1
|
Peng S, Yan W, Yan Y, Tang Q, Feng H, Huang X. AP2M1 as the potential biomarker for prediction of the response of atopic dermatitis to Dupilumab therapy: Multi-omics analysis and evidence. Int J Biol Macromol 2025; 297:139757. [PMID: 39818381 DOI: 10.1016/j.ijbiomac.2025.139757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Many atopic dermatitis (AD) patients have suboptimal responses to Dupilumab therapy. This study identified key genes linked to this resistance using multi-omics approaches to benefit more patients. We selected a prospective cohort of 54 AD treated with Dupilumab from the GEO database. After identifying resistant genes via WGCNA and differential expression analysis, we used machine learning techniques to screen key genes and develop a predictive model. It was found that four key genes (AP2M1, BMP4, DNM1, and RHEB) were identified, showing excellent diagnostic performance for Dupilumab resistance (AUC = 0.832-0.861, P < 0.05) and validated in AD patients via RT-qPCR (P < 0.05). Among them, AP2M1 was significantly correlated with the clinical severity of AD (R = 0.5,P = 0.04) and identified as a potential risk factor (HR = 13.45, 95%CI(1.71-105.65), P = 0.02). The results of immunohistochemistry also revealed overexpression of AP2M1 in AD tissue (P = 0.002). Additionally, immune infiltration analysis suggested that AP2M1-mediated Dupilumab resistance may involve mast cells (R = -0.51, P = 0.02), which also supported by single-cell analysis. And we constructed a regulatory network of AP2M1. Finally, we explored the drug Fostamatinib, targeting AP2M1. In conclusion, AP2M1 may serve as a biomarker for those AD patients exhibiting suboptimal responses to Dupilumab.
Collapse
Affiliation(s)
- Shixiong Peng
- Department of Dermatology, the Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Wenjie Yan
- Department of Dermatology, the Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China
| | - Yang Yan
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Qian Tang
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China
| | - Hao Feng
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, China.
| | - Xi Huang
- Department of Dermatology, the Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, China.
| |
Collapse
|
2
|
DeBerg HA, Fahning ML, Varkhande SR, Schlenker JD, Schmitt WP, Gupta A, Singh A, Gratz IK, Carlin JS, Campbell DJ, Morawski PA. T cells promote distinct transcriptional programs of cutaneous inflammatory disease in keratinocytes and dermal fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606077. [PMID: 39131334 PMCID: PMC11312529 DOI: 10.1101/2024.07.31.606077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
T cells and structural cells coordinate appropriate inflammatory responses and restoration of barrier integrity following insult. Dysfunctional T cells precipitate skin pathology occurring alongside altered structural cell frequencies and transcriptional states, but to what extent different T cells promote disease-associated changes remains unclear. We show that functionally diverse circulating and skin-resident CD4+CLA+ T cell populations promote distinct transcriptional outcomes in human keratinocytes and fibroblasts associated with inflamed or healthy tissue. We identify Th17 cell-induced genes in keratinocytes that are enriched in psoriasis patient skin and normalized by anti-IL-17 therapy. We also describe a CD103+ skin-resident T cell-induced transcriptional module enriched in healthy controls that is diminished during psoriasis and scleroderma and show that CD103+ T cell frequencies are altered during disease. Interrogating clinical data using immune-dependent transcriptional signatures defines the T cell subsets and genes distinguishing inflamed from healthy skin and allows investigation of heterogeneous patient responses to biologic therapy.
Collapse
Affiliation(s)
- Hannah A. DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Mitch L. Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suraj R. Varkhande
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - James D. Schlenker
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - William P. Schmitt
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - Aayush Gupta
- Department of Dermatology, Leprology, and Venereology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, India
| | - Archana Singh
- Systems Biology Lab, CSIR – Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Iris K. Gratz
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Center for Tumor Biology and Immunology, University of Salzburg, Salzburg, Austria
| | - Jeffrey S. Carlin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
- Division of Rheumatology, Virginia Mason Medical Center, Seattle, WA, USA
| | - Daniel J. Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter A. Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
3
|
Kim G, Lee SY, Oh S, Jang JW, Lee J, Kim HS, Son KH, Byun K. Anti-Inflammatory Effects of Extracellular Vesicles from Ecklonia cava on 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation in Mice. Int J Mol Sci 2024; 25:12522. [PMID: 39684233 DOI: 10.3390/ijms252312522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Steroids, which are often used to treat the inflammation associated with various skin diseases, have several negative side effects. As Ecklonia cava extract has anti-inflammatory effects in various diseases, we evaluated the efficacy of Ecklonia cava-derived extracellular vesicles (EVEs) in decreasing 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. We determined the effect of the EVEs on the TLR4/NF-κB/NLRP3 inflammasome in human keratinocytes and mouse ear skin. TPA-treated human keratinocytes showed an increased expression of TLR4 and its ligands HMGB1 and S100A8. TPA also increased the expression of (1) NF-κB; (2) the NLRP3 inflammasome components NLRP3, ASC, and caspase 1; and (3) the pyroptosis-related factors GSDMD-NT, IL-18, and IL-1β. However, the expression of these molecules decreased in the TPA-treated human keratinocytes after EVE treatment. Similar to the in vitro results, TPA increased the expression of these molecules in mouse ear skin, and EVE treatment decreased their expression. The TPA treatment of skin increased edema, redness, neutrophil infiltration, and epidermal thickness, and EVE reduced these symptoms of inflammation. In conclusion, the EVEs decreased TPA-induced skin inflammation, which was associated with a decrease in the TLR4/NF-κB/NLRP3 inflammasome.
Collapse
Affiliation(s)
- Geebum Kim
- Misogain Dermatology Clinic, Gimpo 10108, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jong-Won Jang
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Jehyuk Lee
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Doctorbom Clinic, Seoul 06614, Republic of Korea
| | - Hyun-Seok Kim
- Kim Hyun Seok Plastic Surgery Clinic, Seoul 06030, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
4
|
Zhang H, Zheng C, Xu Y, Hu X. Comprehensive molecular and cellular characterization of endoplasmic reticulum stress-related key genes in renal ischemia/reperfusion injury. Front Immunol 2024; 15:1340997. [PMID: 38495888 PMCID: PMC10940334 DOI: 10.3389/fimmu.2024.1340997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Background Renal ischemia-reperfusion injury (RIRI) is an inevitable complication in the process of kidney transplantation and lacks specific therapy. The study aims to determine the underlying mechanisms of RIRI to uncover a promising target for efficient renoprotection. Method Four bulk RNA-seq datasets including 495 renal samples of pre- and post-reperfusion were collected from the GEO database. The machine learning algorithms were utilized to ascertain pivotal endoplasmic reticulum stress genes. Then, we incorporated correlation analysis and determined the interaction pathways of these key genes. Considering the heterogeneous nature of bulk-RNA analysis, the single-cell RNA-seq analysis was performed to investigate the mechanisms of key genes at the single-cell level. Besides, 4-PBA was applied to inhibit endoplasmic reticulum stress and hence validate the pathological role of these key genes in RIRI. Finally, three clinical datasets with transcriptomic profiles were used to assess the prognostic role of these key genes in renal allograft outcomes after RIRI. Results In the bulk-RNA analysis, endoplasmic reticulum stress was identified as the top enriched pathway and three endoplasmic reticulum stress-related genes (PPP1R15A, JUN, and ATF3) were ranked as top performers in both LASSO and Boruta analyses. The three genes were found to significantly interact with kidney injury-related pathways, including apoptosis, inflammatory response, oxidative stress, and pyroptosis. For oxidative stress, these genes were more strongly related to oxidative markers compared with antioxidant markers. In single-cell transcriptome, the three genes were primarily upregulated in endothelium, distal convoluted tubule cells, and collecting duct principal cells among 12 cell types of renal tissues in RIRI. Furthermore, distal convoluted tubule cells and collecting duct principal cells exhibited pro-inflammatory status and the highest pyroptosis levels, suggesting their potential as main effectors of three key genes for mediating RIRI-associated injuries. Importantly, inhibition of these key genes using 4-phenyl butyric acid alleviated functional and histological damage in a mouse RIRI model. Finally, the three genes demonstrated highly prognostic value in predicting graft survival outcomes. Conclusion The study identified three key endoplasmic reticulum stress-related genes and demonstrated their prognostic value for graft survival, providing references for individualized clinical prevention and treatment of postoperative complications after renal transplantation.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Chaoyue Zheng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Yue Xu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Saito-Sasaki N, Sawada Y. S100 Proteins in the Pathogenesis of Psoriasis and Atopic Dermatitis. Diagnostics (Basel) 2023; 13:3167. [PMID: 37891988 PMCID: PMC10606049 DOI: 10.3390/diagnostics13203167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The skin, the outermost layer of the human body, is exposed to various external stimuli that cause inflammatory skin reactions. These external stimulants trigger external epithelial cell damage and the release of intracellular substances. Following cellular damage or death, intracellular molecules are released that enhance tissue inflammation. As an important substance released from damaged cells, the S100 protein is a low-molecular-weight acidic protein with two calcium-binding sites and EF-hand motif domains. S100 proteins are widely present in systemic organs and interact with other proteins. Recent studies revealed the involvement of S100 in cutaneous inflammatory disorders, psoriasis, and atopic dermatitis. This review provides detailed information on the interactions among various S100 proteins in inflammatory diseases.
Collapse
Affiliation(s)
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;
| |
Collapse
|
6
|
Guttman-Yassky E, Facheris P, Da Rosa JC, Rothenberg-Lausell C, Del Duca E, David E, Estrada Y, Liu Y, Bose S, Chowdhury M, Munera C, Goncalves J, Nograles K, Kim BS, Lebwohl M. Oral difelikefalin reduces moderate to severe pruritus and expression of pruritic and inflammatory biomarkers in subjects with atopic dermatitis. J Allergy Clin Immunol 2023; 152:916-926. [PMID: 37453614 DOI: 10.1016/j.jaci.2023.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Pruritus is the most common and burdensome symptom of atopic dermatitis (AD). Pruritus-targeted treatments in AD are lacking, particularly for patients with milder skin disease. OBJECTIVE We sought to evaluate the impact of the selective κ-opioid receptor agonist difelikefalin (DFK) on pruritus intensity and pruritus- and immune-related biomarkers in subjects with moderate to severe AD-related pruritus. METHODS A phase 2 clinical trial investigated the efficacy and safety of oral DFK 0.25, 0.5, and 1.0 mg in subjects with moderate to severe AD-related pruritus. A biomarker substudy evaluated the effects of DFK on the expression of pruritus, TH2-associated genes, and skin barrier-related genes. RESULTS In the clinical trial (N = 401), all DFK doses reduced itch versus placebo; however, the results were not statistically significant at week 12. In a subgroup of subjects in the trial with mild to moderate skin inflammation and moderate to severe itch (itch-dominant AD phenotype), DFK reduced itch at week 12 versus placebo. In the biomarker substudy, DFK downregulated the expression of key pruritus-related genes (eg, IL-31 and TRPV1) and the AD phenotype (eg, CCL17). Gene set variation analysis confirmed that DFK, but not placebo, downregulated pruritus-related genes and TH2 pathways. DFK improved skin barrier integrity markers and upregulated the expression of claudins and lipid metabolism-associated genes (eg, SEC14L6, ELOVL3, CYP1A2, and AKR1D1). CONCLUSIONS DFK treatment reduced itch in subjects with moderate to severe AD-related pruritus, particularly those with an "itch-dominant" AD phenotype, and had an impact on the expression of pruritus, TH2-associated genes, and skin barrier-related genes. DFK is a promising therapy for AD-related pruritus; further clinical studies are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Eden David
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Ying Liu
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Swaroop Bose
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | - Brian S Kim
- Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Mark Lebwohl
- Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Grafanaki K, Antonatos C, Maniatis A, Petropoulou A, Vryzaki E, Vasilopoulos Y, Georgiou S, Gregoriou S. Intrinsic Effects of Exposome in Atopic Dermatitis: Genomics, Epigenomics and Regulatory Layers. J Clin Med 2023; 12:4000. [PMID: 37373692 DOI: 10.3390/jcm12124000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) or atopic eczema is an increasingly manifested inflammatory skin disorder of complex etiology which is modulated by both extrinsic and intrinsic factors. The exposome includes a person's lifetime exposures and their effects. We recently reviewed the extrinsic exposome's environmental risk factors that contribute to AD. The periods of pregnancy, infancy, and teenage years are recognized as crucial stages in the formation of AD, where the exposome leads to enduring impacts on the immune system. However, research is now focusing on the interactions between intrinsic pathways that are modulated by the extrinsic exposome, including genetic variation, epigenetic modifications, and signals, such as diet, stress, and microbiome interactions. As a result, immune dysregulation, barrier dysfunction, hormonal fluctuations, and skin microbiome dysbiosis are important factors contributing to AD development, and their in-depth understanding is crucial not only for AD treatment but also for similar inflammatory disorders.
Collapse
Affiliation(s)
- Katerina Grafanaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Antonia Petropoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Eleftheria Vryzaki
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Sophia Georgiou
- Department of Dermatology-Venereology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Stamatis Gregoriou
- Department of Dermatology-Venereology, Faculty of Medicine, Andreas Sygros Hospital, National and Kapodistrian University of Athens, 16121 Athens, Greece
| |
Collapse
|
8
|
Urbančič J, Košak Soklič T, Demšar Luzar A, Hočevar Boltežar I, Korošec P, Rijavec M. Transcriptomic Differentiation of Phenotypes in Chronic Rhinosinusitis and Its Implications for Understanding the Underlying Mechanisms. Int J Mol Sci 2023; 24:ijms24065541. [PMID: 36982612 PMCID: PMC10051401 DOI: 10.3390/ijms24065541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a multifaceted disease with variable clinical courses and outcomes. We aimed to determine CRS-associated nasal-tissue transcriptome in clinically well-characterized and phenotyped individuals, to gain a novel insight into the biological pathways of the disease. RNA-sequencing of tissue samples of patients with CRS with polyps (CRSwNP), without polyps (CRSsNP), and controls were performed. Characterization of differently expressed genes (DEGs) and functional and pathway analysis was undertaken. We identified 782 common CRS-associated nasal-tissue DEGs, while 375 and 328 DEGs were CRSwNP- and CRSsNP-specific, respectively. Common key DEGs were found to be involved in dendritic cell maturation, the neuroinflammation pathway, and the inhibition of the matrix metalloproteinases. Distinct CRSwNP-specific DEGs were involved in NF-kβ canonical pathways, Toll-like receptor signaling, HIF1α regulation, and the Th2 pathway. CRSsNP involved the NFAT pathway and changes in the calcium pathway. Our findings offer new insights into the common and distinct molecular mechanisms underlying CRSwNP and CRSsNP, providing further understanding of the complex pathophysiology of the CRS, with future research directions for novel treatment strategies.
Collapse
Affiliation(s)
- Jure Urbančič
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- Correspondence:
| | - Tanja Košak Soklič
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Ajda Demšar Luzar
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, SI-4204 Golnik, Slovenia
| | - Irena Hočevar Boltežar
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Peter Korošec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, SI-4204 Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matija Rijavec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, Golnik 36, SI-4204 Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Yu HH, Zhao W, Zhang BX, Wang Y, Li J, Fang YF. Morinda officinalis extract exhibits protective effects against atopic dermatitis by regulating the MALAT1/miR-590-5p/CCR7 axis. J Cosmet Dermatol 2023; 22:1602-1612. [PMID: 36639978 DOI: 10.1111/jocd.15610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease with a genetic predisposition, and the traditional Chinese medicine Morinda officinalis and its roots are characterized with anti-inflammatory effects and have been used for the treatment of various disease. However, it is still largely unknown whether Morinda officinalis extract (MOE) can be used for the treatment of AD. OBJECTIVES In our study we aimed to determine whether MOE could ameliorate 2,4-dinitrochlorobenzene (DNCB)-induced AD and elucidate molecular mechanisms. METHODS We established an AD mouse model by using DNCB. Skin pathological analysis and ELISA assay were used to detect the effect of MOE on the inflammation of AD model mouse skin and the expression changes of inflammatory factors, and further functional verification was performed in TNF-α/IFN-γ-induced HaCaT cells. RESULTS Our in vivo experiments confirmed that MOE remarkably reduced DNCB-induced AD lesions and symptoms, such as epidermal and dermal thickness and mast cell infiltration and inflammatory cytokines secretion in the mice models. In addition, the underlying mechanisms by which MOE ameliorated AD had been uncovered, and we verified that MOE inhibited MALAT1 expression in AD, resulting in attenuated expression of C-C chemokine receptor type 7 (CCR7) regulated by MALAT1-sponge miR-590-5p in a competing endogenous RNA (ceRNA) mechanisms-dependent manner, thereby inhibiting TNF-α/IFN-γ-induced cellular proliferation and inflammation.
Collapse
Affiliation(s)
- Huan-Huan Yu
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei Zhao
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Bu-Xin Zhang
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jie Li
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Fu Fang
- Department of Dermatology, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
10
|
Identification of novel candidate genes and predicted miRNAs in atopic dermatitis patients by bioinformatic methods. Sci Rep 2022; 12:22067. [PMID: 36543921 PMCID: PMC9772328 DOI: 10.1038/s41598-022-26689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Atopic dermatitis (AD) is a common, chronic inflammatory dermatosis with relapsing eruptions. Our study used bioinformatics to find novel candidate differentially expressed genes (DEGs) and predicted miRNAs between AD patients and healthy controls. The Mesh term "atopic dermatitis" was retrieved to obtain DEGs in GEO datasets. DEGs between AD patients and healthy controls were analyzed using GEO2R. Overlapping DEGs between different datasets were obtained with use of Draw Venn software. GO and KEGG enrichment analyses were conducted by the use of DAVID. STRING and miRWalk were used to individually analyze PPI networks, interactions of candidate genes and predicted miRNAs. A total of 571 skin samples, as retrieved from 9 databases were assessed. There were 225 overlapping DEGs between lesioned skin samples of AD patients and that of healthy controls. Nineteen nodes and 160 edges were found in the largest PPI cluster, consisting of 17 up-regulated and 2 down-regulated nodes. Two KEGG pathways were identified, including the cell cycle (CCNB1, CHEK1, BUB1B, MCM5) and p53 (CCNB1, CHEK1, GTSE1) pathways. There were 56 nodes and 100 edges obtained in the miRNA-target gene network, with has-miR-17-5p targeted to 4 genes and has-miR-106b-5p targeted to 3 genes. While these findings will require further verification as achieved with experiments involving in vivo and in vitro modles, these results provided some initial insights into dysfunctional inflammatory and immune responses associated with AD. Such information offers the potential to develop novel therapeutic targets for use in preventing and treating AD.
Collapse
|
11
|
Novel Diagnostic Biomarkers Related to Oxidative Stress and Macrophage Ferroptosis in Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8917947. [PMID: 36035208 PMCID: PMC9410850 DOI: 10.1155/2022/8917947] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, which has a complex interplay between altered immune metabolism and oxidative stress. Therefore, we aimed to determine the oxidative stress and immune-related biomarkers in AS. Differential gene expression analyses are based on the GSE100927 dataset in the Gene Expression Omnibus (GEO), and 389 oxidative stress (OS) genes are identified based on gene set enrichment analysis (GSEA). We identified 74 differentially expressed genes related to oxidative stress (DEOSGs). “CIBERSORT” and “WGCNA” R Packages were used to compare the differences in immune infiltration levels between AS and control samples. The DEOSGs (N = 74) were intersected with the key module's genes of WGCNA (N = 972), and 27 differentially expressed immune-related oxidative stress genes (DEIOSGs) were obtained. To identify the pivotal genes, a protein-protein interaction (PPI) network was constructed using the STRING database and the Cytoscape software. MMP9, ALOX5, NCF2, NCF, and NCF4 were identified as diagnostic markers of AS, and we validated them in the GSE57691 dataset. The expression levels of the five diagnostic genes were significantly highly expressed in the AS group. Correlation analysis and single-cell analysis revealed that five diagnostic genes were mainly correlated with macrophages M1. We, respectively, intersected differentially expressed genes (DEGs) with ferroptosis gene set, necroptosis gene set, and pyroptosis gene set. The findings suggested that ALOX5 and NCF2 were differentially expressed genes of ferroptosis. High expression of five hub genes in RAW264.7 macrophages were confirmed by PCR. High ALOX5 and NCF2 expression levels in plaque tissues were confirmed by immunohistochemistry (IHC) and western blotting. Our study identified that MMP9, ALOX5, NCF2, NCF1, and NCF4 were diagnostic genes of AS and associated with oxidative stress. ALOX5 and NCF2 may be involved in the formation of the necrotic core in AS by regulating macrophage ferroptosis.
Collapse
|
12
|
Yang M, Zheng H, Su Y, Xu K, Yuan Q, Aihaiti Y, Cai Y, Xu P. Bioinformatics Analysis Identified the Hub Genes, mRNA–miRNA–lncRNA Axis, and Signaling Pathways Involved in Rheumatoid Arthritis Pathogenesis. Int J Gen Med 2022; 15:3879-3893. [PMID: 35422654 PMCID: PMC9005080 DOI: 10.2147/ijgm.s353487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/28/2022] [Indexed: 12/22/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is a nonspecific, chronic, systemic autoimmune disease characterized by symmetric polyarticular synovitis. Bioinformatics analysis of potential biomarkers, mRNA–miRNA–lncRNA axes, and signaling pathways in the pathogenesis of RA provides potential targets and theoretical basis for further research on RA. Methods The GSE1919 and GSE77298 datasets were downloaded from the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo). Perl was used to perform data merging, and R was used to perform batch correction. The “limma” package of R was used to screen differentially expressed genes, and the “clusterProfiler” package was used to perform enrichment analysis of the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Search Tool for the Retrieval of Interacting Genes/Proteins was used to construct the protein–protein interaction network, Cytoscape was used for module analysis, and R was used to screen for hub genes. GraphPad Prism was used to plot the receiver operating characteristic curve of the hub genes. Gene set enrichment analysis and competitive endogenous RNA network analysis were performed on hub genes with the greatest diagnostic values. The hub gene with the greatest diagnostic value was verified using immunohistochemical staining. Results We obtained nine hub genes (ITGB2, VAMP8, HLA-A, PTAFR, SYK, FCER1G, HLA-DPB1, LCP2, and ACTR2) and four mRNA–miRNA–lncRNA axes (ITGB2-hsa-miR-486-3p-SNHG3, ITGB2-hsa-miR-338-5p-XIST, ITGB2-hsa-miR-5581-3p-XIST, and ITGB2-hsa-miR-1226-5p-XIST) related to the pathogenesis of RA. The nine hub genes were highly expressed, and ITGB2 had the highest diagnostic value for RA. We also identified signaling pathways related to the pathogenesis of RA: Fc epsilon Rl and chemokine signaling pathways. The immunohistochemical results showed that ITGB2 expression was significantly upregulated in RA. Conclusion The hub genes, mRNA–miRNA–lncRNA axes, and signaling pathways related to RA pathogenesis identified in this study provide a new research direction for the mechanism, diagnosis, and treatment of RA.
Collapse
Affiliation(s)
- Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi, 710054, People’s Republic of China
| | - Haishi Zheng
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi, 710054, People’s Republic of China
| | - Yani Su
- Yan'an University Affiliated Hospital, Yan’an, Shanxi, 716000, People’s Republic of China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi, 710054, People’s Republic of China
| | - Qiling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi, 710054, People’s Republic of China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi, 710054, People’s Republic of China
| | - Yongsong Cai
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi, 710054, People’s Republic of China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi’an, Shanxi, 710054, People’s Republic of China
- Correspondence: Peng Xu, HongHui Hospital, Xi’an Jiaotong University, No. 555, Youyi East Road, Beilin District, Xi’an City, Shaanxi Province, 710054, People’s Republic of China, Tel +86 13772090019, Email
| |
Collapse
|
13
|
Identification of Potential Key Biomarkers and Immune Infiltration in Oral Lichen Planus. DISEASE MARKERS 2022; 2022:7386895. [PMID: 35256894 PMCID: PMC8898126 DOI: 10.1155/2022/7386895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022]
Abstract
Background Oral lichen planus (OLP) is a chronic autoimmune oral mucosal disease that seriously affects the life quality of the patients. But till now, the exact etiology and pathogenesis of OLP remain unclear. Our study is aimed at finding the key molecules and pathways involved in the pathogenesis mechanisms of OLP, providing more effective therapeutic strategies for OLP. Methods Data from GSE52130 were downloaded from GEO datasets for analysis. Then, we carried out enrichment analysis of the differentially expressed genes (DEGs) using Gene Ontology (GO) and KEGG pathway analyses. Next, the CIBERSORT algorithm was used to assess immune cell infiltration in OLP patients. Furthermore, we also constructed a protein-protein interaction network using STRING and Cytoscape and simultaneously sought potential transcription factors plug-in including MCODE CytoHubba and iRegulon. In addition, ROC analysis was employed to assess the diagnostic performance of these hub genes. Lastly, we identified 6 promising novel drugs to treat OLP through Connectivity Map. Results We illustrated that 255 DEGs were mainly enriched in the focal adhesion pathway and metabolism pathways. Besides, Cibersort analysis showed that M1 macrophages, T follicular helper cells, and T regulatory cells are more infiltrated in OLP samples. In addition, ROC analysis demonstrated that these hub genes owned higher diagnostic value in OLP, in which SPRR1B had the highest diagnostic value. And we also predicted that SOX7 was the most relevant transcription factor of those hub genes. Lastly, through the CMap database, we identified 6 small molecules as possible treatment drugs of OLP. Conclusion Our research identified that SPRR1B could be used as potential biomarkers for the early diagnosis of OLP. In addition, as a chronic autoimmune oral mucosal disease, OLP has different infiltration types of immune cells. Furthermore, 6 small molecules were proposed as promising novel treatment drugs for OLP patients. Therefore, our research may provide new impetus for the development of effective OLP biological treatment options.
Collapse
|
14
|
Gao L, Zhang L, Wang HL, Tian XQ, Liu WL, Hao Y. Identification of immune-related genes in atopic dermatitis, contact dermatitis, and psoriasis: A bioinformatics analysis. DERMATOL SIN 2022. [DOI: 10.4103/ds.ds_26_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|