1
|
Qin Q, Qin L, Xie R, Peng S, Guo C, Yang B. Insight Into Biological Targets and Molecular Mechanisms in the Treatment of Arsenic-Related Dermatitis With Vitamin A via Integrated in silico Approach. Front Nutr 2022; 9:847320. [PMID: 35685889 PMCID: PMC9171494 DOI: 10.3389/fnut.2022.847320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to arsenic (As), an inorganic poison, may lead to skin lesions, including dermatitis. Vitamin A (VA), a fat-soluble vitamin essential for mucous membrane integrity, plays a key role in skin protection. Although the beneficial actions of VA are known, the anti-As-related dermatitis effects of VA action remain unclear. Hence, in this study, we aimed to interpret and identify the core target genes and therapeutic mechanisms of VA action in the treatment of As-related dermatitis through integrated in silico approaches of network pharmacology and molecular docking. We integrated the key VA-biological target-signaling pathway-As-related dermatitis networks for identifying core drug targets and interaction pathways associated with VA action. The network pharmacology data indicated that VA may possess potential activity for treating As-related dermatitis through the effective regulation of core target genes. An enrichment analysis in biological processes further revealed multiple immunoregulation-associated functions, including interferon-gamma production and negative regulation of T-cell activation and production of molecular mediator of immune response. An enrichment analysis in molecular pathways mainly uncovered multiple biological signaling, including natural killer cell mediated cytotoxicity, autophagy, apoptosis, necroptosis, platelet activation involved in cell fate, and immunity regulations. Molecular docking study was used to identify docked well core target proteins with VA, including Jun, tumor protein p53 (TP53), mitogen-activated protein kinase-3 (MAPK3), MAPK1, and MAPK14. In conclusion, the potential use of VA may suppress the inflammatory stress and enhance the immunity against As-related dermatitis. In the future, VA might be useful in the treatment of dermatitis associated with As through multi-targets and multi-pathways in clinical practice.
Collapse
Affiliation(s)
- Qiuhai Qin
- Department of Surgery, The People’s Hospital of Gangbei District, Guigang, China
| | - Lixiu Qin
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ruitang Xie
- Department of Surgery, The People’s Hospital of Gangbei District, Guigang, China
| | - Shuihua Peng
- Department of Pharmacy, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Chao Guo
- Department of Pharmacy, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
- *Correspondence: Chao Guo,
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, China
- Bin Yang,
| |
Collapse
|
2
|
Nassar M, Dargham A, Jamleh A, Tamura Y, Hiraishi N, Tagami J. The Hormetic Effect of Arsenic Trioxide on Rat Pulpal Cells: An In Vitro Preliminary Study. Eur J Dent 2020; 15:222-227. [PMID: 33126286 PMCID: PMC8184270 DOI: 10.1055/s-0040-1718637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives
Despite the agreement that there is no longer any indication for arsenic use in modern endodontics, some concerns are surfacing about the minute amount of arsenic trioxide (As
2
O
3
) released from Portland cement-based materials. The present study investigated the effect of different concentrations of As
2
O
3
on rat pulpal cells and the efficacy of
N
-acetylcysteine (NAC) in preventing As
2
O
3
-mediated toxicity.
Materials and Methods
Cytotoxicities of 50, 10, or 5 µm As
2
O
3
and the effect of cells co-treatment with 50 µm As
2
O
3
and 5,000 µm NAC or 500 µm NAC were tested at 24 hours or 3 days. Cell viability was assessed by means of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and cellular morphological changes were observed under phase contrast microscope.
Statistical Analysis
Two-way analysis of variance with Tukey’s post-hoc test was used to evaluate differences between the groups (α = 0.05).
Results
At both exposure times, 50 µm As
2
O
3
resulted in lower optical density (OD) values when compared with 10 or 5 µm As
2
O
3
. At 24 hours, 10 µm As
2
O
3
resulted in a higher OD value compared with the control; however, at 3 days the difference was statistically insignificant. At each exposure time, the OD value of 5 µm As
2
O
3
group was comparable to the control and 10 µm As
2
O
3
group. There were no significant differences between 50 µm As
2
O
3
group and 500 μm NAC+50 μm As
2
O
3
group; however, these two groups had lower OD values when compared with 5,000 μm NAC+50 μm As
2
O
3
group at 24 hours and 3 days. The latter group showed significantly lower OD value in comparison with the control at 24 hours and 3 days. Control cells were polygonal-shaped while 50 µm As
2
O
3
-treated cells exhibited contracted and spherical morphology with increased intercellular spaces. At 24 hours, 10 μm and 5 µm As
2
O
3
-treated cells were slightly hypertrophic. Cells co-treated with NAC and As
2
O
3
showed increased intercellular spaces and lower cellular density compared with the control.
Conclusions
As
2
O
3
displayed a hormetic effect on pulpal cells; however, the proliferative effect induced by low As
2
O
3
concentrations should be interpreted with caution. NAC did not prevent As
2
O
3
-mediated toxicity; however, it demonstrated potential for ameliorating this toxicity.
Collapse
Affiliation(s)
- Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Dargham
- Ras Al Khaimah College of Dental Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ahmed Jamleh
- Restorative and Prosthetic Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Yukihiko Tamura
- Department of Bio-Matrix (Dental Pharmacology), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Tchounwou PB, Yedjou CG, Udensi UK, Pacurari M, Stevens JJ, Patlolla AK, Noubissi F, Kumar S. State of the science review of the health effects of inorganic arsenic: Perspectives for future research. ENVIRONMENTAL TOXICOLOGY 2019; 34:188-202. [PMID: 30511785 PMCID: PMC6328315 DOI: 10.1002/tox.22673] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 05/06/2023]
Abstract
Human exposure to inorganic arsenic (iAs) is a global health issue. Although there is strong evidence for iAs-induced toxicity at higher levels of exposure, many epidemiological studies evaluating its effects at low exposure levels have reported mixed results. We comprehensively reviewed the literature and evaluated the scientific knowledge on human exposure to arsenic, mechanisms of action, systemic and carcinogenic effects, risk characterization, and regulatory guidelines. We identified areas where additional research is needed. These priority areas include: (1) further development of animal models of iAs carcinogenicity to identify molecular events involved in iAs carcinogenicity; (2) characterization of underlying mechanisms of iAs toxicity; (3) assessment of gender-specific susceptibilities and other factors that modulate arsenic metabolism; (4) sufficiently powered epidemiological studies to ascertain relationship between iAs exposure and reproductive/developmental effects; (5) evaluation of genetic/epigenetic determinants of iAs effects in children; and (6) epidemiological studies of people chronically exposed to low iAs concentrations.
Collapse
Affiliation(s)
- Paul B. Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health.Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Clement G. Yedjou
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Udensi K. Udensi
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health.Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Maricica Pacurari
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Jacqueline J. Stevens
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Anita K. Patlolla
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Felicite Noubissi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Sanjay Kumar
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health.Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| |
Collapse
|
4
|
Graham B, Stevens J, Wells P, Sims J, Rogers C, Leggett SS, Ekunwe S, Ndebele K. Enhancement of arsenic trioxide-mediated changes in human induced pluripotent stem cells (IPS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:7524-36. [PMID: 25054231 PMCID: PMC4113892 DOI: 10.3390/ijerph110707524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 01/08/2023]
Abstract
Induced pluripotent stem cells (IPS) are an artificially derived type of pluripotent stem cell, showing many of the same characteristics as natural pluripotent stem cells. IPS are a hopeful therapeutic model; however there is a critical need to determine their response to environmental toxins. Effects of arsenic on cells have been studied extensively; however, its effect on IPS is yet to be elucidated. Arsenic trioxide (ATO) has been shown to inhibit cell proliferation, induce apoptosis and genotoxicity in many cells. Based on ATOs action in other cells, we hypothesize that it will induce alterations in morphology, inhibit cell viability and induce a genotoxic effect on IPS. Cells were treated for 24 hours with ATO (0-9 µg/mL). Cell morphology, viability and DNA damage were documented. Results indicated sufficient changes in morphology of cell colonies mainly in cell ability to maintain grouping and ability to remain adherent. Cell viability decreased in a dose dependent manner. There were significant increases in tail length and moment as well as destruction of intact DNA as concentration increased. Exposure to ATO resulted in a reproducible dose dependent sequence of events marked by changes in morphology, decrease of cell viability, and induction of genotoxicity in IPS.
Collapse
Affiliation(s)
- Barbara Graham
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Jacqueline Stevens
- RCMI Molecular Core Lab, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Phatia Wells
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Jennifer Sims
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Christian Rogers
- Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Sophia S Leggett
- Department of Behavioral and Environmental Health, Jackson State University, Jackson, MS 39217, USA.
| | - Stephen Ekunwe
- Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| | - Kenneth Ndebele
- Laboratory of Cancer Biology and Target Validation, Department of Biology, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
5
|
Udensi UK, Tackett AJ, Byrum S, Avaritt NL, Sengupta D, Moreland LW, Tchounwou PB, Isokpehi RD. Proteomics-Based Identification of Differentially Abundant Proteins from Human Keratinocytes Exposed to Arsenic Trioxide. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2014; 7:166-178. [PMID: 25419056 PMCID: PMC4240501 DOI: 10.4172/jpb.1000317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arsenic is a widely distributed environmental toxicant that can cause multi-tissue pathologies. Proteomic assays allow for the identification of biological processes modulated by arsenic in diverse tissue types. METHOD The altered abundance of proteins from HaCaT human keratinocyte cell line exposed to arsenic was quantified using a label-free LC-MS/MS mass spectrometry workflow. Selected proteomics results were validated using western blot and RT-PCR. A functional annotation analytics strategy that included visual analytical integration of heterogeneous data sets was developed to elucidate functional categories. The annotations integrated were mainly tissue localization, biological process and gene family. RESULT The abundance of 173 proteins was altered in keratinocytes exposed to arsenic; in which 96 proteins had increased abundance while 77 proteins had decreased abundance. These proteins were also classified into 69 Gene Ontology biological process terms. The increased abundance of transferrin receptor protein (TFRC) was validated and also annotated to participate in response to hypoxia. A total of 33 proteins (11 increased abundance and 22 decreased abundance) were associated with 18 metabolic process terms. The Glutamate--cysteine ligase catalytic subunit (GCLC), the only protein annotated with the term sulfur amino acid metabolism process, had increased abundance while succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial precursor (SDHB), a tumor suppressor, had decreased abundance. CONCLUSION A list of 173 differentially abundant proteins in response to arsenic trioxide was grouped using three major functional annotations covering tissue localization, biological process and protein families. A possible explanation for hyperpigmentation pathologies observed in arsenic toxicity is that arsenic exposure leads to increased iron uptake in the normally hypoxic human skin. The proteins mapped to metabolic process terms and differentially abundant are candidates for evaluating metabolic pathways perturbed by arsenicals.
Collapse
Affiliation(s)
- Udensi K Udensi
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
| | - Alan J Tackett
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Stephanie Byrum
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Nathan L Avaritt
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Deepanwita Sengupta
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Linley W Moreland
- Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
| | - Raphael D Isokpehi
- RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA
- Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach FL 32114, USA
| |
Collapse
|
6
|
Alarifi S, Ali D, Alkahtani S, Siddiqui MA, Ali BA. Arsenic trioxide-mediated oxidative stress and genotoxicity in human hepatocellular carcinoma cells. Onco Targets Ther 2013; 6:75-84. [PMID: 23404534 PMCID: PMC3569381 DOI: 10.2147/ott.s38227] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Arsenic is a ubiquitous environmental toxicant, and abnormalities of the skin, lung, kidney, and liver are the most common outcomes of long-term arsenic exposure. This study was designed to investigate the possible mechanisms of genotoxicity induced by arsenic trioxide in human hepatocellular carcinoma cells. METHODS AND RESULTS A mild cytotoxic response of arsenic trioxide was observed in human hepatocellular carcinoma cells, as evident by (3-(4,5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) and lactate dehydrogenase assays after 24 and 48 hours of exposure. Arsenic trioxide elicited a significant (P < 0.01) reduction in glutathione (15.67% and 26.52%), with a concomitant increase in malondialdehyde level (67.80% and 72.25%; P < 0.01), superoxide dismutase (76.42% and 81.09%; P < 0.01), catalase (73.33% and 76.47%; P < 0.01), and reactive oxygen species generation (44.04% and 56.14%; P < 0.01) after 24 and 48 hours of exposure, respectively. Statistically significant (P < 0.01) induction of DNA damage was observed by the comet assay in cells exposed to arsenic trioxide. It was also observed that apoptosis occurred through activation of caspase-3 and phosphatidylserine externalization in human hepatocellular carcinoma cells exposed to arsenic trioxide. CONCLUSION The results demonstrate that arsenic trioxide induces apoptosis and genotoxicity in human hepatocellular carcinoma cells through reactive oxygen species and oxidative stress.
Collapse
Affiliation(s)
- Saud Alarifi
- Cell and Molecular Laboratory, Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|