1
|
Rolnik A, Olas B, Szablińska-Piernik J, Lahuta LB, Gromadziński L, Majewski MS. Antioxidant and anticoagulant properties of myo-inositol determined in an ex vivo studies and gas chromatography analysis. Sci Rep 2024; 14:25633. [PMID: 39465311 PMCID: PMC11514185 DOI: 10.1038/s41598-024-76527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
Myo-inositol plays a key role in the vasculature and may be beneficial for preventing harmful environmental effects. In this study aortic rings were isolated from middle-aged (12-month-old) male Wistar rats and preincubated with myo-inositol (0.01-100 mg/L) for 2 h. A stable thromboxane A2 analog was added (0.1 nM, 2 h) to analyze vascular dysfunction. The concentration of myo-inositol in the organ baths was determined via gas chromatography. In another experiment, human blood plasma was subjected to pro-oxidant - hydrogen peroxide administration, and myo-inositol was added to analyze lipid and protein oxidation processes. The thromboplastin time, prothrombin time, and thrombin time were also studied. Myo-inositol administration protected thiol groups against oxidative stress, meanwhile decreased vascular contraction and potentiated vasodilation (concentrations 1-100 mg/L, but not ≤ 0.1 mg/L), and changed the level of 8-isoprostane (concentrations: 0.1-100 mg/L, but not 0.01 mg/L) in plasma treated with H2O2/Fe2+. A dose above 100 mg/L additionally protected lipids (measured as thiobarbituric acid reactive substances) and increased thrombin time. Moreover, significant differences in vascular relaxation were observed between the studied myo-inositol concentrations (1 vs. 10 vs. 100 mg/L), which was not detected under the 0.1 mg/L. The concentration of myo-inositol in the organ baths determined via gas chromatography revealed that this nutraceutical agent was not used by the aortic rings during the incubation period in physiological processes. A protective effect of myo-inositol against prooxidant damage to human plasma and rat thoracic arteries has been demonstrated.
Collapse
Affiliation(s)
- Agata Rolnik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Łódź, 90-752, Łódź, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
| | - Joanna Szablińska-Piernik
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, 10-721, Olsztyn, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland
| | - Michał S Majewski
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Warmia and Mazury in Olsztyn, 10-082, Olsztyn, Poland.
| |
Collapse
|
2
|
Gaviria G YS, Guerra CM, Zapata M JE. In vitro, ex vivo and in vivo antihypertensive evaluation of enzymatic hydrolysates of Californian red worm ( Eisenia fetida) proteins. Heliyon 2024; 10:e25715. [PMID: 38352804 PMCID: PMC10862017 DOI: 10.1016/j.heliyon.2024.e25715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Hypertension is an important risk factor concomitant with cardiovascular disease (CVD) states, which is why we set out to evaluate Californian red worm hydrolysates on antihypertensive activity both in vitro, ex vivo, using rabbit aortic rings and in vivo using hypertensive induced rats. The worms were manually separated, washed with water, purged for 4 h with 4 % sodium bicarbonate, sacrificed with 7 % saline, and finally washed with drinking water. The in vitro antihypertensive capacity was performed by measuring angiotensin-converting enzyme inhibition; for the ex vivo assays, rabbit aorta was used to measure relaxation; for the in vivo assays, rats with induced hypertension were used to perform acute (hypotension) and chronic assays, using captopril as a control in all assays. With respect to angiotensin-converting enzyme (ACE) inhibition, the EC50 value of the worm hydrolysate was found to be 358 ppm; with respect to the analysis in aortic rings, it was found that the mechanisms of action of the hydrolysate are endothelium-dependent, presenting a maximum relaxation of 35 %. With respect to the in vivo assays, the hypotensive test showed that the hydrolysate can reduce blood pressure by up to 32 % in only 2 h, while the chronic analysis showed that the hydrolysate at 150 ppm did not present statistically significant differences with the control (captopril) during the 15 days of analysis. The Red Californian earthworm hydrolysate presents bioactive compounds identified with antihypertensive activities in vitro, ex vivo and in vivo in different isolated and animal models. The study demonstrates the efficacy of the hydrolysate to be used as an alternative in the treatment and prevention of hypertension, and it can be implemented in functional foods or nutraceutical foods. Antihypertensive peptides, particularly those that inhibit angiotensin-converting enzyme (ACE), hold significant importance in medical research, specifically in the context of cardiovascular disease treatment, particularly hypertension. The focus on these peptides and the potential implications of their results in medical research can be summarized through several key points: 1) Mechanisms of Action-Antihypertensive peptides function by inhibiting ACE or renin, crucial enzymes in blood pressure regulation. 2)Alternatives to Synthetic Drugs, 3) Additional Health Benefits, and various other factors.
Collapse
Affiliation(s)
- Yhoan S. Gaviria G
- Nutrition and Food Technology Research Group, Universidad de Antioquia, calle 70 No. 52-21, Medellín, Colombia
| | - Carlos M. Guerra
- Grupo de investigación GIRYSOUT, Universidad del Tolima, Ibagué, Colombia
| | - José E. Zapata M
- Nutrition and Food Technology Research Group, Universidad de Antioquia, calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
3
|
Cupitra NI, León-Rodríguez J, Calderón JC, Narvaez-Sanchez R. The pig is a better model than the rabbit or rat for studying the pathophysiology of human mesenteric arteries. Microvasc Res 2023; 147:104494. [PMID: 36731768 DOI: 10.1016/j.mvr.2023.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
AIMS Animal models are essential to investigate cardiovascular pathophysiology and pharmacology, but phylogenetic diversity makes it necessary to identify the model with vasculature most similar to that of humans. METHODS AND RESULTS In this study, we compared the mesenteric arteries of humans, pigs, rabbits and rats in terms of the i) evolutionary changes in the amino acid sequences of α1 and β2 adrenoceptors; M1, M2, and M3 muscarinic receptors; and bradykinin (BKR) and thromboxane-prostanoid (TP) receptors, through bioinformatics tools; ii) expression of α1, β2, M1, M3 and TP receptors in each tunica, as assessed by immunofluorescence; and iii) reactivity to receptor-dependent and independent contractile agonists and relaxants, by performing organ bath assays. Phylogenetically, pigs showed the highest degree of evolutionary closeness to humans for all receptors, and with the exception of BKR, rabbits presented the greatest evolutionary difference compared to humans, pigs and rats. The expression of the measured receptors in the three vascular tunica in pigs was most similar to that in humans. Using a one-way ANOVA to determine the differences in vascular reactivity, we found that the reactivity of pigs was the most similar to that of humans in terms of sensitivity (pD2) and maximum effect of vascular reactivity (Emax) to KCl, phenylephrine, isoproterenol and carbachol. CONCLUSIONS The pig is a better vascular model than the rabbit or rat to extrapolate results to human mesenteric arteries. Comparative vascular studies have implications for understanding the evolutionary history of different species. TRANSLATIONAL PERSPECTIVE The presented findings are useful for identifying an animal model with a vasculature that is similar to that of humans. This information is important to extrapolate, with greater precision, the findings in arterial pathophysiology or pharmacology from animal models to the healthy or diseased human being.
Collapse
Affiliation(s)
- Nelson Ivan Cupitra
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Jimmy León-Rodríguez
- University Hospital "IPS Universitaria" - Trauma and Surgery Research Group, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
4
|
Tamayo SO, Cupitra NI, Narvaez-Sanchez R. Vascular adaptation to cancer beyond angiogenesis: The role of PTEN. Microvasc Res 2023; 147:104492. [PMID: 36709859 DOI: 10.1016/j.mvr.2023.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/06/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Cancer is a public health problem, and it needs blood vessels to grow. Knowing more about the processes of vascular adaptation to cancer improves our chances of attacking it, since the tumor for its extension needs such adaptation to satisfy its progressive demand for nutrients. The main objective of this review is to present the reader with some fundamental molecular pathways for vascular adaptation to cancer, highlighting within them the regulatory role of homologous tensin and phosphatase protein (PTEN). Hence the review describes vascular adaptation to cancer through somewhat known processes, such as angiogenesis, but emphasizes others that are much less explored, namely the changes in vascular reactivity and remodeling of the vascular wall -intima-media thickness and adjustments in the extracellular matrix- The role of PTEN in physiological and pathological vascular mechanisms in different types of cancer is deepened, as a crucial mediator in vascular adaptation to cancer, and points pending further exploration in cancer vascularization are suggested.
Collapse
Affiliation(s)
- Sofia Ortiz Tamayo
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Nelson Ivan Cupitra
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group, PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
5
|
Zhang M, Li C, He C, Cui Y, Li Y, Ma Y, Cheng J, Wen J, Li P, Yang Y. Thromboxane-induced contractile response of mesenteric arterioles is diminished in the older rats and the older hypertensive rats. Front Pharmacol 2022; 13:1019511. [PMID: 36313372 PMCID: PMC9602936 DOI: 10.3389/fphar.2022.1019511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Nearly all physiological processes are controlled at some level by G-protein-coupled receptor (GPCR) signaling activity. The thromboxane A2 (TXA2) receptor (TP) is a member of the GPCR family. The ultimate effect of TP receptor activation depends on the availability of specific G proteins, which in turn depend on the cell type, tissue, and disease state. However, the roles of the TXA2-TP signaling pathway executed under disease states are poorly defined. In this study, 16-week-spontaneously hypertensive rats (SHR), the 18-month-SHR (OldSHR), and the age-matched Wistar-Kyoto (WKY) rats were used to study the vasoconstriction of mesenteric resistance artery induced by TP-specific agonist, U-46619. Vasoconstriction induced by U-46619 was significantly attenuated in OldWKY and OldSHR rats, and mesenteric arteries with impaired response to U-46619 responded strongly to the adrenergic receptor agonist, phenylephrine. Similar vascular responses to U-46619 were obtained in endothelium-denuded mesenteric arteries. Accordingly, the expression of TP membrane proteins in mesenteric vessels was decreased, and the endogenous TP competitor, 8, 9-EET, in serum was increased, which was partly responsible for the decreased vascular reactivity of U-46619. Decreased TP membrane expression was associated with TP endocytosis, which involved actin cytoskeletal remodeling, including increased ratio of F-actin/G-actin in OldWKY and OldSHR rats. Hence, we studied the effects of TXA2 and its receptors on blood vessels and found that the TXA2-TP prostaglandin signaling pathway was impaired in older adults, which would facilitate the creation of “precision therapeutics” that possess selective efficacy in diseases.
Collapse
|
6
|
Cupitra NI, Calderón JC, Narvaez-Sanchez R. Increased receptor expression supports vascular reactivity of the rabbit aorta during preservation. Eur J Cardiothorac Surg 2021; 59:680-687. [PMID: 33188691 DOI: 10.1093/ejcts/ezaa386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 09/05/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The mechanistic understanding of vascular functional impairment during preservation time helps determine the optimal time frame in which explanted arteries can be used. The method of choice is to measure vascular reactivity and receptor expression. Our goal was to study the influence of preservation for 24 and 48 h on vascular reactivity and receptor expression in rabbit aorta. METHODS Aortic rings preserved in Krebs-Henseleit solution were evaluated fresh (t0), 24 h (t24) and 48 h (t48) after harvest for (i) vascular reactivity as sensitivity (pD2) and maximum effect in response to potassium chloride, U46619 (thromboxane-A2 agonist), phenylephrine, carbachol and isoproterenol, in an organ bath; and for (ii) expression of α1, β2 and thromboxane-prostanoid receptors, by immunofluorescence. RESULTS Compared to the control, after 24 h of preservation, potassium chloride-induced pD2 increased a significant 3.6%, whereas U46619-induced vasoconstriction decreased 9%. None of the agonists affected vasodilation. Intimal and medial α1 receptor expression increased 2.5-fold. After 48 h of preservation, α1 expression and vasoconstrictor responses remained similar to those after 24 h of preservation, but in vasodilation the carbachol-induced maximum effect decreased 30% whereas isoproterenol-induced pD2 increased 4% and the maximum effect increased 10%. TP and β2 expression in the intima and media increased 1.8- and 2.5-fold, respectively. CONCLUSIONS Up to 48 h of preservation, the adrenergic pathway and its receptors support vasoconstriction and vasodilation, despite a significant deterioration in the prostanoid pathway.
Collapse
Affiliation(s)
- Nelson Ivan Cupitra
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| |
Collapse
|
7
|
Romero-Imbachi MR, Cupitra N, Ángel K, González B, Estrada O, Calderón JC, Guerrero-Vargas J, Beltrán J, Narvaez-Sanchez R. Centruroides margaritatus scorpion complete venom exerts cardiovascular effects through alpha-1 adrenergic receptors. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108939. [PMID: 33166680 DOI: 10.1016/j.cbpc.2020.108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Centruroides margaritatus scorpion stings are common in Colombia. However, the cardiovascular toxicity of the venom has not been clarified. AIM To study the effect and mechanisms of action of the complete venom of C. margaritatus (CmV) on the murine cardiovascular system. METHODS We evaluated the in vivo effect of CmV LD50 on the mean arterial pressure (MABP), heart rate, and surface electrocardiogram in male adult normotensive Wistar rats. Ex vivo, we evaluated the vascular reactivity of rat aortic rings to increasing concentrations (1 to 60 μg/mL) of CmV using the blockers L-NAME, indomethacin, seratrodast, and prazosin. RESULTS In the first hour of poisoning, CmV increased the MABP. In the second hour after poisoning, the heart rate decreased as the normalized PR interval and QT corrected increased. After that, cardiovascular shock was demonstrated by a drastic fall in the MABP and signs of cardiac conduction system block. In aortic rings, CmV caused a direct vasoconstrictor effect mediated by alpha-1 adrenergic receptors and counteracted by nitric oxide. CONCLUSION The direct vascular and probably the cardiac alpha-1 effects likely explain the transient hypertension and the maintenance of cardiac function, while interval lengthening may be due to K+ channel blockage. Afterwards, the effects of both the alpha-1 pathway and the K+ channel pathway converged, resulting in fatal cardiovascular shock. This knowledge could aid in understanding the dynamics of the effects of the venom and in designing treatments to address its cardiovascular effects.
Collapse
Affiliation(s)
- Margarita Rosa Romero-Imbachi
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia; Herpetological and Toxinological Research Group, Faculty of Natural, Exact and Educational Sciences, University of Cauca, Popayán, Colombia
| | - Nelson Cupitra
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Karen Ángel
- Herpetological and Toxinological Research Group, Faculty of Natural, Exact and Educational Sciences, University of Cauca, Popayán, Colombia
| | - Beatriz González
- Laboratory of Cellular Physiology, Center for Biophysics and Biochemistry, Venezuelan Institute for Scientific Research, Venezuela
| | - Omar Estrada
- Laboratory of Cellular Physiology, Center for Biophysics and Biochemistry, Venezuelan Institute for Scientific Research, Venezuela
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Jimmy Guerrero-Vargas
- Herpetological and Toxinological Research Group, Faculty of Natural, Exact and Educational Sciences, University of Cauca, Popayán, Colombia
| | - José Beltrán
- Herpetological and Toxinological Research Group, Faculty of Natural, Exact and Educational Sciences, University of Cauca, Popayán, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|