1
|
Alghamdi R, Pertusati F, Prokopovich P. Poly-beta-amino-ester licofelone conjugates development for osteoarthritis treatment. RSC Adv 2024; 14:15-28. [PMID: 38173598 PMCID: PMC10758810 DOI: 10.1039/d3ra04967a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Disease-modifying osteoarthritis drugs (DMOADs) are a new therapeutic class for osteoarthritis (OA) prevention or inhibition of the disease development. Unfortunately, none of the DMOADs have been clinically approved due to their poor therapeutic performances in clinical trials. The joint environment has played a role in this process by limiting the amount of drug effectively delivered as well as the time that the drug stays within the joint space. The current study aimed to improve the delivery of the DMOADs into cartilage tissue by increasing uptake and retention time of the DMOADs within the tissue. Licofelone was used a model DMOAD due to its significant therapeutic effect against OA progression as shown in the recent phase III clinical trial. For this purpose licofelone was covalently conjugated to the two different A16 and A87 poly-beta-amino-ester (PBAEs) polymers taking advantage of their hydrolysable, cytocompatible, and cationic nature. We have shown cartilage uptake of the licofelone-PBAE conjugates increased 18 times and retention in tissues was prolonged by 37 times compared to the equivalent dose of the free licofelone. Additionally, these licofelone conjugates showed no detrimental effect on the chondrocyte viability. In conclusion, the cationic A87 and A16 PBAE polymers increased the amount of licofelone within the cartilage, which could potentially enhance the therapeutic effect and pharmacokinetic performance of this drug and other DMOADs clinically.
Collapse
Affiliation(s)
- Raed Alghamdi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
| |
Collapse
|
2
|
Sohail R, Mathew M, Patel KK, Reddy SA, Haider Z, Naria M, Habib A, Abdin ZU, Razzaq Chaudhry W, Akbar A. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 2023; 15:e37080. [PMID: 37153279 PMCID: PMC10156439 DOI: 10.7759/cureus.37080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for their anti-inflammatory, antipyretic, and analgesic properties. However, their use is often associated with gastrointestinal tract (GIT) side effects due to the inhibition of both cyclooxygenase (COX)-1 and COX-2 enzymes, leading to a decrease in gastroprotective prostaglandins (PG). To minimize these adverse effects, various approaches have been explored, including selective COX-2 inhibitors, NO-NSAIDs (nitric oxide-releasing NSAIDs), and dual COX/LOX (lipoxygenase) NSAIDs. However, the effects of these gastroprotective NSAIDs on the GIT and their efficacy remains uncertain. This review aims to provide an overview of the current understanding of the effects of traditional NSAIDs and gastroprotective NSAIDs on GIT. We discuss the underlying mechanisms of GIT damage caused by NSAIDs, including mucosal injury, ulceration, and bleeding, and the potential of gastroprotective NSAIDs to mitigate these effects. We also summarize recent studies on the efficacy and safety of various gastroprotective NSAIDs and highlight the limitations and challenges of these approaches. The review concludes with recommendations for future research in this field.
Collapse
Affiliation(s)
- Rohab Sohail
- Internal Medicine, Quaid-e-Azam Medical College, Bahawalpur, PAK
| | - Midhun Mathew
- Department of Internal Medicine, Pennsylvania Hospital, Philadelphia, USA
| | - Khushbu K Patel
- Internal Medicine, Index Medical College Hospital & Research Center, Indore, IND
| | - Srija A Reddy
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, IND
| | - Zaroon Haider
- Internal Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Mansi Naria
- Internal Medicine, American University of Barbados, Bridgetown, BRB
| | - Ayesha Habib
- Internal Medicine, Punjab Medical College, Faisalabad, PAK
| | - Zain U Abdin
- Medicine, District Head Quarter Hospital, Faisalabad, PAK
| | | | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
3
|
Chontzopoulou E, Papaemmanouil CD, Chatziathanasiadou MV, Kolokouris D, Kiriakidi S, Konstantinidi A, Gerogianni I, Tselios T, Kostakis IK, Chrysina ED, Hadjipavlou-Litina D, Tzeli D, Tzakos AG, Mavromoustakos T. Molecular investigation of artificial and natural sweeteners as potential anti-inflammatory agents. J Biomol Struct Dyn 2022; 40:12608-12620. [PMID: 34499023 DOI: 10.1080/07391102.2021.1973565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Repurposing existing drugs, as well as natural and artificial sweeteners for novel therapeutic indications could speed up the drug discovery process since numerous associated risks and costs for drug development can be surpassed. In this study, natural and artificial sweeteners have been evaluated by in silico and experimental studies for their potency to inhibit lipoxygenase enzyme, an enzyme participating in the inflammation pathway. A variety of different methods pinpointed that aspartame inhibits the lipoxygenase isoform 1 (LOX-1). In particular, "LOX-aspartame" complex, that was predicted by docking studies, was further evaluated by Molecular Dynamics (MD) simulations in order to assess the stability of the complex. The binding energy of the complex has been calculated after MD simulations using Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method. Furthermore, Quantum Mechanics/Molecular Mechanics (QM/MM) calculations have been applied for geometry optimization of the "enzyme-ligand" complex. After having fully characterized the "LOX-aspartame" complex in silico, followed in vitro biological assays confirmed that aspartame inhibits LOX-1 (IC50=50 ± 3.0 μΜ) and blocks its biological response. The atomic details of aspartame's interaction profile with LOX-1 were revealed through Saturation Transfer Difference (STD) NMR (Nuclear Magnetic Resonance). Finally, aspartame was also tested with Molecular Docking and Molecular Dynamics studies for its potent binding to a number of different LOX isoforms of many organisms, including human. The in silico methods indicated that aspartame could serve as a novel starting point for drug design against LOX enzyme. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eleni Chontzopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina D Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Maria V Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece
| | - Dimitrios Kolokouris
- Department of Pharmacy, National and Kapodistrian, University of Athens, Athens, Greece
| | - Sofia Kiriakidi
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Konstantinidi
- Department of Pharmacy, National and Kapodistrian, University of Athens, Athens, Greece
| | - Ioanna Gerogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, National Hellenic Research Foundation, Athens, Greece.,Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ioannis K Kostakis
- Department of Pharmacy, National and Kapodistrian, University of Athens, Athens, Greece
| | - Evangelia D Chrysina
- Institute of Biology, Medicinal Chemistry and Biotechnology, Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, National Hellenic Research Foundation, Athens, Greece.,Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Demeter Tzeli
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, Ioannina, Greece.,Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), Ioannina, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Gholizadeh R, Abdolmaleki Z, Bahremand T, Ghasemi M, Gharghabi M, Dehpour AR. Involvement of N-Methyl-D-Aspartate Receptors in the Anticonvulsive Effects of Licofelone on Pentylenetetrazole-Induced Clonic Seizure in Mice. J Epilepsy Res 2021; 11:14-21. [PMID: 34395219 PMCID: PMC8357553 DOI: 10.14581/jer.21003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Licofelone is a dual 5-lipoxygenase/cyclooxygenase inhibitor, with well-documented anti-inflammatory and analgesic effects, which is used for treatment of osteoarthritis. Recent preclinical studies have also suggested neuroprotective and anti-oxidative properties of this drug in some neurological conditions such as seizure and epilepsy. We have recently demonstrated a role for nitric oxide (NO) signaling in the anti-epileptic activity of licofelone in two seizure models in rodents. Given the important role of N-methyl-D-aspartate receptors (NMDARs) activation in the NO production and its function in the nervous system, in the present study, we further investigated the involvement of NMDAR in the effects of licofelone (1, 3, 5, 10, and 20 mg/kg, intraperitoneal [i.p.]) in an in vivo model of seizure in mice. METHODS Clonic seizures were induced in male NMRI mice by intravenous administration of pentylenetetrazol (PTZ). RESULTS Acute administration of licofelone exerted anticonvulsant effects at 10 (p<0.01) and 20 mg/kg (p<0.001). A combined treatment with sub-effective doses of the selective NMDAR antagonist MK-801 (0.05 mg/kg, i.p.) and licofelone (5 mg/kg, i.p.) significantly (p<0.001) exerted an anticonvulsant effect on the PTZ-induced clonic seizures in mice. Notably, pre-treatment with the NMDAR co-agonist D-serine (30 mg/kg, i.p.) partially hindered the anticonvulsant effects of licofelone (20 mg/kg). CONCLUSIONS Our data suggest a possible role for the NMDAR in the anticonvulsant effects of licofelone on the clonic seizures induced by PTZ in mice.
Collapse
Affiliation(s)
- Ramtin Gholizadeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mahesh G, Anil Kumar K, Reddanna P. Overview on the Discovery and Development of Anti-Inflammatory Drugs: Should the Focus Be on Synthesis or Degradation of PGE 2? J Inflamm Res 2021; 14:253-263. [PMID: 33568930 PMCID: PMC7868279 DOI: 10.2147/jir.s278514] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a protective response that develops against tissue injury and infection. Chronic inflammation, on the other hand, is the key player in the pathogenesis of many inflammatory disorders including cancer. The cytokine storm, an inflammatory response flaring out of control, is mostly responsible for the mortality in COVID-19 patients. Anti-inflammatory drugs inhibit cyclooxygenases (COX), which are involved in the biosynthesis of prostaglandins that promote inflammation. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) are associated with gastric and renal side-effects, as they inhibit both the constitutive COX-1 and the inducible COX-2. The majority of selective COX-2 inhibitors (COXIBs) are without gastric side-effects but are associated with cardiac side-effects on long-term use. The search for anti-inflammatory drugs without side-effects, therefore, has become a dream and ongoing effort of the Pharma companies. As PGE2 is the key mediator of inflammatory disorders, coming up with a strategy to reduce the levels of PGE2 alone without affecting other metabolites may form a better choice for the development of next generation anti-inflammatory drugs. In this direction the options being explored are on synthesis of PGE2-mPGES-1; PGE2 degradation through a specific PG dehydrogenase, 15-PGDH, and by blocking its activity mediated through a specific PGE receptor, EP4. As leukotrienes formed via the 5-lipoxygenase (5-LOX) pathway also play an important role in the mediation of inflammation, efforts are also being made to target both COX and LOX pathways. This review focuses on addressing the following three points: 1) How NSAIDs and COXIBs are associated with gastric, renal and cardiac side-effects; 2) Should the focus be on the targets upstream or downstream of PGE2; and 3) the status of alternative targets being explored for the discovery and development of anti-inflammatory drugs without side-effects. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/8Uufep6ipBQ
Collapse
Affiliation(s)
- Gopa Mahesh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kotha Anil Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
6
|
Li JK, Zhou B, Tian YC, Jia C, Xue XS, Zhang FG, Ma JA. Potassium Acetate-Catalyzed Double Decarboxylative Transannulation To Access Highly Functionalized Pyrroles. Org Lett 2020; 22:9585-9590. [DOI: 10.1021/acs.orglett.0c03621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jun-Kuan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
| | - Biying Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yu-Chen Tian
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
| | - Chunman Jia
- Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou, Hainan 570228, People’s Republic of China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
7
|
An Anti-Inflammatory Composition of Boswellia serrata Resin Extracts Alleviates Pain and Protects Cartilage in Monoiodoacetate-Induced Osteoarthritis in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7381625. [PMID: 32565872 PMCID: PMC7261341 DOI: 10.1155/2020/7381625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 11/18/2022]
Abstract
The boswellic acids, the active compounds in Boswellia serrata gum resin extract, are potent anti-inflammatory agents and are specific nonredox inhibitors of 5-Lipoxygenase (5-LOX). Here, we present the anti-osteoarthritis (OA) efficacy of LI13019F1 (also known as Serratrin®), a unique composition containing the acidic and nonacidic fractions of B. serrata gum resin. This composition strongly inhibited 5-LOX activity with the half-maximal inhibitory concentration (IC50) of 43.35 ± 4.90 μg/mL. Also, LI13019F1 strongly inhibited the leukotriene B4 (IC50, 7.80 ± 2.40 μg/mL) and prostaglandin E2 (IC50, 6.19 ± 0.52 μg/mL) productions in human blood-derived cells. Besides, LI13019F1 reduced TNF-α production with the IC50 of 12.38 ± 0.423 μg/mL. On average, 1, 2.5, and 5 μg/mL doses of LI13019F1 protected 34.62, 47.66, and 62.29% SW1353 human chondrosarcoma cells from IL-1β induced SOX-9 depletion, respectively. Further, a 28-day preclinical proof-of-concept study evaluated the pain relief efficacy of LI13019F1 in monoiodoacetate- (MIA-) induced Sprague-Dawley rats. At the end of the study, 150 and 300 mg/kg doses of LI13019F1 supplemented rats showed significant improvements (55.17 ± 5.81 g (p < 0.05), and 66.22 ± 6.30 g (p < 0.05), respectively, vs. MIA: 31.22 ± 7.15 g) in body-weight-bearing capacities. Concurrently, LI13019F1-150 and LI13019F1-300 rats substantially (p < 0.05) increased the threshold of pain sensitivity to pressure (26.98 ± 2.36 and 28.06 ± 2.72-gram force, respectively; vs. 18.63 ± 5.82 in MIA) and increased (p < 0.05) the latent time to withdraw the paw after a thermal stimulus (23.61 ± 2.73 and 28.18 ± 1.90 sec, respectively; vs. 16.56 ± 1.22 sec. in MIA). Besides, the histological observations on Safranin-O green stained articular cartilage revealed that LI13019F1 also prevented the MIA-induced structural damage of the cartilage and reduced the loss of the extracellular matrix (ECM) components in the experimental rats. In conclusion, the present observations suggest that LI13019F1, a new composition of B. serrata gum resin extracts, reduces pain and protects articular cartilage from the damaging action of MIA in a rodent model.
Collapse
|
8
|
Gencoglu H, Orhan C, Sahin E, Sahin K. Undenatured Type II Collagen (UC-II) in Joint Health and Disease: A Review on the Current Knowledge of Companion Animals. Animals (Basel) 2020; 10:E697. [PMID: 32316397 PMCID: PMC7222752 DOI: 10.3390/ani10040697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
OA is quite common in companion animals, especially in large breed dogs and horses. Collagen, the most abundant protein of mammals, has specific connective tissue types for skin, bones, reticulate, basal lamina, bones, cell surfaces, while type II collagen (UC-II) forms the main structure of cartilage tissue. Even at the smaller dosages, UC-II has also been reported to be more effective than the glucosamine and chondroitin sulfate supplements, which are the supplements most frequently used in the market. In this review, we summarize the effects of UC-II on joint health and function in health and disease conditions in companion animals.
Collapse
Affiliation(s)
- Hasan Gencoglu
- Department of Biology, Faculty of Science, Firat University, Elazig (+90) 424, Turkey;
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig (+90) 424, Turkey; (C.O.); (E.S.)
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig (+90) 424, Turkey; (C.O.); (E.S.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig (+90) 424, Turkey; (C.O.); (E.S.)
| |
Collapse
|
9
|
Apostu D, Lucaciu O, Mester A, Oltean-Dan D, Baciut M, Baciut G, Bran S, Onisor F, Piciu A, Pasca RD, Maxim A, Benea H. Systemic drugs with impact on osteoarthritis. Drug Metab Rev 2019; 51:498-523. [DOI: 10.1080/03602532.2019.1687511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dragos Apostu
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Mester
- Department of Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Oltean-Dan
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Onisor
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andra Piciu
- Department of Medical Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana D. Pasca
- Department of Biomolecular Physics, Faculty of Physics, Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Andrei Maxim
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Benea
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Fu D, Shang X, Ni Z, Shi G. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis. Exp Ther Med 2016; 12:2735-2740. [PMID: 27703516 DOI: 10.3892/etm.2016.3642] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/05/2016] [Indexed: 12/18/2022] Open
Abstract
Shikonin has previously been shown to have antitumor, anti-inflammatory, antiviral and extensive pharmacological effects. The aim of the present study was to explore whether the protective effect of shikonin is mediated via the inhibition of inflammation and chondrocyte apoptosis, and to elucidate the potential molecular mechanisms in a rat model of osteoarthritis. A model of osteoarthritis was established in healthy male Sprague-Dawley rats and 10 mg/kg/day shikonin was administered intraperitoneally for 4 days. It was found that shikonin treatment significantly inhibited inflammatory reactions in the rats with osteoarthritis. Osteoarthritis was found to significantly increase interleukin (IL)-1β, tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) levels compared with those in the sham group. However, shikonin treatment significantly inhibited the increases in IL-1β, TNF-α and iNOS levels in the rats with osteoarthritis. Furthermore, caspase-3 activity and cyclooxygenase (COX)-2 protein expression were significantly increased and phosphorylated Akt protein expression was greatly suppressed in rats with osteoarthritis when compared with the sham group. Shikonin administration attenuated the changes in caspase-3 activity and COX-2 expression and Akt phosphorylation in rats with osteoarthritis. These results indicate that shikonin inhibits inflammation and chondrocyte apoptosis by regulating the phosphoinositide 3-kinase/Akt signaling pathway in a rat model of osteoarthritis.
Collapse
Affiliation(s)
- Daijie Fu
- Department of Orthopedics, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Xifu Shang
- Department of Orthopedics, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Zhe Ni
- Department of Orthopedics, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Guoguang Shi
- Department of Orthopedics, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
12
|
Kumar G, Patlolla JMR, Madka V, Mohammed A, Li Q, Zhang Y, Biddick L, Singh A, Gillaspy A, Lightfoot S, Steele VE, Kopelovich L, Rao CV. Simultaneous targeting of 5-LOX-COX and ODC block NNK-induced lung adenoma progression to adenocarcinoma in A/J mice. Am J Cancer Res 2016; 6:894-909. [PMID: 27293987 PMCID: PMC4889708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/02/2016] [Indexed: 06/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Targeting complementary pathways will achieve better treatment efficacy than a single agent high-dose strategy that could increase risk of side effects and tumor resistance. To target COX-2, 5-LOX, and ODC simultaneously, we tested the effects of a dual 5-LOX-COX inhibitor, licofelone, and an ODC inhibitor, DFMO, alone and in combination, on NNK-induced lung tumors in female A/J mice. Seven-week-old mice were treated with NNK (10 μmol/mouse, single dose, i.p.) and randomized to different treatment groups. Three weeks after injection, mice were fed control or experimental diets (DFMO 1500/3000 ppm, licofelone 200/400 ppm, or a low-dose combination of 1500 ppm DFMO and 200 ppm licofelone) for 17 or 34 weeks. Both agents significantly inhibited tumor formation in a dose-dependent manner. As anticipated more adenomas and adenocarcinomas were observed at 17 and 34 weeks, respectively. Importantly, low dose combination of DFMO and licofelone showed more pronounced effects at 17 or 34 weeks in inhibiting the total tumor formation (~60%, p < 0.0001) and adenocarcinoma (~65%, p < 0.0001) compared to individual high dose of DFMO (~44% and 46%, p < 0.0001) and licofelone (~48% and 55%, p < 0.0001). DFMO and combination-treated mice lung tumors exhibited modulated ODC pathway components (Oat, Oaz, SRM, SMS, and SAT, p < 0.05) along with decreased proliferation (PCNA, Cyclin D1 and Cyclin A) and increased expression of p53, p21 and p27 compared to mice fed control diet. Both DFMO and licofelone significantly inhibited tumor inflammatory markers. Our findings suggest that a low-dose combined treatment targeting inflammation and polyamine synthesis may provide effective chemoprevention.
Collapse
Affiliation(s)
- Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Jagan Mohan R Patlolla
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Qian Li
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Laura Biddick
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Anil Singh
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Allison Gillaspy
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer InstituteBethesda, MD, USA
| | - Stanley Lightfoot
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| | - Vernon E Steele
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer InstituteBethesda, MD, USA
| | - Levy Kopelovich
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer InstituteBethesda, MD, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hematology-Oncology Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104, USA
| |
Collapse
|
13
|
Lipid mediators of inflammation in rheumatoid arthritis and osteoarthritis. Best Pract Res Clin Rheumatol 2015; 29:741-55. [DOI: 10.1016/j.berh.2016.02.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Sinha M, Gautam L, Shukla PK, Kaur P, Sharma S, Singh TP. Current perspectives in NSAID-induced gastropathy. Mediators Inflamm 2013; 2013:258209. [PMID: 23576851 PMCID: PMC3610380 DOI: 10.1155/2013/258209] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/14/2013] [Indexed: 12/18/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most highly prescribed drugs in the world. Their analgesic, anti-inflammatory, and antipyretic actions may be beneficial; however, they are associated with severe side effects including gastrointestinal injury and peptic ulceration. Though several approaches for limiting these side effects have been adopted, like the use of COX-2 specific drugs, comedication of acid suppressants like proton pump inhibitors and prostaglandin analogs, these alternatives have limitations in terms of efficacy and side effects. In this paper, the mechanism of action of NSAIDs and their critical gastrointestinal complications have been reviewed. This paper also provides the information on different preventive measures prescribed to minimize such adverse effects and analyses the new suggested strategies for development of novel drugs to maintain the anti-inflammatory functions of NSAIDs along with effective gastrointestinal protection.
Collapse
Affiliation(s)
| | | | | | | | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | - Tej P. Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| |
Collapse
|
15
|
Licofelone modulates neuroinflammation and attenuates mechanical hypersensitivity in the chronic phase of spinal cord injury. J Neurosci 2013; 33:652-64. [PMID: 23303944 DOI: 10.1523/jneurosci.6128-11.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation is a major factor shaping outcome during the early, acute phase of traumatic spinal cord injury (SCI). It is known that pro-inflammatory signaling within the injured spinal cord drives pathological alterations in neurosensory processing and shapes functional outcome early after injury. However, it is unclear whether inflammation persists into the chronic phase of injury or shapes sensory processing long after injury. To investigate these possibilities, we have performed biochemical and behavioral assessments 9 months after moderate thoracic spinal contusion injury in the rat. We have found that levels of the pro-inflammatory lipid mediators leukotriene B4 and prostaglandin E2 are elevated in the chronic spinal cord lesion site. Additionally, using metabolomic profiling, we have detected elevated levels of pro-oxidative and inflammatory metabolites, along with alterations in multiple biological pathways within the chronic lesion site. We found that 28 d treatment of chronically injured rats with the dual COX/5-LOX inhibitor licofelone elevated levels of endogenous anti-oxidant and anti-inflammatory metabolites within the lesion site. Furthermore, licofelone treatment reduced hypersensitivity of hindpaws to mechanical, but not thermal, stimulation, indicating that mechanical sensitivity is modulated by pro-inflammatory signaling in the chronic phase of injury. Together, these findings provide novel evidence of inflammation and oxidative stress within spinal cord tissue far into the chronic phase of SCI, and demonstrate a role for inflammatory modulation of mechanical sensitivity in the chronic phase of injury.
Collapse
|
16
|
Dulin JN, Moore ML, Grill RJ. The dual cyclooxygenase/5-lipoxygenase inhibitor licofelone attenuates p-glycoprotein-mediated drug resistance in the injured spinal cord. J Neurotrauma 2013; 30:211-26. [PMID: 22947335 DOI: 10.1089/neu.2012.2587] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood-spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague-Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72 h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord.
Collapse
Affiliation(s)
- Jennifer N Dulin
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | |
Collapse
|
17
|
Wu YJ, Xue M, Chen H. Licofelone inhibits interleukin-18-induced pro-inflammatory cytokine release and cellular proliferation in human mesangial cells. Basic Clin Pharmacol Toxicol 2012; 111:166-72. [PMID: 22433003 DOI: 10.1111/j.1742-7843.2012.00882.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 03/12/2012] [Indexed: 11/30/2022]
Abstract
Licofelone, a novel dual anti-inflammatory drug that inhibits 5-lipoxygenase (5-LOX) and cyclooxygenase (COX), has recently been defined to have therapeutic effects in osteoarthritis. Both 5-LOX and COX play functional roles in the pathogenesis of glomerulonephritis in children as well. Interleukin-18 is a pro-inflammatory cytokine. It remains unclear whether licofelone can ameliorate inflammatory response of human mesangial cells (HMC) exposed to interleukin-18. In this study, HMC were cultured and exposed to interleukin-18 with or without pre-treatment of licofelone. COX-2 and 5-LOX enzyme activities in mesangial cells were determined with chromometry or high-performance liquid chromatography. Prostaglandin E2, cysteinyl leukotriene, monocyte chemotactic protein-1 and interferon-γ concentrations in culture medium were measured using an enzyme-linked immunosorbent assay. Western blotting was employed to detect phosphorylated mitogen-activated protein kinases ERK1/2, p38 and JNK1/2 in HMC. It was found that licofelone attenuated interleukin-18-induced COX-2 enzyme activity in HMC and prostaglandin E2 release in a dose-dependent manner. Similarly, licofelone inhibited interleukin-18-induced 5-LOX enzyme activity and leukotriene release. Licofelone reduced interleukin-18-induced phosphorylation of p38 mitogen-activated protein kinase and suppressed monocyte chemotactic protein-1 and interferon-γ synthesis. Moreover, licofelone inhibited IL-18-induced proliferation of mesangial cells. We conclude that licofelone inhibits interleukin-18-induced pro-inflammatory cytokine release and cellular proliferation in HMC, which may represent a really interesting therapeutic approach for glomerulonephritis in children.
Collapse
Affiliation(s)
- Yuan-Jun Wu
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | |
Collapse
|
18
|
Zhang L, Li N, Lai Y, Zhang Y, Chen X, Chen L, Ji H, Li C. Pharmacokinetic, distribution, metabolism, and excretion of (Z)-2-amino-1,5-dihydro-1-methyl-5-[4-(mesyl)benzylidene]-4H-imidazol-4-one mesilate (ZLJ-601) in Sprague-Dawley rats. Pharmacology 2012; 89:192-200. [PMID: 22456195 DOI: 10.1159/000334931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 11/19/2022]
Abstract
(Z)-2-amino-1,5-dihydro-1-methyl-5-[4-(mesyl)benzylidene]-4H-imidazol-4-one mesilate (ZLJ-601) is an imidazolone COX/5-LOX inhibitor, which has excellent anti-inflammatory activity with an improved gastrointestinal safety profile. The purpose of this study was to evaluate the in vivo absorption, distribution, metabolism, and excretion of ZLJ-601 in Sprague-Dawley rats. After intravenous or intragastric administration to rats, the concentration of ZLJ-601 in plasma, bile, urine, feces and various types of tissues was detected by LC-MS. We also conducted the identification of metabolites using tandem mass spectrometry. After the intravenous administration, the t(1/2) ranged from 38.71 to 42.62 min and the AUC increased in a dose-proportional manner. After oral dosing, the plasma level of ZLJ-601 peaked at 28.33 min, having a C(max) value of 0.26 mg/l, and the bioavailability was only 4.92%. The highest tissue concentration of ZLJ-601 was observed in lung and kidney, but it was not found in brain. The majority of unchanged ZLJ-601 was excreted in urine (∼35.87%) within 36 h. Two main metabolites are the hydroxylation product and the glucuronide conjugate of the hydroxylation product.
Collapse
Affiliation(s)
- Lingli Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wakshlag JJ, Peters-Kennedy J, Bushey JJ, Loftus JP. 5-lipoxygenase expression and tepoxalin-induced cell death in squamous cell carcinomas in cats. Am J Vet Res 2011; 72:1369-77. [PMID: 21962280 PMCID: PMC10957241 DOI: 10.2460/ajvr.72.10.1369] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
OBJECTIVE To assess expression pattern and subcellular compartmentalization of 5-lipoxygenase in cutaneous, UV radiation-induced, and oral squamous cell carcinomas (SCCs) in cats and determine the effects of cyclooxygenase or 5-lipoxygenase inhibition on proliferation or apoptosis in a feline oral squamous cell carcinoma (SCCF1) cell line. SAMPLE 60 archived paraffin-embedded samples of SCCs from 60 cats and SCCF1 cells. PROCEDURES Retrospective immunohistochemical analysis of the archived samples of SCCs (20 cutaneous, 20 UV radiation-induced, and 20 oral tumors) was performed. Cell culture proliferation assays involving SCCF1 cells were performed, and tepoxalin-induced apoptosis and signaling were examined via western blotting and annexin V staining. RESULTS Immunohistochemically, staining for 5-lipoxygenase was most frequently of greatest intensity in oral SCCs, whereas staining of cutaneous and UV radiation-induced lesions had less consistent 5-lipoxygenase expression. Exposure of SCCF1 cells to the 5-lipoxygenase inhibitor tepoxalin resulted in apoptosis; the effect appeared to be mediated via alteration of cell signaling rather than via suppression of lipid mediators that are typically produced as a result of 5-lipoxygenase activity. CONCLUSIONS AND CLINICAL RELEVANCE In cats, expression of 5-lipoxygenase in SCCs appeared to differ depending on tumor location. The influence of tepoxalin-induced 5-lipoxygenase inhibition on a 5-lipoxygenase-expressing cell line coupled with the notable expression of 5-lipoxygenase in oral SCCs suggested that 5-lipoxygenase inhibition may have therapeutic benefits in affected cats. Although the safety of tepoxalin in cats has yet to be investigated, 5-lipoxygenase inhibitors should be evaluated for use as a potential treatment for SCCs in that species.
Collapse
Affiliation(s)
- Joseph J Wakshlag
- Departments of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
20
|
Huh JE, Lee WI, Seo BK, Baek YH, Lee JD, Choi DY, Park DS. Gastroprotective and safety effects of WIN-34B, a novel treatment for osteoarthritis, compared to NSAIDs. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1011-1017. [PMID: 21782922 DOI: 10.1016/j.jep.2011.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/17/2011] [Accepted: 07/06/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried flowers of Lonicera japonica, also known as Japanese honeysuckle, and the dried root of Anemarrhena asphodeloides, the component herbs of WIN-34B, are traditionally used in Eastern medicine to treat various inflammatory conditions including arthritis. OBJECTIVE To study the acute and chronic toxicities of WIN-34B and to compare its effects on gastric mucosa with those of diclofenac, a widely used NSAID, and celecoxib, a selective COX-2 inhibitor. MATERIALS AND METHODS To investigate acute toxicity, we orally administered a single dose of 5,000 mg/kg WIN-34B to rats. To investigate chronic toxicity, we orally administered 500, 1000 or 2,000 mg/kg WIN-34B to rats daily for 13 weeks. To assess its effects on gastric mucosa, rats received either a single dose or repeated doses of WIN-34B (400, 1000, or 2,000 mg/kg), diclofenac (10, 40, or 80 mg/kg), celecoxib (100 or 1,000 mg/kg), or vehicle, after which samples of gastric mucosa were assessed grossly and histologically. We also measured tissue activity of myeloperoxidase and synthesis of eicosanoids, including prostaglandin E(2) (PGE(2)) and leukotriene B(4) (LTB(4)). To further assess its effects, we administered WIN-34B to rats either intraperitoneally or orally, measured gastric injury scores using a rat model of diclofenac-induced gastric injury, and measured eicosanoid synthesis. RESULTS WIN-34B showed no signs of acute or chronic toxicity in terms of general behavior, gross appearance of the internal organs, blood chemistry, or mortality. WIN-34B did not cause significant gastric mucosal damage after single or repeated doses. In contrast, diclofenac and celecoxib both caused gastric damage. In terms of eicosanoid synthesis, WIN-34B significantly suppressed LTB(4) synthesis while both diclofenac and celecoxib increased LTB(4) synthesis. WIN-34B slightly reduced PGE(2) production, while both diclofenac and celecoxib significantly reduced PGE(2) production. In a rat model of diclofenac-induced gastric injury, WIN-34B significantly suppressed LTB(4) synthesis and restored PGE(2) release. CONCLUSIONS These results demonstrate that WIN-34B did not cause acute or chronic toxicity in male or female rats. In addition, WIN-34B did not cause significant gastric mucosal damage, instead appearing to protect the mucosa from diclofenac-induced gastric damage through the regulation of PGE(2) and LTB(4).
Collapse
Affiliation(s)
- Jeong-Eun Huh
- Oriental Medicine Research Center for Bone & Joint, Disease Kyung Hee University, 149, Sangil-dong, Gangdong-gu, Seoul 134-727, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Li X, Li C, Shang D, Li J, Han J, Miao Y, Wang Y, Wang Q, Li W, Wu C, Zhang Y, Li X, Yao Q. The implications of relationships between human diseases and metabolic subpathways. PLoS One 2011; 6:e21131. [PMID: 21695054 PMCID: PMC3117879 DOI: 10.1371/journal.pone.0021131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/20/2011] [Indexed: 01/08/2023] Open
Abstract
One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we applied the “k-clique” subpathway identification method to all disease-related gene sets. For each disease, the disease risk regions of metabolic pathways were then identified and considered as subpathways associated with the disease. We finally built a disease-metabolic subpathway network (DMSPN). Through analyses based on network biology, we found that a few subpathways, such as that of cytochrome P450, were highly connected with many diseases, and most belonged to fundamental metabolisms, suggesting that abnormalities of fundamental metabolic processes tend to cause more types of diseases. According to the categories of diseases and subpathways, we tested the clustering phenomenon of diseases and metabolic subpathways in the DMSPN. The results showed that both disease nodes and subpathway nodes displayed slight clustering phenomenon. We also tested correlations between network topology and genes within disease-related metabolic subpathways, and found that within a disease-related subpathway in the DMSPN, the ratio of disease genes and the ratio of tissue-specific genes significantly increased as the number of diseases caused by the subpathway increased. Surprisingly, the ratio of essential genes significantly decreased and the ratio of housekeeping genes remained relatively unchanged. Furthermore, the coexpression levels between disease genes and other types of genes were calculated for each subpathway in the DMSPN. The results indicated that those genes intensely influenced by disease genes, including essential genes and tissue-specific genes, might be significantly associated with the disease diversity of subpathways, suggesting that different kinds of genes within a disease-related subpathway may play significantly differential roles on the diversity of diseases caused by the corresponding subpathway.
Collapse
Affiliation(s)
- Xia Li
- Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, and College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Etiology and clinical manifestation of the peptic ulcer keep changes nowadays. Helicobacter pylori-infection, nonsteroidal anti-inflammatory drugs and small dosage acetic acid treatment are the main etiological factors. Helicobacter pylori positive peptic ulcer can be treated with eradication of the bacterium. Prevention of the NSAID-ulcer and the prescription of the acid suppressive therapy depend on the gastrointestinal and cardiovascular risk factors of patient. Despite of the effective therapies, there are still questions to answer. The number of Helicobacter pylori and NSAID negative ulcers is likely to increase, their therapy must be clarified. There's a fall in the eradication rate of Helicobacter pylori infection, the optimal treatment is missing.
Collapse
Affiliation(s)
- Krisztina Hagymási
- Semmelweis Egyetem, Altalános Orvostudományi Kar II. Belgyógyászati Klinika, Budapest.
| | | |
Collapse
|
23
|
Agarwal S, Reddy GV, Reddanna P. Eicosanoids in inflammation and cancer: the role of COX-2. Expert Rev Clin Immunol 2010; 5:145-65. [PMID: 20477063 DOI: 10.1586/1744666x.5.2.145] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Eicosanoids, a family of oxygenated metabolites of eicosapolyenoic fatty acids, such as arachidonic acid, formed via the lipoxygenase, cyclooxygenase (COX) and epoxygenase pathways, play an important role in the regulation of various pathophysiological processes, including inflammation and cancer. COX-2, the inducible isoform of COX, has emerged as the key enzyme regulating inflammation, and promises to play a considerable role in cancer. Although NSAIDs have been in use for centuries, the COX-2 selective inhibitors - coxibs - have emerged as potent anti-inflammatory drugs with fewer gastric side effects. As COX-2 plays a major role in neoplastic transformation and cancer growth, by downregulating apoptosis and promoting angiogenesis, invasion and metastasis, coxibs have a potential role in the prevention and treatment of cancer. Recent studies indicate their possible application in overcoming drug resistance by downregulating the expression of MDR-1. However, the cardiac side effects of some of the coxibs have limited their application in treating various inflammatory disorders and warrant the development of COX-2 inhibitors without side effects. This review will focus on the role of COX-2 in inflammation and cancer, with an emphasis on novel approaches to the development of COX-2 inhibitors without side effects.
Collapse
Affiliation(s)
- Smita Agarwal
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| | | | | |
Collapse
|