1
|
Aishwarya R, Abdullah CS, Remex NS, Bhuiyan MAN, Lu XH, Dhanesha N, Stokes KY, Orr AW, Kevil CG, Bhuiyan MS. Diastolic dysfunction in Alzheimer's disease model mice is associated with Aβ-amyloid aggregate formation and mitochondrial dysfunction. Sci Rep 2024; 14:16715. [PMID: 39030247 PMCID: PMC11271646 DOI: 10.1038/s41598-024-67638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease caused by the deposition of Aβ aggregates or neurofibrillary tangles. AD patients are primarily diagnosed with the concurrent development of several cardiovascular dysfunctions. While few studies have indicated the presence of intramyocardial Aβ aggregates, none of the studies have performed detailed analyses for pathomechanism of cardiac dysfunction in AD patients. This manuscript used aged APPSWE/PS1 Tg and littermate age-matched wildtype (Wt) mice to characterize cardiac dysfunction and analyze associated pathophysiology. Detailed assessment of cardiac functional parameters demonstrated the development of diastolic dysfunction in APPSWE/PS1 Tg hearts compared to Wt hearts. Muscle function evaluation showed functional impairment (decreased exercise tolerance and muscle strength) in APPSWE/PS1 Tg mice. Biochemical and histochemical analysis revealed Aβ aggregate accumulation in APPSWE/PS1 Tg mice myocardium. APPSWE/PS1 Tg mice hearts also demonstrated histopathological remodeling (increased collagen deposition and myocyte cross-sectional area). Additionally, APPSWE/PS1 Tg hearts showed altered mitochondrial dynamics, reduced antioxidant protein levels, and impaired mitochondrial proteostasis compared to Wt mice. APPSWE/PS1 Tg hearts also developed mitochondrial dysfunction with decreased OXPHOS and PDH protein complex expressions, altered ETC complex dynamics, decreased complex activities, and reduced mitochondrial respiration. Our results indicated that Aβ aggregates in APPSWE/PS1 Tg hearts are associated with defects in mitochondrial respiration and complex activities, which may collectively lead to cardiac diastolic dysfunction and myocardial pathological remodeling.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
2
|
Marshall AG, Neikirk K, Shao B, Crabtree A, Vue Z, Beasley HK, Garza-Lopez E, Scudese E, Wanjalla CN, Kirabo A, Albritton CF, Jamison S, Demirci M, Murray SA, Cooper AT, Taffet GE, Hinton AO, Reddy AK. Methods to Utilize Pulse Wave Velocity to Measure Alterations in Cerebral and Cardiovascular Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546154. [PMID: 38798364 PMCID: PMC11118486 DOI: 10.1101/2023.06.22.546154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Alzheimer's Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD.
Collapse
Affiliation(s)
- Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Celestine N. Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Claude F Albritton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya T. Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - George E Taffet
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anilkumar K. Reddy
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
3
|
Dai J, Xu Y, Wang T, Zeng P. Exploring the relationship between socioeconomic deprivation index and Alzheimer's disease using summary-level data: From genetic correlation to causality. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110700. [PMID: 36566903 DOI: 10.1016/j.pnpbp.2022.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Patients with Alzheimer's disease (AD) are markedly increasing as population aging and no disease-modifying therapies are currently available for AD. Previous studies suggested a broad link between socioeconomic status and a variety of disorders, including mental illness and cognitive abilities. However, the association between socioeconomic deprivation and AD has been unknown. We here employed Townsend deprivation index (TDI) to explore such relation and found a positive genetic correlation (r̂g=0.211, P = 8.00 × 10-4) between the two traits with summary statistics data (N = 455,258 for TDI and N = 455,815 for AD). Then, we performed pleiotropy analysis at both variant and gene levels using a powerful method called PLACO and detected 87 distinct pleiotropic genes. Functional analysis demonstrated these genes were significantly enriched in pancreas, liver, heart, blood, brain, and muscle tissues. Using Mendelian randomization methods, we further found that one genetically predicted standard deviation elevation in TDI could lead to approximately 18.5% (95% confidence intervals 1.6- 38.2%, P = 0.031) increase of AD risk, and that the identified causal association was robust against used MR approaches, horizontal pleiotropy, and instrumental selection. Overall, this study provides deep insight into common genetic components underlying TDI and AD, and further reveals causal connection between them. It is also helpful to develop a more suitable plan for ameliorating inequities, hardship, and disadvantage, with the hope of improving health outcomes among economically disadvantaged people.
Collapse
Affiliation(s)
- Jing Dai
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Xu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center for Medical Statistics and Data Analysis, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Engineering Research Innovation Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
4
|
Anwar MM, Mabrouk AA. Hepatic and cardiac implications of increased toxic amyloid-beta serum level in lipopolysaccharide-induced neuroinflammation in rats: new insights into alleviating therapeutic interventions. Inflammopharmacology 2023; 31:1257-1277. [PMID: 37017850 DOI: 10.1007/s10787-023-01202-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/06/2023]
Abstract
Neuroinflammation is a devastating predisposing factor for Alzheimer's disease (AD). A number of clinical findings have reported peripheral disorders among AD patients. Amyloid beta (Aβ) is a toxic physiological aggregate that serves as a triggering factor for hepatic and cardiac disorders related to neurotoxicity. As a drawback of Aβ excessive accumulation in the brain, part of Aβ is believed to readily cross the blood-brain barrier (BBB) into the peripheral circulation resulting in serious inflammatory and toxic cascades acting as a direct bridge to cardiac and hepatic pathophysiology. The main aim is to find out whether neuroinflammation-related AD may result in cardiac and liver dysfunctions. Potential therapeutic interventions are also suggested to alleviate AD's cardiac and hepatic defects. Male rats were divided into: control group I, lipopolysaccharide (LPS)-neuroinflammatory-induced group II, LPS-neuroinflammatory-induced group treated with sodium hydrogen sulphide donor (NaHS) (group III), and LPS-neuroinflammatory-induced group treated with mesenchymal stem cells (MSCs) (group IV). Behavior and histopathological studies were conducted in addition to the estimation of different biological biomarkers. It was revealed that the increased toxic Aβ level in blood resulted in cardiac and hepatic malfunctions as a drawback of exaggerated inflammatory cascades. The administration of NaHS and MSCs proved their efficiency in combating neuroinflammatory drawbacks by hindering cardiac and hepatic dysfunctions. The consistent direct association of decreased heart and liver functions with increased Aβ levels highlights the direct involvement of AD in other organ complications. Thereby, these findings will open new avenues for combating neuroinflammatory-related AD and long-term asymptomatic toxicity.
Collapse
Affiliation(s)
- Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt.
| | - Abeer A Mabrouk
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| |
Collapse
|
5
|
Lee H, Kim HK, Kim B, Han K, Park JB, Hwang IC, Yoon YE, Park HE, Choi SY, Kim YJ, Cho GY. Augmented risk of dementia in hypertrophic cardiomyopathy: A propensity score matching analysis using the nationwide cohort. PLoS One 2022; 17:e0269911. [PMID: 35709174 PMCID: PMC9202937 DOI: 10.1371/journal.pone.0269911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/31/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dementia is a big medical and socioeconomic problem on aging society, and cardiac diseases have already shown a significant contribution to developing dementia. However, the risk of dementia related to hypertrophic cardiomyopathy (HCM), the most common inherited cardiomyopathy, has never been evaluated. METHODS In a large-scale longitudinal cohort using National Health Insurance database, 4,645 subjects with HCM aged ≥50 years between 2010 and 2016 were collected and matched with 13,935 controls, based on propensity scores (1:3). We investigated the incidence and risk of dementia, Alzheimer's disease (AD), and vascular dementia (VaD) between groups. RESULTS During follow-up (median 3.9 years after 1-year lag), incident dementia occurred in 739 subjects (4.0%): 78.2% for AD and 13.0% for VaD. The incidence of dementia, AD, and VaD were 23.0, 18.0, and 2.9/1,000 person-years, respectively, and was generally more prevalent in HCM. HCM group had a 50% increased risk of dementia, particularly AD, whereas there was no difference in the risk of VaD. The impact of HCM on AD (HR 1.52, 95% CI 1.26-1.84, p<0.001) was comparable with that of diabetes mellitus and smoking. Increased risk of AD in relation to HCM was consistent in various subgroups including younger healthier population. CONCLUSIONS This is the first to demonstrate the increased risk of dementia, mainly AD rather than VaD, in subjects with HCM. Early surveillance and active prevention for cognitive impairment could help for a better quality of life in an era that HCM is considered a chronic manageable disease with low mortality.
Collapse
Affiliation(s)
- Heesun Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Hyung-Kwan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Jun-Bean Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - In-Chang Hwang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Yeonyee E. Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Hyo Eun Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Su-Yeon Choi
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Korea
| | - Yong-Jin Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Goo-Yeong Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| |
Collapse
|
6
|
Jang S, Chapa-Dubocq XR, Parodi-Rullán RM, Fossati S, Javadov S. Beta-Amyloid Instigates Dysfunction of Mitochondria in Cardiac Cells. Cells 2022; 11:373. [PMID: 35159183 PMCID: PMC8834545 DOI: 10.3390/cells11030373] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) includes the formation of extracellular deposits comprising aggregated β-amyloid (Aβ) fibers associated with oxidative stress, inflammation, mitochondrial abnormalities, and neuronal loss. There is an associative link between AD and cardiac diseases; however, the mechanisms underlying the potential role of AD, particularly Aβ in cardiac cells, remain unknown. Here, we investigated the role of mitochondria in mediating the effects of Aβ1-40 and Aβ1-42 in cultured cardiomyocytes and primary coronary endothelial cells. Our results demonstrated that Aβ1-40 and Aβ1-42 are differently accumulated in cardiomyocytes and coronary endothelial cells. Aβ1-42 had more adverse effects than Aβ1-40 on cell viability and mitochondrial function in both types of cells. Mitochondrial and cellular ROS were significantly increased, whereas mitochondrial membrane potential and calcium retention capacity decreased in both types of cells in response to Aβ1-42. Mitochondrial dysfunction induced by Aβ was associated with apoptosis of the cells. The effects of Aβ1-42 on mitochondria and cell death were more evident in coronary endothelial cells. In addition, Aβ1-40 and Aβ1-42 significantly increased Ca2+ -induced swelling in mitochondria isolated from the intact rat hearts. In conclusion, this study demonstrates the toxic effects of Aβ on cell survival and mitochondria function in cardiac cells.
Collapse
Affiliation(s)
- Sehwan Jang
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA; (S.J.); (X.R.C.-D.)
| | - Xavier R. Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA; (S.J.); (X.R.C.-D.)
| | - Rebecca M. Parodi-Rullán
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (R.M.P.-R.); (S.F.)
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (R.M.P.-R.); (S.F.)
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936, USA; (S.J.); (X.R.C.-D.)
| |
Collapse
|
7
|
Kelly JW. Does protein aggregation drive postmitotic tissue degeneration? Sci Transl Med 2021; 13:13/577/eaax0914. [PMID: 33472954 DOI: 10.1126/scitranslmed.aax0914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/04/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Pharmacological evidence, from clinical trials where patients with systemic amyloid diseases are treated with disease-modifying therapies, supports the notion that protein aggregation drives tissue degeneration in these disorders. The protein aggregate structures driving tissue pathology and the commonalities in etiology between these diseases and Alzheimer's disease are under investigation.
Collapse
Affiliation(s)
- Jeffery W Kelly
- Departments of Chemistry and Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
de Montgolfier O, Thorin-Trescases N, Thorin E. Pathological Continuum From the Rise in Pulse Pressure to Impaired Neurovascular Coupling and Cognitive Decline. Am J Hypertens 2020; 33:375-390. [PMID: 32202623 PMCID: PMC7188799 DOI: 10.1093/ajh/hpaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/11/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The "biomechanical hypothesis" stipulates that with aging, the cumulative mechanical damages to the cerebral microvasculature, magnified by risk factors for vascular diseases, contribute to a breach in cerebral homeostasis producing neuronal losses. In other words, vascular dysfunction affects brain structure and function, and leads to cognitive failure. This is gathered under the term Vascular Cognitive Impairment and Dementia (VCID). One of the main culprits in the occurrence of cognitive decline could be the inevitable rise in arterial pulse pressure due to the age-dependent stiffening of large conductance arteries like the carotids, which in turn, could accentuate the penetration of the pulse pressure wave deeper into the fragile microvasculature of the brain and damage it. In this review, we will discuss how and why the vascular and brain cells communicate and are interdependent, describe the deleterious impact of a vascular dysfunction on brain function in various neurodegenerative diseases and even of psychiatric disorders, and the potential chronic deleterious effects of the pulsatile blood pressure on the cerebral microcirculation. We will also briefly review data from antihypertensive clinical trial aiming at improving or delaying dementia. Finally, we will debate how the aging process, starting early in life, could determine our sensitivity to risk factors for vascular diseases, including cerebral diseases, and the trajectory to VCID.
Collapse
Affiliation(s)
- Olivia de Montgolfier
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Eric Thorin
- Faculty of Medicine, Department of Pharmacology and Physiology, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Medicine, Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
- Correspondence: Eric Thorin ()
| |
Collapse
|
9
|
Song XT, Fan L, Yan ZN, Rui YF. Evaluation of the Effect of Essential Hypertension on Elasticity of Ascending Aorta in Type 2 Diabetic Mellitus Patients by Echocardiography. Angiology 2020; 71:536-543. [DOI: 10.1177/0003319720911572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both essential hypertension (EH) and type 2 diabetes mellitus (T2DM) can impair the elasticity of the ascending aorta. We prospectively enrolled 42 patients with T2DM, 44 patients with EH, 45 patients with T2DM and EH (T2DM + EH), and 41 healthy subjects (HS). They all underwent transthoracic echocardiography to measure ascending aorta inner diameters and a brachial blood pressure measurement to calculate aortic elastic parameters (ie, compliance, distensibility, strain, stiffness index, and Peterson elastic modulus). We found that there were no significant differences as regard with age, sex, body mass index, blood lipids and glucose, carotid atherosclerosis, and ascending aorta inner diameters among the 4 groups. The aortic elastic properties were significantly impaired in T2DM, EH, and T2DM + EH patients compared with the HS, and more impaired in EH and T2DM + EH patients than T2DM patients; there were no significant differences between EH and T2DM + EH patients. Our findings suggest that both T2DM and EH can impair aortic elastic properties. Essential hypertension may play a more important role in the process of ascending aorta sclerosis in patients with T2DM + EH.
Collapse
Affiliation(s)
- Xiang-Ting Song
- Department of Echocardiography, Nanjing Medical University, Changzhou, China
| | - Li Fan
- Department of Echocardiography, Nanjing Medical University, Changzhou, China
| | - Zi-Ning Yan
- Department of Echocardiography, Nanjing Medical University, Changzhou, China
| | - Yi-Fei Rui
- Department of Echocardiography, Nanjing Medical University, Changzhou, China
| |
Collapse
|
10
|
Schaich CL, Maurer MS, Nadkarni NK. Amyloidosis of the Brain and Heart: Two Sides of the Same Coin? JACC-HEART FAILURE 2020; 7:129-131. [PMID: 30704604 DOI: 10.1016/j.jchf.2018.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Chris L Schaich
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mathew S Maurer
- Clinical Cardiovascular Research Laboratory for the Elderly, Columbia University Irving Medical Center, New York, New York.
| | - Neelesh K Nadkarni
- Department of Medicine, Division of Geriatric Medicine and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Yang M, Li C, Zhang Y, Ren J. Interrelationship between Alzheimer's disease and cardiac dysfunction: the brain-heart continuum? Acta Biochim Biophys Sin (Shanghai) 2020; 52:1-8. [PMID: 31897470 DOI: 10.1093/abbs/gmz115] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Dementia, a devastating neurological disorder commonly found in the elderly, is characterized by severe cognitive and memory impairment. Ample clinical and epidemiological evidence has depicted a close association between dementia and heart failure. While cerebral blood under perfusion and neurohormonal activation due to the dampened cardiac pump function contribute to the loss of nutrient supply and neuronal injury, Alzheimer's disease (AD), the most common type of dementia, also provokes cardiovascular function impairment, in particular impairment of diastolic function. Aggregation of amyloid-β proteins and mutations of Presenilin (PSEN) genes are believed to participate in the pathological changes in the heart although it is still debatable with regards to the pathological cue of cardiac anomalies in AD process. In consequence, reduced cerebral blood flow triggered by cardiac dysfunction further deteriorates vascular dementia and AD pathology. Patients with atrial fibrillation, heart failure, and other cardiac anomalies are at a higher risk for cognitive decline and dementia. Conclusion: Due to the increased incidence of dementia and cardiovascular diseases, the coexistence of the two will cause more threat to public health, warranting much more attention. Here, we will update recent reports on dementia, AD, and cardiovascular diseases and discuss the causal relationship between dementia and heart dysfunction.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, the Air Force Military Medical University, Xi’an 710032, China
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| |
Collapse
|
12
|
Hansra GK, Popov G, Banaczek PO, Vogiatzis M, Jegathees T, Goldsbury CS, Cullen KM. The neuritic plaque in Alzheimer's disease: perivascular degeneration of neuronal processes. Neurobiol Aging 2019; 82:88-101. [PMID: 31437721 DOI: 10.1016/j.neurobiolaging.2019.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
Cerebrovascular pathology is common in aging and Alzheimer's disease (AD). The microvasculature is particularly vulnerable, with capillary-level microhemorrhages coinciding with amyloid beta deposits in senile plaques. In the current analysis, we assessed the relationship between cerebral microvessels and the neuritic component of the plaque in cortical and hippocampal 50- to 200-μm sections from 11 AD, 3 Down syndrome, and 7 nondemented cases in neuritic disease stages 0-VI. We report that 77%-97% of neuritic plaques are perivascular, independently of disease stage or dementia diagnosis. Within neuritic plaques, dystrophic hyperphosphorylated tau-positive neurites appear as clusters of punctate, bulbous, and thread-like structures focused around capillaries and colocalize with iron deposits characteristic of microhemorrhage. Microvessels within the neuritic plaque are narrowed by 1.0 ± 1.0 μm-4.4 ± 2.0 μm, a difference of 16%-65% compared to blood vessel segments with diameters 7.9 ± 2.0-6.4 ± 0.8 μm (p < 0.01) outside the plaque domain. The reduced capacity of microvessels within plaques, frequently below patency, likely compromises normal microlocal cerebrovascular perfusion. These data link the neuritic and amyloid beta components of the plaque directly to microvascular degeneration. Strategies focused on cerebrovascular antecedents to neuritic dystrophy in AD have immediate potential for prevention, detection, and therapeutic intervention.
Collapse
Affiliation(s)
- Gurpreet Kaur Hansra
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Glib Popov
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Patricia O Banaczek
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Monica Vogiatzis
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Thuvarahan Jegathees
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Claire S Goldsbury
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia; Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Karen M Cullen
- Discipline of Anatomy & Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Esfandiarei M, Hoxha B, Talley NA, Anderson MR, Alkhouli MF, Squire MA, Eckman DM, Babu JR, Lopaschuk GD, Broderick TL. Beneficial effects of resveratrol and exercise training on cardiac and aortic function and structure in the 3xTg mouse model of Alzheimer's disease. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1197-1211. [PMID: 31114160 PMCID: PMC6489623 DOI: 10.2147/dddt.s196119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/04/2019] [Indexed: 12/24/2022]
Abstract
Background: Studies have indicated an association between Alzheimer’s disease (AD) and increased risk of developing cardiovascular complications. Lifestyle modifiable factors, such as exercise and diet, are known to prevent cardio-cerebral disease. Recent studies demonstrate that hearts from early onset triple-transgenic AD mice exhibit pathologies, but it is not clear whether cardiovascular function is altered in this model. Methods: In this study, we measured in vivo cardiovascular function in 7-month-old male 3xTg mice and age-matched wild-type (WT) mice using high-frequency high-resolution ultrasound imaging. Results: Our findings indicated that aortic root measurements and interventricular septal dimensions were similar in 3xTg and wild-type mice. Systolic function, expressed as ejection fraction and fractional shortening, were decreased in 3xTg mice. Late (A) ventricular filling velocities, the early/atrial (E/A) ratio, and mitral valve deceleration time, all indices of diastolic function, were increased in 3xTg mice compared to WT mice. Treadmill exercise training and resveratrol supplementation in the diet for 5 months improved ejection fraction, fractional shortening, and restored diastolic deceleration times. Pulse wave velocity was ~33% higher in 3xTg, and accompanied by a significant increase in elastin fiber fragmentation within the aortic wall, which was associated with decrease in elastin content and fiber length. Aortic wall and adventitia thickness were increased in 3xTg mice compared to the WT group. Exercise training and resveratrol supplementation, or both, improved overall aortic morphology with no change in pulse wave velocity. Conclusion: Taken together, the results indicate that the aberrations in cardiac function and aortic elastin morphology observed in the 3xTg mouse model of AD can be prevented with exercise training and treatment with resveratrol. The benefits of regular exercise training and resveratrol supplementation of heart and aortic structure in the 3xTg mouse support the value of healthy lifestyle factors on cardiovascular health.
Collapse
Affiliation(s)
- Mitra Esfandiarei
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Brikena Hoxha
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Nicholas A Talley
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Miranda R Anderson
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Mustafa F Alkhouli
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Michaela A Squire
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Delrae M Eckman
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, AB, Canada
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, College of Graduate Studies, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
14
|
de la Torre JC. Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia. Brain Pathol 2018; 26:618-31. [PMID: 27324946 DOI: 10.1111/bpa.12405] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular and cerebrovascular diseases are major risk factors in the development of cognitive impairment and Alzheimer's disease (AD). These cardio-cerebral disorders promote a variety of vascular risk factors which in the presence of advancing age are prone to markedly reduce cerebral perfusion and create a neuronal energy crisis. Long-term hypoperfusion of the brain evolves mainly from cardiac structural pathology and brain vascular insufficiency. Brain hypoperfusion in the elderly is strongly associated with the development of mild cognitive impairment (MCI) and both conditions are presumed to be precursors of Alzheimer dementia. A therapeutic target to prevent or treat MCI and consequently reduce the incidence of AD aims to elevate cerebral perfusion using novel pharmacological agents. As reviewed here, the experimental pharmaca include the use of Rho kinase inhibitors, neurometabolic energy boosters, sirtuins and vascular growth factors. In addition, a compelling new technique in laser medicine called photobiomodulation is reviewed. Photobiomodulation is based on the use of low level laser therapy to stimulate mitochondrial energy production non-invasively in nerve cells. The use of novel pharmaca and photobiomodulation may become important tools in the treatment or prevention of cognitive decline that can lead to dementia.
Collapse
|
15
|
Xu X, Wang B, Ren C, Hu J, Greenberg DA, Chen T, Xie L, Jin K. Recent Progress in Vascular Aging: Mechanisms and Its Role in Age-related Diseases. Aging Dis 2017; 8:486-505. [PMID: 28840062 PMCID: PMC5524810 DOI: 10.14336/ad.2017.0507] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/07/2017] [Indexed: 01/13/2023] Open
Abstract
As with many age-related diseases including vascular dysfunction, age is considered an independent and crucial risk factor. Complicated alterations of structure and function in the vasculature are linked with aging hence, understanding the underlying mechanisms of age-induced vascular pathophysiological changes holds possibilities for developing clinical diagnostic methods and new therapeutic strategies. Here, we discuss the underlying molecular mediators that could be involved in vascular aging, e.g., the renin-angiotensin system and pro-inflammatory factors, metalloproteinases, calpain-1, monocyte chemoattractant protein-1 (MCP-1) and TGFβ-1 as well as the potential roles of testosterone and estrogen. We then relate all of these to clinical manifestations such as vascular dementia and stroke in addition to reviewing the existing clinical measurements and potential interventions for age-related vascular dysfunction.
Collapse
Affiliation(s)
- Xianglai Xu
- 1Zhongshan Hospital, Fudan University, Shanghai 200032, China.,2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Brian Wang
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Changhong Ren
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA.,4Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University. Beijing, China
| | - Jiangnan Hu
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | | - Tianxiang Chen
- 6Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liping Xie
- 3Department of Urology, the First Affiliated Hospital, Zhejiang University, Zhejiang Province, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| |
Collapse
|
16
|
Jin WS, Bu XL, Wang YR, Li L, Li WW, Liu YH, Zhu C, Yao XQ, Chen Y, Gao CY, Zhang T, Zhou HD, Zeng F, Wang YJ. Reduced Cardiovascular Functions in Patients with Alzheimer’s Disease. J Alzheimers Dis 2017; 58:919-925. [DOI: 10.3233/jad-170088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Vetrano DL, Carfì A, Brandi V, L'Angiocola PD, Di Tella S, Cipriani MC, Antocicco M, Zuccalà G, Palmieri V, Silveri MC, Bernabei R, Onder G. Left ventricle diastolic function and cognitive performance in adults with Down syndrome. Int J Cardiol 2015; 203:816-8. [PMID: 26595792 DOI: 10.1016/j.ijcard.2015.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Davide L Vetrano
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy.
| | - Angelo Carfì
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Brandi
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Paolo D L'Angiocola
- Department of Cardiology, Department of Cardiology, "E. Profili" Hospital, Fabriano, Italy
| | - Sonia Di Tella
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Camilla Cipriani
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Manuela Antocicco
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Zuccalà
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Palmieri
- Sports Medicine Unit, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Caterina Silveri
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberto Bernabei
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Graziano Onder
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|