cancer cells from anaerobic to aerobic glycolysis. In this study, a series of DCA analogues were applied to quantitative structure-activity relationship (QSAR) analysis. A collection of chemometrics methods such as multiple linear regression (MLR), factor analysis-based multiple linear regression (FA-MLR), principal component regression (PCR), and partial least squared combined with genetic algorithm for variable selection (GA-PLS) were applied to make relations between structural characteristics and cytotoxic activities of a variety of DCA analogues. The best multiple linear regression equation was obtained from genetic algorithms partial least squares, which predict 90% of variances. Based on the resulted model, an in silico-screening study was also conducted and new potent lead compounds based on new structural patterns were designed. Molecular docking as well as protein ligand interaction fingerprints (PLIF) studies of these compounds were also investigated and encouraging results were acquired. There was a good correlation between QSAR and docking results.
Collapse
Affiliation(s)
- Masood Fereidoonnezhad
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Centre, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zeinab Faghih
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Centre, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ayyub Mojaddami
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Centre, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Rezaei
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Centre, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Centre, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|