1
|
Uotani K, Fujiwara T, Ueda K, Yoshida A, Iwata S, Morita T, Kiyono M, Kunisada T, Takeda K, Hasei J, Yoshioka Y, Ochiya T, Ozaki T. Identification of ENO-1 positive extracellular vesicles as a circulating biomarker for monitoring of Ewing sarcoma. Cancer Sci 2024; 115:3660-3671. [PMID: 39307979 PMCID: PMC11531948 DOI: 10.1111/cas.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 11/05/2024] Open
Abstract
The lack of circulating biomarkers for tumor monitoring is a major problem in Ewing sarcoma management. The development of methods for accurate tumor monitoring is required, considering the high recurrence rate of drug-resistant Ewing sarcoma. Here, we describe a sensitive analytical technique for tumor monitoring of Ewing sarcoma by detecting circulating extracellular vesicles secreted from Ewing sarcoma cells. Proteomic analysis of Ewing sarcoma cell-derived extracellular vesicles identified 564 proteins prominently observed in extracellular vesicles from three Ewing sarcoma cell lines. Among these, CD99, SLC1A5, and ENO-1 were identified on extracellular vesicles purified from sera of patients with Ewing sarcoma before treatment but not on extracellular vesicles from those after treatment and healthy individuals. Notably, not only Ewing sarcoma-derived extracellular vesicles but also Ewing sarcoma cells demonstrated proteomic expression of CD99 and ENO-1 on their surface membranes. ENO-1+CD63+ extracellular vesicle detection was reduced after tumor resection while both CD99+CD63+ and ENO-1+CD63+ extracellular vesicles were detected in serum from Ewing sarcoma-bearing mice. Finally, the accuracy of liquid biopsy targeting these candidates was assessed using extracellular vesicles from the sera of patients with Ewing sarcoma. Elevated ENO-1+CD81+ extracellular vesicles in the serum of patients before treatments distinguished patients with Ewing sarcoma from healthy individuals with an area under the curve value of 0.92 (P < 0.001) and reflected the tumor burden in patients with Ewing sarcoma during multidisciplinary treatments. Collectively, circulating ENO-1+CD81+ extracellular vesicle detection could represent a novel tool for tumor monitoring of Ewing sarcoma.
Collapse
Affiliation(s)
- Koji Uotani
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Tomohiro Fujiwara
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Center of Innovative MedicineOkayama University HospitalOkayamaJapan
| | - Koji Ueda
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Aki Yoshida
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Shintaro Iwata
- Department of Musculoskeletal OncologyNational Cancer Center HospitalTokyoJapan
| | - Takuya Morita
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Masahiro Kiyono
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Toshiyuki Kunisada
- Department of Medical Materials for Musculoskeletal ReconstructionOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Ken Takeda
- Department of Intelligent Orthopedic SystemOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Joe Hasei
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular MedicineInstitute of Medical Science, Tokyo Medical UniversityTokyoJapan
| | - Takahiro Ochiya
- Department of Molecular and Cellular MedicineInstitute of Medical Science, Tokyo Medical UniversityTokyoJapan
| | - Toshifumi Ozaki
- Department of Orthopedic SurgeryOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
2
|
Lincz LF, Theron DZ, Barry DL, Scorgie FE, Sillar J, Sefhore O, Enjeti AK, Skelding KA. High Expression of ENO1 and Low Levels of Circulating Anti-ENO1 Autoantibodies in Patients with Myelodysplastic Neoplasms and Acute Myeloid Leukaemia. Cancers (Basel) 2024; 16:884. [PMID: 38473245 DOI: 10.3390/cancers16050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
In solid tumours, high expression of the glycolytic enzyme, α-enolase (ENO1), predicts for poor patient overall survival (OS), and circulating autoantibodies to ENO1 correlate positively with diagnosis and negatively with advanced disease. Although ENO1 is one of the most highly expressed genes in acute myeloid leukaemia (AML), its potential role as a biomarker in AML or its precursor, myelodysplastic neoplasms (MDS), has not been investigated. A meta-analysis of nine AML online datasets (n = 1419 patients) revealed that high ENO1 expression predicts for poor OS (HR = 1.22, 95% CI: 1.10-1.34, p < 0.001). Additionally, when compared to AML in remission (n = 5), ENO1 protein detected by immunohistochemistry was significantly higher at diagnosis in bone marrow from both AML (n = 5, p < 0.01) and MDS patients (n = 12, p < 0.05), and did not correlate with percentage of blasts (r = 0.28, p = 0.21). AML patients (n = 34) had lower circulating levels of ENO1 autoantibodies detected by ELISA compared to 26 MDS and 18 controls (p = 0.003). However, there was no difference in OS between AML patients with high vs. low levels of anti-ENO1 autoantibodies (p = 0.77). BM immunostaining for ENO1 and patient monitoring of anti-ENO1 autoantibody levels may be useful biomarkers for MDS and AML.
Collapse
Affiliation(s)
- Lisa F Lincz
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
| | - Danielle Z Theron
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Daniel L Barry
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Fiona E Scorgie
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
| | - Jonathan Sillar
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
- New South Wales Health Pathology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Opelo Sefhore
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Anoop K Enjeti
- Haematology Department, Calvary Mater Newcastle, Waratah, NSW 2298, Australia
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
- New South Wales Health Pathology, John Hunter Hospital, Lookout Road, New Lambton, NSW 2305, Australia
| | - Kathryn A Skelding
- University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Lookout Road, New Lambton, NSW 2305, Australia
| |
Collapse
|
3
|
Miao C, He X, Chen G, Kahlert UD, Yao C, Shi W, Su D, Hu L, Zhang Z. Seven oxidative stress-related genes predict the prognosis of hepatocellular carcinoma. Aging (Albany NY) 2023; 15:15050-15063. [PMID: 38097352 PMCID: PMC10781471 DOI: 10.18632/aging.205330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024]
Abstract
Predicting the prognosis of hepatocellular carcinoma (HCC) is a major medical challenge and of guiding significance for treatment. This study explored the actual relevance of RNA expression in predicting HCC prognosis. Cox's multiple regression was used to establish a risk score staging classification and to predict the HCC patients' prognosis on the basis of data in the Cancer Genome Atlas (TCGA). We screened seven gene biomarkers related to the prognosis of HCC from the perspective of oxidative stress, including Alpha-Enolase 1(ENO1), N-myc downstream-regulated gene 1 (NDRG1), nucleophosmin (NPM1), metallothionein-3, H2A histone family member X, Thioredoxin reductase 1 (TXNRD1) and interleukin 33 (IL-33). Among them we measured the expression of ENO1, NGDP1, NPM1, TXNRD1 and IL-33 to investigate the reliability of the multi-index prediction. The first four markers' expressions increased successively in the paracellular tissues, the hepatocellular carcinoma samples (from patients with better prognosis) and the hepatocellular carcinoma samples (from patients with poor prognosis), while IL-33 showed the opposite trend. The seven genes increased the sensitivity and specificity of the predictive model, resulting in a significant increase in overall confidence. Compared with the patients with higher-risk scores, the survival rates with lower-risk scores are significantly increased. Risk score is more accurate in predicting the prognosis HCC patients than other clinical factors. In conclusion, we use the Cox regression model to identify seven oxidative stress-related genes, investigate the reliability of the multi-index prediction, and develop a risk staging model for predicting the prognosis of HCC patients and guiding precise treatment strategy.
Collapse
Affiliation(s)
- Chen Miao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao He
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ulf D. Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Chenchen Yao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Shi
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, China
- Department of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Seay TW, Suo Z. Roles of Extracellular Vesicles on the Progression and Metastasis of Hepatocellular Carcinoma. Cells 2023; 12:1879. [PMID: 37508544 PMCID: PMC10378249 DOI: 10.3390/cells12141879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Liver cancer is a global health challenge as it is the third leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is often found in liver cells, where it is associated with high morbidity and mortality rates. Recent studies have shown that extracellular vesicles (EVs) secreted by HCC cells play a critical role in HCC progression and metastasis. EVs contain proteins, nucleic acids, lipids, and metabolites as cargos. EVs derived from HCC cells can transfer oncogenic factors to surrounding cells leading to increased tumor growth, cell invasion, and angiogenesis. In this review, we summarize the roles that EVs play and the specific effects of their cargos on HCC progression and metastasis and identify potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Turner W Seay
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Fan WJ, Zhou MX, Wang DD, Jiang XX, Ding H. TMEM147 is a novel biomarker for diagnosis and prognosis of hepatocellular carcinoma. Genet Mol Biol 2023; 46:e20220323. [PMID: 37335919 DOI: 10.1590/1678-4685-gmb-2022-0323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/14/2023] [Indexed: 06/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy with high incidence and poor prognosis. Transmembrane protein 147 (TMEM147) has been implicated in the development of colon cancer. However, the role of TMEM147 in HCC remains unclear. In this study, data of 371 HCC tissues, 50 adjacent nontumor tissues, and 110 normal liver tissues were retrieved from the TCGA and GTEx databases. TMEM147 expression was found to be increased in HCC tissues. High expression of TMEM147 was related to poor prognosis, and TMEM147 was confirmed to be an independent prognostic factor for HCC patients. A receiver operating characteristics (ROC) analysis was performed and showed that the diagnostic efficacy of TMEM147 was significantly higher than that of AFP (0.908 versus 0.746, p < 0.001). Furthermore, TMEM147 promoted tumor immune infiltration, and macrophages were the immune cells that predominantly expressed TMEM147 in HCC. Further analysis revealed that TMEM147 mainly impacted the ribosome pathway, and CTCF, MLLT1, TGIF2, ZNF146, and ZNF580 were predicted to be the upstream transcription factors for TMEM147 in HCC. These results suggest that TMEM147 serves as a promising biomarker for diagnosis and prognosis and may potentially become a therapeutic target for HCC.
Collapse
Affiliation(s)
- Wen-Jie Fan
- The First Affiliated Hospital of Anhui Medical University, Department of Radiology, Hefei, Anhui Province, China
| | - Meng-Xi Zhou
- The First Affiliated Hospital of Anhui Medical University, Department of Radiology, Hefei, Anhui Province, China
| | - Di-Di Wang
- The First Affiliated Hospital of Anhui Medical University, Department of Gastroenterology, Hefei, Anhui Province, China
| | - Xin-Xin Jiang
- The First Clinical Medical College of Anhui Medical University, Hefei, Anhui Province, China
| | - Hao Ding
- The First Affiliated Hospital of Anhui Medical University, Department of Gastroenterology, Hefei, Anhui Province, China
| |
Collapse
|
6
|
Shi YY, Chen XL, Chen QX, Yang YZ, Zhou M, Ren YX, Tang LY, Ren ZF. Association of Enolase-1 with Prognosis and Immune Infiltration in Breast Cancer by Clinical Stage. J Inflamm Res 2023; 16:493-503. [PMID: 36785715 PMCID: PMC9922065 DOI: 10.2147/jir.s396321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Purpose Enolase-1 (ENO1) plays a key role in malignancies. Previous studies on the association between ENO1 expression and breast cancer prognosis had yielded inconsistent results. In the present study, we assessed the prognostic effect of ENO1 in breast cancer using Guangzhou Breast Cancer Study (GZBCS) cohort with full consideration of the potential confounders and the modification effects. The results were further validated in the TCGA-BRCA cohort and explained by tumor immunity. Methods ENO1 protein expressions were evaluated by immunohistochemistry in tissue microarrays from 961 patients with primary invasive breast cancer. Chi-square tests were used to assess the association of ENO1 levels with the patient's characteristics. Cox regression models were applied to assess the prognostic effects. The TCGA-BRCA cohort was utilized to validate the results and explore the potential mechanisms. The immune infiltration was determined using the CIBERSORT and ssGSEA algorithms; the correlation between ENO1 expression and the abundance of tumor-infiltrating immune cells (TIICs) and scores of immune-related functions was evaluated by Wilcoxon signed-rank tests and Spearman's rank test. Results ENO1 protein expression exerted a protective effect on OS in stage I/II patients (HR=0.58, 95% CI: 0.35-0.96) but not in stage III patients (HR=1.42, 95% CI: 0.81-2.49, P interaction=0.04) in GZBCS; consistent results were obtained at mRNA levels in TCGA cohort. Immune infiltration analyses revealed that ENO1 was positively correlated with multiple antitumor TIICs (including M1 macrophages, B cells, CD8 T cells, T helper 2 cells, and NK cells) only in stage I/II but not stage III patients. Conclusion A higher expression of ENO1 was associated with a better prognosis only in early-stage breast cancer, which may be related to the different effects of ENO1 on immune infiltration, suggesting that ENO1 may be a promising target for precision immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Yue-Yu Shi
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xing-Lei Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qian-Xin Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuan-Zhong Yang
- The Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Meng Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yue-Xiang Ren
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China,Lu-Ying Tang, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, People’s Republic of China, Tel +86-20-85253000, Fax +86-20-85253336, Email
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China,Correspondence: Ze-Fang Ren, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, People’s Republic of China, Tel/Fax +86-20-87332577, Email
| |
Collapse
|
7
|
Zhang W, Liu B, Wu S, Zhao L. TMT-based comprehensive proteomic profiling identifies serum prognostic signatures of acute myeloid leukemia. Open Med (Wars) 2023; 18:20220602. [PMID: 37016705 PMCID: PMC10066874 DOI: 10.1515/med-2022-0602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/19/2022] [Accepted: 10/16/2022] [Indexed: 04/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is classified into favorable-risk, intermediate-risk, and poor-risk subtypes. This study aimed to compare the serum proteomic signatures of the three AML subtypes and identify prognostic biomarkers for AML. Serum samples from patients with favorable-risk (n = 14), intermediate-risk (n = 19), and poor-risk AMLs (n = 18) were used for the analysis of tandem mass tag (TMT) labeling-based quantitative proteomics. Comparative analysis was performed to identify differentially expressed proteins (DEPs) between groups. Prognostic proteins were screened using binary logistics regression analysis. TMT-MS/MS proteomics analysis identified 138 DEPs. Fumarate hydratase (FH), isocitrate dehydrogenase 2 (IDH2), and enolase 1 (ENO1) were significantly upregulated in poor-risk patients compared with favorable-risk patients. ELISA assay confirmed that patients with poor-risk AMLs had higher levels of IDH2, ENO1, and FH compared with intermediate-risk AML patients. Logistics analysis identified that proteins 3-hydroxyacyl-CoA dehydrogenase type-2 (HADH, odds ratio (OR) = 1.035, p = 0.010), glutamine synthetase (GLUL, OR = 1.022, p = 0.039), and lactotransferrin (LTF, OR = 1.1224, p = 0.016) were associated with poor prognosis, and proteins ENO1 (OR = 1.154, p = 0.053), FH (OR = 1.043, p = 0.059), and IDH2 (OR = 3.350, p = 0.055) were associated with AML prognosis. This study showed that AML patients had elevated levels of FH, IDH2, ENO1, LTF, and GLUL proteins and might be at high risk of poor prognosis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Central Laboratory, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Bei Liu
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Shiwen Wu
- Department of Laboratory Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Li Zhao
- Department of Central Laboratory, The First Hospital of Lanzhou University, #1 Donggang West Road, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
8
|
Luo WZ, Li X, Wu XX, Shang YW, Meng DH, Chen YL, Zhang QS. MAGED4B is a Poor Prognostic Marker of Stomach Adenocarcinoma and a Potential Therapeutic Target for Stomach Adenocarcinoma Tumorigenesis. Int J Gen Med 2023; 16:1681-1693. [PMID: 37181643 PMCID: PMC10171223 DOI: 10.2147/ijgm.s401507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
Background Gastric cancer is the second most common cause of cancer death worldwide with poor overall prognosis. It is important to study the molecular mechanism of stomach adenocarcinoma (STAD). MAGED4B, a member of the melanoma antigen gene (MAGE) family, is highly expressed in many tumor cells and is associated with tumor progression. Its prognostic value in and the function of the encoded protein are still unclear. Methods The data of 415 STAD tissues was retrieved from TCGA database, and the expression level of MAGED4B mRNA was evaluated. The correlation between the expression of MAGED4B mRNA and the progression free survival (PFS) time of STAD patients was evaluated by Kaplan Meier analysis. The STAD cell lines with overexpressed and silent MAGED4B were constructed, and the effects of MAGED4B on the viability, migration and proliferation were evaluated by the CCK-8, scratch test and EDU test. The flow cytometry was used to detect apoptosis with overexpressed and silent MAGED4B under the cisplatin treatment, and WB was used to detect the expressions of related proteins, such as TNF-α. Results The expression level of MAGED4B mRNA in the STAD tissues was higher than that in the normal tissues, and its high expression was related to poor PFS. The overexpression of MAGED4B in the STAD cell lines can promote the vitality, motility and proliferation of the STAD cells, while the silencing of MAGED4B can inhibit the above three cell functions of the STAD cells. The overexpression of MAGED4B can reduce the cisplatin induced apoptosis and increase the cisplatin IC50; the silencing of MAGED4B can promote the cisplatin induced apoptosis and reduce the cisplatin IC50. The overexpression of MAGED4B reduced the protein levels of TRIM27 and TNF- α. Conclusion MAGED4B could be a valuable prognostic biomarker and a therapeutic target for gastric adenocarcinoma of great interest.
Collapse
Affiliation(s)
- Wen-Zhao Luo
- School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Department of Hepatobiliary and Spleen Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450000, People’s Republic of China
| | - Xian Li
- Department of Hepatobiliary and Spleen Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450000, People’s Republic of China
| | - Xiu-Xia Wu
- Department of Hepatobiliary and Spleen Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450000, People’s Republic of China
| | - Yi-Wan Shang
- School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
| | - Dan-Hua Meng
- School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
| | - Yu-Long Chen
- School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, 45000, People’s Republic of China
- Correspondence: Yu-Long Chen, School of Basic Medicine (Zhongjing School), Henan University of Chinese Medicine, No. 156 East Jinshui Road, Jinshui District, Zhengzhou, Henan Province, 45000, People’s Republic of China, Email
| | - Qin-Sheng Zhang
- Department of Hepatobiliary and Spleen Stomach, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, Henan Province, 450000, People’s Republic of China
- Qin-Sheng Zhang, Henan Province Hospital of Traditional Chinese Medicine, Department of Hepatobiliary and Spleen Stomach, No. 6 Dongfeng Road, Jinshui District, Zhengzhou, Henan Province, 450000, People’s Republic of China, Email
| |
Collapse
|
9
|
Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C, Foti M. MiR-22 Deficiency Fosters Hepatocellular Carcinoma Development in Fatty Liver. Cells 2022; 11:cells11182860. [PMID: 36139435 PMCID: PMC9496902 DOI: 10.3390/cells11182860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
MiR-22 is mostly considered as a hepatic tumor-suppressor microRNA based on in vitro analyses. Yet, whether miR-22 exerts a tumor-suppressive function in the liver has not been investigated in vivo. Herein, in silico analyses of miR-22 expression were performed in hepatocellular carcinomas from human patient cohorts and different mouse models. Diethylnitrosamine-induced hepatocellular carcinomas were then investigated in lean and diet-induced obese miR-22-deficient mice. The proteome of liver tissues from miR-22-deficient mice prior to hepatocellular carcinoma development was further analyzed to uncover miR-22 regulated factors that impact hepatocarcinogenesis with miR-22 deficiency. MiR-22 downregulation was consistently observed in hepatocellular carcinomas from all human cohorts and mouse models investigated. The time of appearance of the first tumors was decreased and the number of tumoral foci induced by diethylnitrosamine was significantly increased by miR-22-deficiency in vivo, two features which were further drastically exacerbated with diet-induced obesity. At the molecular level, we provide evidence that the loss of miR-22 significantly affects the energetic metabolism and mitochondrial functions of hepatocytes, and the expression of tumor-promoting factors such as thrombospondin-1. Our study demonstrates that miR-22 acts as a hepatic tumor suppressor in vivo by restraining pro-carcinogenic metabolic deregulations through pleiotropic mechanisms and the overexpression of relevant oncogenes.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Anne-Sophie Ay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Etienne Delangre
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christine Sempoux
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Translational Research Centre in Onco-Haematology, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
10
|
TRPC5OS induces tumorigenesis by increasing ENO1-mediated glucose uptake in breast cancer. Transl Oncol 2022; 22:101447. [PMID: 35584604 PMCID: PMC9119839 DOI: 10.1016/j.tranon.2022.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/17/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
|
11
|
Zhang P, Yang X, Zha Z, Zhu Y, Zhang G, Li G. CBX3 regulated by miR-139 promotes the development of HCC by regulating cell cycle progression. Cell Cycle 2022; 21:1740-1752. [PMID: 35471148 PMCID: PMC9302499 DOI: 10.1080/15384101.2022.2068329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a major primary liver cancer, is one of the most lethal malignancies worldwide. Increasing evidence has demonstrated that chromobox protein homolog 3 (CBX3) functions as an oncogene in different cancers. However, its expression profiles and biological functions in HCC remain unknown. Data on CBX3 expression in HCC acquired from the GEO and TCGA databases were analyzed. The biological functions of CBX3 in HCC were examined by in vitro experiments. Bioinformatics analysis, qRT-PCR and western blotting were performed to explore the mechanism of CBX3 in HCC. CBX3 mRNA was upregulated in HCC tissues, and overexpression of CBX3 mRNA was negatively correlated with malignancies and poor prognosis in HCC patients. CBX3 knockdown decreased growth, migration and invasion of HCC cells in vitro. Moreover, bioinformatics analysis and experimental observation indicated that CBX3 expression was correlated with cell cycle regulatory proteins in HCC cells. Finally, starBase predicted that miR-139 could directly target CBX3 in HCC. Confirmatory experiments verified that miR-139 overexpression attenuated HCC cell proliferation and migration, and these effects could be reversed by overexpressing CBX3. Our results showed that the miR-139/CBX3 axis may be involved in HCC development by regulating cell cycle progression and may be a promising target in the treatment of HCC.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| | - Xiaoyan Yang
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| | - Zhongming Zha
- Department of Hepatobiliary Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| | - Yumeng Zhu
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| | - Guoqiang Zhang
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China.,Department of Luoyang, Digestive Diseases Institute, Digestive Disease Center of Luoyang City, Henan, Zhengzhou, China
| | - Guotao Li
- Department of Infectious Diseases, Luoyang Central Hospital Affiliated to Zhengzhou University, Henan, Zhengzhou, China
| |
Collapse
|
12
|
Luo M, Wu S, Ma Y, Liang H, Luo Y, Gu W, Fan L, Hao Y, Li H, Xing L. Evaluating a Panel of Autoantibodies Against Tumor-Associated Antigens in Human Osteosarcoma. Front Genet 2022; 13:872253. [PMID: 35547257 PMCID: PMC9081566 DOI: 10.3389/fgene.2022.872253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background: The aim of this study was to identify a panel of candidate autoantibodies against tumor-associated antigens in the detection of osteosarcoma (OS) so as to provide a theoretical basis for constructing a non-invasive serological diagnosis method in early immunodiagnosis of OS. Methods: The serological proteome analysis (SERPA) approach was used to select candidate anti-TAA autoantibodies. Then, indirect enzyme-linked immunosorbent assay (ELISA) was used to verify the expression levels of eight candidate autoantibodies in the serum of 51 OS cases, 28 osteochondroma (OC), and 51 normal human sera (NHS). The rank-sum test was used to compare the content of eight autoantibodies in the sera of three groups. The diagnostic value of each indicator for OS was analyzed by an ROC curve. Differential autoantibodies between OS and NHS were screened. Then, a binary logistic regression model was used to establish a prediction logistical regression model. Results: Through ELISA, the expression levels of seven autoantibodies (ENO1, GAPDH, HSP27, HSP60, PDLIM1, STMN1, and TPI1) in OS patients were identified higher than those in healthy patients (p < 0.05). By establishing a binary logistic regression predictive model, the optimal panel including three anti-TAAs (ENO1, GAPDH, and TPI1) autoantibodies was screened out. The sensitivity, specificity, Youden index, accuracy, and AUC of diagnosis of OS were 70.59%, 86.27%, 0.5686, 78.43%, and 0.798, respectively. Conclusion: The results proved that through establishing a predictive model, an optimal panel of autoantibodies could help detect OS from OC or NHS at an early stage, which could be used as a promising and powerful tool in clinical practice.
Collapse
Affiliation(s)
- Manli Luo
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan Provincial Rehabilitation Hospital, Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Songmei Wu
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan Ma
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Hong Liang
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Yage Luo
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Wentao Gu
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Lijuan Fan
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Hao
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Haiting Li
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Linbo Xing
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
13
|
Yu R, Yang S, Liu Y, Zhu Z. Identification and validation of serum autoantibodies in children with B-cell acute lymphoblastic leukemia by serological proteome analysis. Proteome Sci 2022; 20:3. [PMID: 35109855 PMCID: PMC8808998 DOI: 10.1186/s12953-021-00184-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Background B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy of childhood. Even though significant progresses have been made in the treatment of B-ALL, some pediatric B-ALL have still poor prognosis. The identification of tumor autoantibodies may have utility in early cancer diagnosis and immunotherapy. In this study, we used serological proteome analysis (SERPA) to screen serum autoantibodies of pediatric B-ALL, aiming to contribute to the early detection of B-ALL in children. Methods The total proteins from three pooled B-ALL cell lines (NALM-6, REH and BALL-1 cells) were separated using two-dimensional gel electrophoresis (2-DE), which was followed by Western blot by mixed serum samples from children with B-ALL (n=20) or healthy controls (n=20). We analyzed the images of 2-D gel and Western blot by PDQuest software, and then identified the spots of immune responses in B-ALL samples compared with those in control samples. The proteins from spots were identified using mass spectrometry (MS). The autoantibodies against alpha-enolase (α-enolase) and voltage-dependent anion-selective channel protein 1 (VDAC1) were further validated in sera from another 30 children with B-ALL and 25 normal individuals by the use of enzyme-linked immunosorbent assay (ELISA). The protein expression levels of the candidate antigens α-enolase and VDAC1 in B-ALL were thoroughly studied by immunohistochemical analysis. Results Utilizing the SERPA approach, α-enolase and VDAC1 were identified as candidate autoantigens in children with B-ALL. The frequencies of autoantibodies against α-enolase and VDAC1 in children with B-ALL were 27% and 23% by using ELISA analysis, respectively, which were significantly higher than those in normal controls (4% and 0, p<0.05). Immunohistochemical analysis showed the expression of α-enolase and VDAC1 was positive in 95% and 85% of B-ALL patients, respectively, but negative expression levels were showed in the control group. Conclusions This study incidated that α-enolase and VDAC1 may be the autoantigens associated with B-ALL. Therefore, α-enolase and VDAC1 autoantibodies may be the potential serological markers for children with B-ALL. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-021-00184-w.
Collapse
Affiliation(s)
- Runhong Yu
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China.,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shiwei Yang
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China.,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Erqi District, Zhengzhou, Henan, 450052, China
| | - Zunmin Zhu
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China. .,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China. .,Department of Hematology, People's Hospital of Zhengzhou University, Henan, Zhengzhou, China.
| |
Collapse
|
14
|
Sruthi CR, Raghu KG. Methylglyoxal induces ambience for cancer promotion in HepG2 cells via Warburg effect and promotes glycation. J Cell Biochem 2022; 123:1532-1543. [PMID: 35043457 DOI: 10.1002/jcb.30215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Methylglyoxal (MGO) is a toxic, highly reactive metabolite derived mainly from glucose and amino acids degradation. MGO is also one of the prime precursors for advanced glycation end products formation. The present research was performed to check whether MGO has any role in the promotion of cancer in HepG2 cells. For this, cells were incubated with MGO (50 µM) for 24 h and subjected to various analyses. Aminoguanidine (200 µM) was positive control. The various biochemical and protein expression studies, relevant to the MGO detoxification system, oxidative stress, and glycolysis were performed. MGO caused the reduction of expression of GLO 1 (27%) and GLO 2 (11%) causing weakening of the innate detoxification system. This is followed by an increase of RAGE (95%), AGEs or methylglyoxal adducts. We also observed hypoxia via estimation of oxygen consumption rate and surplus reactive oxygen species (ROS) (24%). To investigate the off-target effect of MGO we checked its effect on glucose transport, and its associated proteins. Glucose uptake was found to increase (15%) significantly with overexpression of GLUT 1 (35%). We also found a significant increase of glycolytic enzymes such as hexokinase II, phosphofructokinase 1, and lactate dehydrogenase along with lactate production. Observation of surplus ROS and enhanced glycolysis led us to check the expression of HIF 1α which is their downstream signaling pathway. Interestingly HIF 1α was found to increase significantly (35%). It is known that enhanced glycolysis and oxidative stress are catalysts for the overexpression of HIF 1α which in turn creates an ambience for the promotion of cancer. Aminoguanidine was able to prevent the adverse effect of MGO partially. This is the first study to show the potential of MGO for the promotion of cancer in the non-tumorigenic HepG2 cells via the Warburg effect and glycation.
Collapse
Affiliation(s)
- C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Kumar AA, Buckley BJ, Ranson M. The Urokinase Plasminogen Activation System in Pancreatic Cancer: Prospective Diagnostic and Therapeutic Targets. Biomolecules 2022; 12:152. [PMID: 35204653 PMCID: PMC8961517 DOI: 10.3390/biom12020152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy that features high recurrence rates and the poorest prognosis of all solid cancers. The urokinase plasminogen activation system (uPAS) is strongly implicated in the pathophysiology and clinical outcomes of patients with pancreatic ductal adenocarcinoma (PDAC), which accounts for more than 90% of all pancreatic cancers. Overexpression of the urokinase-type plasminogen activator (uPA) or its cell surface receptor uPAR is a key step in the acquisition of a metastatic phenotype via multiple mechanisms, including the increased activation of cell surface localised plasminogen which generates the serine protease plasmin. This triggers multiple downstream processes that promote tumour cell migration and invasion. Increasing clinical evidence shows that the overexpression of uPA, uPAR, or of both is strongly associated with worse clinicopathological features and poor prognosis in PDAC patients. This review provides an overview of the current understanding of the uPAS in the pathogenesis and progression of pancreatic cancer, with a focus on PDAC, and summarises the substantial body of evidence that supports the role of uPAS components, including plasminogen receptors, in this disease. The review further outlines the clinical utility of uPAS components as prospective diagnostic and prognostic biomarkers for PDAC, as well as a rationale for the development of novel uPAS-targeted therapeutics.
Collapse
Affiliation(s)
- Ashna A. Kumar
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Benjamin J. Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.A.K.); (B.J.B.)
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
16
|
Wang D, Fu Y, Fan J, Wang Y, Li C, Xu Y, Chen H, Hu Y, Cao H, Zhao RC, He W, Zhang J. Identification of alpha-enolase as a potential immunogenic molecule during allogeneic transplantation of human adipose-derived mesenchymal stromal cells. Cytotherapy 2021; 24:393-404. [PMID: 34863626 DOI: 10.1016/j.jcyt.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND AIMS Given their low immunogenicity, immunoregulatory effects and multiple differentiation capacity, mesenchymal stromal cells (MSCs) have the potential to be used for "off-the-shelf" cell therapy to treat various diseases. However, the allorejection of MSCs indicates that they are not fully immune-privileged. In this study, the authors investigated the immunogenicity of human adipose-derived MSCs (Ad-MSCs) and identified potential immunogenic molecules. METHODS To evaluate the immunogenicity of human Ad-MSCs in vivo, cells were transplanted into humanized mice (hu-mice), then T-cell infiltration and clearance of human Ad-MSCs were observed by immunofluorescence and bioluminescence imaging. One-way mixed lymphocyte reaction and flow cytometry were performed to evaluate the immunogenicity of human Ad-MSCs in vitro. High-throughput T-cell receptor (TCR) repertoire sequencing and mass spectrometry were applied to identified potential immunogenic molecules. RESULTS The authors observed that allogeneic Ad-MSCs recruited human T cells and caused faster clearance in hu-mice than non-humanized NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The proliferation and activation of T cells were significantly enhanced during in vitro co-culture with human Ad-MSCs. In addition, the level of HLA-II expression on human Ad-MSCs was dramatically increased after co-culture with human peripheral blood mononuclear cells (PBMCs). High-throughput sequencing was applied to analyze the TCR repertoire of the Ad-MSC-recruited T cells to identify dominant TCR CDR3 sequences. Using synthesized TCR CDR3 peptides, the authors identified several potential immunogenic candidates, including alpha-enolase (ENO1). The ENO1 expression level of Ad-MSCs significantly increased after co-culture with PBMCs, whereas ENO1 inhibitor (ENOblock) treatment decreased the expression level of ENO1 and Ad-MSC-induced proliferation of T cells. CONCLUSIONS The authors' findings improve the understanding of the immunogenicity of human Ad-MSCs and provide a theoretical basis for the safe clinical application of allogeneic MSC therapy.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Junfen Fan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Yue Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Chao Li
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Xu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China.
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China.
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Key Laboratory for T Cells and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Beijing, China.
| |
Collapse
|
17
|
Cui M, Qu F, Wang L, Liu X, Yu J, Tang Z, Cheng D. m5C RNA methyltransferase-related gene NSUN4 stimulates malignant progression of hepatocellular carcinoma and can be a prognostic marker. Cancer Biomark 2021; 33:389-400. [PMID: 34744073 DOI: 10.3233/cbm-210154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a cancer with relatively high mortality, yet little attention has been devoted for related prognostic biomarkers. This study analyzed differential expression of m5C RNA methyltransferase-related genes in normal samples and tumors samples in TCGA-LIHC using Wilcoxon test. K-means consensus clustering analysis was implemented to subdivide samples. Independent prognostic factors were screened by univariate and multivariate Cox regression analyses. KEGG pathway enrichment analysis was performed on the screened independent prognostic factor using GSEA tools. qPCR was conducted to test mRNA expression of key m5C RNA methyltransferase-related genes in tissues and cells. There were 7 m5C RNA methyltransferase-related genes (NOP2, NSUN4, etc.) differentially expressed in HCC tumor tissues. HCC samples were classified into 3 subgroups through clustering analysis according to the expression mode of m5C RNA methyltransferase-related genes. It was also discovered that patients in different subgroups presented significant differences in survival rate and distribution of grade. Additionally, NOP2, NSUN4 and NSUN5 expression notable varied in different grades. Through regression analyses combined with various clinical pathological factors, it was displayed that NSUN4 could work as an independent prognostic factor. KEGG analysis showed that NSUN4 mainly enriched in signaling pathways involved in ADHERENS JUNCTION, RNA DEGRADATION, MTOR SIGNALING PATHWAY, COMPLEMENT and COAGULATION CASCADES. As examined by qPCR, NSUN4 was conspicuously upregulated in HCC patient's tissues and cells. Altogether, our study preliminarily developed a novel biomarker that could be independently used in prognosis of HCC, which may provide a new direction for the study of related molecular mechanism or treatment regimen.
Collapse
|
18
|
Song K, Rajasekaran N, Chelakkot C, Lee HS, Paek SM, Yang H, Jia L, Park HG, Son WS, Kim YJ, Choi JS, Jeong HM, Suh YG, Yun H, Shin YK. Macrosphelide A Exhibits a Specific Anti-Cancer Effect by Simultaneously Inactivating ENO1, ALDOA, and FH. Pharmaceuticals (Basel) 2021; 14:ph14101060. [PMID: 34681284 PMCID: PMC8541406 DOI: 10.3390/ph14101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aerobic glycolysis in cancer cells, also known as the Warburg effect, is an indispensable hallmark of cancer. This metabolic adaptation of cancer cells makes them remarkably different from normal cells; thus, inhibiting aerobic glycolysis is an attractive strategy to specifically target tumor cells while sparing normal cells. Macrosphelide A (MSPA), an organic small molecule, is a potential lead compound for the design of anti-cancer drugs. However, its role in modulating cancer metabolism remains poorly understood. MSPA target proteins were screened using mass spectrometry proteomics combined with affinity chromatography. Direct and specific interactions of MSPA with its candidate target proteins were confirmed by in vitro binding assays, competition assays, and simulation modeling. The siRNA-based knockdown of MSPA target proteins indirectly confirmed the cytotoxic effect of MSPA in HepG2 and MCF-7 cancer cells. In addition, we showed that MSPA treatment in the HEPG2 cell line significantly reduced glucose consumption and lactate release. MSPA also inhibited cancer cell proliferation and induced apoptosis by inhibiting critical enzymes involved in the Warburg effect: aldolase A (ALDOA), enolase 1 (ENO1), and fumarate hydratase (FH). Among these enzymes, the purified ENO1 inhibitory potency of MSPA was further confirmed to demonstrate the direct inhibition of enzyme activity to exclude indirect/secondary factors. In summary, MSPA exhibits anti-cancer effects by simultaneously targeting ENO1, ALDOA, and FH.
Collapse
Affiliation(s)
- Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01369, Korea;
| | - Nirmal Rajasekaran
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.R.); (H.S.L.); (H.Y.)
| | | | - Hun Seok Lee
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.R.); (H.S.L.); (H.Y.)
| | - Seung-Mann Paek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Hobin Yang
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.R.); (H.S.L.); (H.Y.)
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Hee Geon Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| | - Woo Sung Son
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 13496, Korea; (W.S.S.); (Y.-G.S.)
| | - Yu-Jin Kim
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 03063, Korea;
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Hayang-ro 13-13, Gyeongsan-si 38430, Korea;
| | | | - Young-Ger Suh
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si 13496, Korea; (W.S.S.); (Y.-G.S.)
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence: (H.Y.); (Y.K.S.); Tel.: +82-51-510-2810 (H.Y.); +82-2-880-9187 (Y.K.S.)
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Korea; (N.R.); (H.S.L.); (H.Y.)
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea;
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
- Correspondence: (H.Y.); (Y.K.S.); Tel.: +82-51-510-2810 (H.Y.); +82-2-880-9187 (Y.K.S.)
| |
Collapse
|
19
|
The Indication of Poor Prognosis by High Expression of ENO1 in Squamous Cell Carcinoma of the Lung. JOURNAL OF ONCOLOGY 2021; 2021:9910962. [PMID: 34504528 PMCID: PMC8423576 DOI: 10.1155/2021/9910962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/27/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study is to investigate the significance of alpha-enolase (ENO1) expression in squamous cell carcinoma of the lung (LUSC), its prognostic value, and prospective molecular mechanism. Using multiplatforms data, including in-house immunohistochemistry, in-house real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), in-house microarray, and public high-throughput data, the expression significance and prognostic role of ENO1 in LUSC tissues were analyzed comprehensively. With the combination of all eligible cases, compared with 941 non-LUSC lung tissues, ENO1 was significantly overexpressed in 1163 cases of LUSC (standardized mean difference (SMD) = 1.23, 95% confidence interval (CI) = 0.76–1.70, P < 0.001). ENO1 also displayed a great ability to differentiate LUSC tissues from non-LUSC lung tissues (AUC = 0.8705) with the comprehensive sensitivity being 0.88 [0.83–0.92], and comprehensive specificity being 0.89 [0.84–0.94]). Moreover, in 1860 cases of LUSC with survival information, patients with higher expression of ENO1 had poorer prognosis (hazard ratio (HR) = 1.20, 95% CI = 1.01–1.43, P = 0.043). ENO1 and its related genes mainly participated in the pathways of cell division and proliferation. In conclusion, the upregulation of ENO1 could affect the carcinogenesis and unfavorable outcome of LUSC.
Collapse
|
20
|
Liu Y, Liao L, An C, Wang X, Li Z, Xu Z, Liu J, Liu S. α-Enolase Lies Downstream of mTOR/HIF1α and Promotes Thyroid Carcinoma Progression by Regulating CST1. Front Cell Dev Biol 2021; 9:670019. [PMID: 33968941 PMCID: PMC8097056 DOI: 10.3389/fcell.2021.670019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
Novel therapy strategies are crucial for thyroid carcinoma treatment. It is increasingly important to clarify the mechanism of thyroid carcinoma progression. Several studies demonstrate that α-Enolase (ENO1) participates in cancer development; nevertheless, the role of ENO1 in thyroid carcinoma progression remains unclear. In the present study, we found that the expression of ENO1 was upregulated in thyroid carcinoma samples. Proliferation and migration of thyroid carcinoma cells were suppressed by depletion of ENO1; conversely, ENO1 overexpression promoted thyroid carcinoma cell growth and invasion. To elucidate the mechanisms, we found that the hypoxia-related mTOR/HIF1 pathway regulated ENO1 expression. ENO1 regulated the expression of CST1; knockdown of CST1 reversed the tumorigenicity enhanced by ENO1 overexpression. Taken together, our findings provide a theoretical foundation for thyroid carcinoma treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lida Liao
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming An
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolei Wang
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengjiang Li
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengang Xu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoyan Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Ma Y, Liang Y, Liang N, Zhang Y, Xiao F. Identification and functional analysis of senescence-associated secretory phenotype of premature senescent hepatocytes induced by hexavalent chromium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111908. [PMID: 33440265 DOI: 10.1016/j.ecoenv.2021.111908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a common heavy metal pollutant that can cause a number of human disease, including inflammation and cancer. Senescent cells can secrete a variety of molecules known as senescence-associated secretory phenotype (SASP). Our previous studies have confirmed that Cr(VI) can induce premature senescence in L02 hepatocytes, but the composition and the function of the related SASP are still unknown. In order to understand the components of SASP secreted by senescent L02 hepatocytes under the action of Cr(VI), we applied LC-MS/MS-based label-free protein quantification. We found that three SASP components including Coactosin-like protein 1 (COTL1), Alpha-enolase (ENO1), and Peroxiredoxin 2 (PRDX2) were up-regulated, which were confirmed by western blotting and qRT-PCR. Evidence suggested that SASP may promote the development of tumor through chronic inflammatory response, therefore we identified and analyzed the potential biological functions and signaling pathways of these three SASP components using GO and KEGG methods. The interaction between SASP components was analyzed by STRING, and verified by Co-IP. We also found that ENO1 and PRDX2, which have direct interaction, can inhibit the growth and proliferation of wildtype hepatocytes and premature senescent hepatocytes, but can promote the proliferation and behavioral changes of liver tumor cells. The present study provides valuable clues for elucidation of the carcinogenic mechanism of Cr(VI), especially for further prevention and targeted treatment of Cr(VI)-related cancer.
Collapse
Affiliation(s)
- Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Ningjuan Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Yujing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
22
|
Xu W, Yang W, Wu C, Ma X, Li H, Zheng J. Enolase 1 Correlated With Cancer Progression and Immune-Infiltrating in Multiple Cancer Types: A Pan-Cancer Analysis. Front Oncol 2021; 10:593706. [PMID: 33643901 PMCID: PMC7902799 DOI: 10.3389/fonc.2020.593706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Enolase 1 (ENO1) is an oxidative stress protein expressed in endothelial cells. This study aimed to investigate the correlation of ENO1 with prognosis, tumor stage, and levels of tumor-infiltrating immune cells in multiple cancers. ENO1 expression and its influence on tumor stage and clinical prognosis were analyzed by UCSC Xena browser, Gene Expression Profiling Interactive Analysis (GEPIA), The Cancer Genome Atlas (TCGA), and GTEx Portal. The ENO1 mutation analysis was performed by cBio Portal, and demonstrated ENO1 mutation (1.8%) did not impact on tumor prognosis. The relationship between ENO1 expression and tumor immunity was analyzed by Tumor Immune Estimation Resource (TIMER) and GEPIA. The potential functions of ENO1 in pathways were investigated by Gene Set Enrichment Analysis. ENO1 expression was significantly different in tumor and corresponding normal tissues. ENO1 expression in multiple tumor tissues correlated with prognosis and stage. ENO1 showed correlation with immune infiltrates including B cells, CD8+ and CD4+ T cells, macrophages, neutrophils, and dendritic cells, and tumor purity. ENO1 was proved to be involved in DNA replication, cell cycle, apoptosis, glycolysis process, and other processes. These findings indicate that ENO1 is a potential prognostic biomarker that correlates with cancer progression immune infiltration.
Collapse
Affiliation(s)
- Wenhua Xu
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wenna Yang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chunfeng Wu
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaocong Ma
- Graduate School, Guangxi University of Chinese Medicine, Nanning City, China
| | - Haoyu Li
- Department of Ophthalmology, Jingliang Eye Hospital Affiliated to Guangxi Medical University, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jinghui Zheng
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
23
|
Hoang AT, Vizio B, Chiusa L, Cimino A, Solerio D, Do NH, Pileci S, Camandona M, Bellone G. Impact of Tissue Enolase 1 Protein Overexpression in Esophageal Cancer Progression. Int J Med Sci 2021; 18:1406-1414. [PMID: 33628097 PMCID: PMC7893569 DOI: 10.7150/ijms.52688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Enolase (ENO) 1 is a key glycolytic enzyme and important player in tumorigenesis. ENO1 overexpression has been correlated with tumor progression and/or worse prognosis in several solid malignancies. However, data concerning the impact of ENO1 in cancer conflict. The study correlated local and circulating ENO1 protein levels in esophageal cancer (EC) with clinicopathological data, to assess its potential clinical value. ENO1 expression was analyzed by immunohistochemistry in paired tumor and non-tumor tissue samples from 40 EC cases and mucosal biopsies from 45 Barrett's esophagus (BE) cases, plus in plasma from these patients and 25 matched healthy controls. ENO1 was abnormally elevated in cancer-cell cytoplasm in both EC types, in esophageal squamous cell carcinoma and in adenocarcinoma (EAC), increasing significantly with tumor stage progression and the transition from BE to EAC. EAC patients exhibited significantly lower ENO1 plasma concentrations than normal subjects. Neither local nor systemic ENO1 expression levels were significantly associated with overall survival. These results indicate ENO1 as potential biomarker, delineating a population of patients with Barrett's esophagus at high risk of cancer, and as new therapeutic opportunity in EC patient management. However, further confirmation might be necessary.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Barbara Vizio
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Luigi Chiusa
- Pathology Unit, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Antonio Cimino
- Pathology Unit, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Dino Solerio
- Department of Surgical Sciences, University of Turin, Unit of Digestive and Oncological Surgery 1U, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Nhu Hon Do
- Vietnam National Institute of Ophthalmology, Hanoi, Vietnam
| | - Stefano Pileci
- Department of Surgical Sciences, University of Turin, Unit of Digestive and Oncological Surgery 1U, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Michele Camandona
- Department of Surgical Sciences, University of Turin, Unit of Digestive and Oncological Surgery 1U, AOU City of Health and Science of Turin, 10126 Turin, Italy
| | - Graziella Bellone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
24
|
Jiang HY, Ning G, Wang YS, Lv WB. Ahypoxia-related signature enhances the prediction of the prognosis in hepatocellular carcinoma patients and correlates with sorafenib treatment response. Am J Transl Res 2020; 12:7762-7781. [PMID: 33437359 PMCID: PMC7791514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading cancer death and is the primary malignancy of the liver. Tumor hypoxia is the stressor that is involved in tumorigenesis and significantly increased the aggressiveness of HCC. Here, we systematically analyzed the expression profiles and prognostic values of 84 hypoxia associated genes in HCC. mRNA expression of 84 hypoxia associated genes and clinical parameters of HCC patients were downloaded from TCGA, GSE14520, GSE109211 and ICGC. Consensus clustering analysis was performed for unsupervised classes on the basis of 84 hypoxia associated genes. Univariate and LASSO analysis were used to develop the risk signature. A risk signature was developed, including the expression of APEX1, ATR, CTSA, DNAJC5, ENO1, EPO, HMOX1, LDHA, NDRG1, and PER1, and found to be significantly related with OS and DFS of HCC patients. We stratified HCC patients into the high-risk group and low-risk group by means of the risk signature. Patients of high-risk group had shorter OS and DFS, while that of the low-risk group had longer OS and DFS. The risk signature showed better predictive efficiency than the TNM staging in predicting OS and DFS. Also, macrophage M0 cells, regulatory T cells, and neutrophils were found to be significantly enriched in patients of high-risk group. Next, we validated the discrimination and prognostic value of the risk signature in GSE14520 and the ICGC HCC cohort. Finally, significantly lower risk scores were found in sorafenib treatment responders of GSE109211 cohort, and the AUC for predicting sorafenib treatment response was 0.881. In conclusion, a risk signature developed with the expression of 10 hypoxia associated genes improved the prognosis prediction of HCC and correlated with sorafenib treatment response.
Collapse
Affiliation(s)
- Hong-Ye Jiang
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)Foshan 528308, Guangdong Province, PR China
| | - Gang Ning
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Diseases Center, Guangzhou First People’s Hospital, South China University of TechnologyGuangzhou, Guangdong Province, PR China
| | - Yen-Sheng Wang
- Department of Medicine, Chang-Gung Memorial HospitalLinkou, Taiwan, PR China
| | - Wei-Biao Lv
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde)Foshan 528308, Guangdong Province, PR China
| |
Collapse
|
25
|
Wu S, Tseng IC, Huang WC, Su CW, Lai YH, Lin C, Lee AYL, Kuo CY, Su LY, Lee MC, Hsu TC, Yu CH. Establishment of an Immunocompetent Metastasis Rat Model with Hepatocyte Cancer Stem Cells. Cancers (Basel) 2020; 12:cancers12123721. [PMID: 33322441 PMCID: PMC7764036 DOI: 10.3390/cancers12123721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality. Cancer stem cells (CSCs) are responsible for the maintenance, metastasis, and relapse of various tumors. The effects of CSCs on the tumorigenesis of HCC are still not fully understood, however. We have recently established two new rat HCC cell lines HTC and TW-1, which we isolated from diethylnitrosamine-induced rat liver cancer. Results showed that TW-1 expressed the genetic markers of CSCs, including CD133, GSTP1, CD44, CD90, and EpCAM. Moreover, TW-1 showed higher tolerance to sorafenib than HTC did. In addition, tumorigenesis and metastasis were observed in nude mice and wild-type rats with TW-1 xenografts. Finally, we combined highly expressed genes in TW-1/HTC with well-known biomarkers from recent HCC studies to predict HCC-related biomarkers and able to identify HCC with AUCs > 0.9 after machine learning. These results indicated that TW-1 was a novel rat CSC line, and the mice or rat models we established with TW-1 has great potential on HCC studies in the future.
Collapse
Affiliation(s)
- Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| | - I-Chieh Tseng
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Wen-Cheng Huang
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Cheng-Wen Su
- License Biotech, Co., Ltd., Taipei 10690, Taiwan; (W.-C.H.); (C.-W.S.)
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Che Lin
- Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan;
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Li-Yu Su
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan; (C.-Y.K.); (L.-Y.S.); (M.-C.L.)
| | - Te-Cheng Hsu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taipei 30013, Taiwan;
| | - Chun-Hsien Yu
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
- Department of Pediatrics, School of Medicine, Tzu Chi University, Hualien 97071, Taiwan
- Correspondence: (S.W.); (C.-H.Y.); Tel.: +886-2-2861-0511(ext. 26234) (S.W.); +886-2-66289779 (C.-H.Y.); Fax: +886-2-2862-3724 (S.W.); +886-2-66289009 (C.-H.Y.)
| |
Collapse
|
26
|
Sheng KL, Kang L, Pridham KJ, Dunkenberger LE, Sheng Z, Varghese RT. An integrated approach to biomarker discovery reveals gene signatures highly predictive of cancer progression. Sci Rep 2020; 10:21246. [PMID: 33277589 PMCID: PMC7718261 DOI: 10.1038/s41598-020-78126-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/13/2020] [Indexed: 12/25/2022] Open
Abstract
Current cancer biomarkers present variability in their predictive power and demonstrate limited clinical efficacy, possibly due to the lack of functional relevance of biomarker genes to cancer progression. To address this challenge, a biomarker discovery pipeline was developed to integrate gene expression profiles from The Cancer Genome Atlas and essential survival gene datasets from The Cancer Dependency Map, the latter of which catalogs genes driving cancer progression. By applying this pipeline to lung adenocarcinoma, lung squamous cell carcinoma, and glioblastoma, genes highly associated with cancer progression were identified and designated as progression gene signatures (PGSs). Analysis of area under the receiver operating characteristics curve revealed that PGSs predicted patient survival more accurately than previously identified cancer biomarkers. Moreover, PGSs stratified patients with high risk for progressive disease indicated by worse prognostic outcomes, increased frequency of cancer progression, and poor responses to chemotherapy. The robust performance of these PGSs were recapitulated in four independent microarray datasets from Gene Expression Omnibus and were further verified in six freshly dissected tumors from glioblastoma patients. Our results demonstrate the power of an integrated approach to cancer biomarker discovery and the possibility of implementing PGSs into clinical biomarker tests.
Collapse
Affiliation(s)
- Kevin L Sheng
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Kevin J Pridham
- Fralin Biomedical Research Institute at VTC, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Logan E Dunkenberger
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
- Fralin Biomedical Research Institute at VTC, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Zhi Sheng
- Fralin Biomedical Research Institute at VTC, 2 Riverside Circle, Roanoke, VA, 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Faculty of Health Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA, 24060, USA.
| |
Collapse
|
27
|
Zhang L, Lu T, Yang Y, Hu L. α-enolase is highly expressed in liver cancer and promotes cancer cell invasion and metastasis. Oncol Lett 2020; 20:152. [PMID: 32934720 PMCID: PMC7471668 DOI: 10.3892/ol.2020.12003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
The expression levels of α-enolase, also known as enolase 1 (ENO1), in liver cancer tissues and the autoantibody levels of ENO1 in the sera of patients with liver cancer were detected to investigate the function of ENO1 in the invasion and metastasis of liver cancer, as well as its clinical diagnostic value. Small interfering RNA (siRNA) was used to disrupt ENO1 gene expression in HepG2 and Huh7 liver cancer cells. The proliferation ability of liver cancer cells was assessed using Cell Counting Kit-8 (CCK-8); the migration ability of liver cancer cells was assessed using scratch tests; and the migration and invasion abilities of liver cancer cells were assessed using Transwell assays. ENO1 expression in liver cancer tissues (43.8%) was significantly higher than that in benign liver lesions (15.2%) (P=0.005). The serum anti-ENO1 antibody levels in the liver cancer group were significantly higher than those in the control and benign liver lesion groups (P<0.001). After ENO1 gene interference, the proliferation, migration and invasion abilities of HepG2 and Huh7 liver cancer cells exhibited different degrees of suppression. The results revealed that ENO1 promotes liver cancer invasion and metastasis; ENO1 plays an important role in liver cancer and can be used as a potential liver cancer-associated marker.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Tao Lu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Ye Yang
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Liangfeng Hu
- Department of Clinical Laboratory Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
28
|
Gholizadeh MA, Shamsabadi FT, Yamchi A, Golalipour M, Jhingan GD, Shahbazi M. Identification of hub genes associated with RNAi-induced silencing of XIAP through targeted proteomics approach in MCF7 cells. Cell Biosci 2020; 10:78. [PMID: 32537125 PMCID: PMC7291505 DOI: 10.1186/s13578-020-00437-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background The X-linked inhibitor of apoptosis protein (XIAP) is the most potent caspase inhibitor of the IAP family in apoptosis pathway. This study aims to identify the molecular targets of XIAP in human breast cancer cells exposed to XIAP siRNA by proteomics screening. The expression of XIAP was reduced in MCF-7 breast cancer cells by siRNA. Cell viability and the mRNA expression level of this gene were evaluated by MTS and quantitative real-time PCR procedures, respectively. Subsequently, the XIAP protein level was visualized by Western blotting and analyzed by two-dimensional (2D) electrophoresis and LC–ESI–MS/MS. Results Following XIAP silencing, cell proliferation was reduced in XIAP siRNA transfected cells. The mRNA transcription and protein expression of XIAP were decreased in cells exposed to XIAP siRNA than si-NEG. We identified 30 proteins that were regulated by XIAP, of which 27 down-regulated and 3 up-regulated. The most down-regulated proteins belonged to the Heat Shock Proteins family. They participate in cancer related processes including apoptosis and MAPK signaling pathway. Reduced expression of HSP90B1 was associated with apoptosis induction by androgen receptor and prostate specific antigen. Suppression of XIAP resulted in the enhancement of GDIB, ENO1, and CH60 proteins expression. The network analysis of XIAP-regulated proteins identified HSPA8, HSP90AA1, ENO1, and HSPA9 as key nodes in terms of degree and betweenness centrality methods. Conclusions These results suggested that XIAP may have a number of biological functions in a diverse set of non-apoptotic signaling pathways and may provide an insight into the biomedical significance of XIAP over-expression in MCF-7 cells.
Collapse
Affiliation(s)
- Mehdi Agha Gholizadeh
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Zip Code: 4934174515, Gorgan, Iran
| | - Fatemeh T Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Zip Code: 4934174515, Gorgan, Iran
| | - Ahad Yamchi
- Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Zip Code: 4934174515, Gorgan, Iran
| | - Gagan Deep Jhingan
- VProteomics, K-37A, Ground Floor Green Park Main, New Delhi, 110016 India
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Zip Code: 4934174515, Gorgan, Iran.,AryaTinaGene Biopharmaceutical Company, Gorgan, Iran
| |
Collapse
|
29
|
Chen JMM, Chiu SC, Chen KC, Huang YRJ, Liao YTA, Yu CTR. Enolase 1 differentially contributes to cell transformation in lung cancer but not in esophageal cancer. Oncol Lett 2020; 19:3189-3196. [PMID: 32256815 PMCID: PMC7074250 DOI: 10.3892/ol.2020.11427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Enolase transforms 2-phospho-D-glycerate into phosphoenolpyruvate during glycolysis. The human enolase (ENO) family comprises three members named ENO3, which is restricted to muscle tissues, ENO2, which is neuron- and neuroendocrine tissue-specific, and ENO1, which is expressed in almost all tissues. ENO1 is involved in various types of human cancer, including retinoblastoma, hepatocellular carcinoma, pancreatic cancer, renal cell carcinoma, cholangiocarcinoma and gastric cancer. Furthermore, ENO1 enhances cell transformation in numerous cancer cell lines. It has been reported that ENO1 is involved in various activities that are detrimental to cell transformation, including apoptosis and differentiation. However, a few studies demonstrated that ENO1 can be down- or upregulated in various types of lung cancer, which suggests that ENO1 has an ambiguous role in the development of lung cancer. The present study aimed to investigate the differential influences of ENO1 on various types of cancer, and to clarify the role of ENO1 in lung cancer in particular. Western blotting was performed to assess ENO1 protein expression levels in lung cancer and esophageal cancer tissues. Furthermore, exogenous ENO1 was overexpressed in cell lines derived from various tissues and single cell proliferation, flowcytometric analysis, and western blotting were performed to determine the cell proliferation rate, cell transformation status, cell cycle progression and the expression of cell cycle regulators, such as cyclins and cyclin-dependent kinases, and survival factors, such as MAPK and AKT. The results demonstrated that ENO1 was upregulated in collected panels of lung cancer tissues, but not in esophageal cancer tissues. In addition, overexpression of ectopic ENO1 promoted cell proliferation and survival in lung cancer cell lines, which was not the case in other cells, including an esophageal cell line. Furthermore, mechanistic analyses revealed that ENO1 enhanced cell proliferation by accelerating G1 progression and upregulating G1 phase cyclin-dependent kinase 6 (CDK6), and improved cell survival by upregulating p38 in the MAPK cascade and increasing p-AKT in the AKT cascade, in particular in lung cancer cell lines. Overall, the results from the present study demonstrated that ENO1 may contribute to the development of lung cancers, but not esophageal cancers.
Collapse
Affiliation(s)
- Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan, R.O.C
| | - Shao-Chih Chiu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C.,Graduate Institute of Immunology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C.,Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Yun-Ru Jaoying Huang
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan, R.O.C
| | - Yu-Ting Amber Liao
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan, R.O.C.,Center for Neuropsychiatry, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou 54561, Taiwan, R.O.C
| |
Collapse
|
30
|
Zhang Y, Liu X, Liu L, Li J, Hu Q, Sun R. Expression and Prognostic Significance of m6A-Related Genes in Lung Adenocarcinoma. Med Sci Monit 2020; 26:e919644. [PMID: 32086933 PMCID: PMC7049251 DOI: 10.12659/msm.919644] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of lung malignancy and is the leading cause of cancer-related mortalities worldwide. N6-methyladenosine (m6A), the most prevalent internal modification of mRNAs, plays crucial roles in regulating mRNA splicing, exportation, localization, translation, and stability. This study assessed the expression patterns and prognostic value of m6A-related genes in LUAD. Material/Methods The expression data of 509 LUAD samples and 20 normal samples were obtained from the Cancer Genome Atlas (TCGA) to determine the mRNA expression levels of m6A-related genomic targets. mRNA expression of 6 LUAD datasets was obtained from the Gene Expression Omnibus (GEO) repository. Subsequently, the Human Protein Atlas (HPA) and tissue microarray (TMA) cohort were used to verify the expression pattern of m6A-related genes at mRNA and protein level. The t test was used to analyze correlations between m6A-related genes and clinical features. Finally, survival analysis was performed to assess the prognostic value of m6A-related genes in LUAD patients. Results We found that KIAA1429, RBM15, METTL3, HNRNPC, HNRNPA2B1, YTHDF1, and YTHDF2 were upregulated in TCGA-LUAD databases. The analysis of 7 GEO databases was consistent with the TCGA. YTHDF1 was overexpressed in LUAD patients and YTHDF2 was overexpressed in the great majority of cases. METTL3, YTHDF1, and YTHDF2 were associated with better OS and RFS. Conclusions m6A-related genes were differentially expressed in LUAD compared to matched normal patients. The m6A-related genes METTL3, YTHDF1, and YTHDF2 could serve as novel biomarkers for the prognosis of LUAD.
Collapse
Affiliation(s)
- Yingying Zhang
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xin Liu
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Liwen Liu
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Jianhao Li
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Qiuyue Hu
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Ranran Sun
- Precision Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland).,Key Laboratory of Clinical Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
31
|
Hyperglycemia promotes Snail-induced epithelial-mesenchymal transition of gastric cancer via activating ENO1 expression. Cancer Cell Int 2019; 19:344. [PMID: 31889896 PMCID: PMC6924061 DOI: 10.1186/s12935-019-1075-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. Emerging evidence indicates that hyperglycemia promotes tumor progression, especially the processes of migration, invasion and epithelial-mesenchymal transition (EMT). However, the underlying mechanisms of GC remain unclear. Method Data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to detect the expression of glycolysis-related enzymes and EMT-related transcription factors. Small interfering RNA (siRNA) transfection was performed to decrease ENO1 expression. Immunohistochemistry (IHC), Western blot and qRT-PCR analyses were used to measure gene expression at the protein or mRNA level. CCK-8, wound-healing and Transwell assays were used to assess cell proliferation, migration and invasion. Results Among the glycolysis-related genes, ENO1 was the most significantly upregulated in GC, and its overexpression was correlated with poor prognosis. Hyperglycemia enhanced GC cell proliferation, migration and invasion. ENO1 expression was also upregulated with increasing glucose concentrations. Moreover, decreased ENO1 expression partially reversed the effect of high glucose on the GC malignant phenotype. Snail-induced EMT was promoted by hyperglycemia, and suppressed by ENO1 silencing. Moreover, ENO1 knockdown inhibited the activation of transforming growth factor β (TGF-β) signaling pathway in GC. Conclusions Our results indicated that hyperglycemia induced ENO1 expression to trigger Snail-induced EMT via the TGF-β/Smad signaling pathway in GC.
Collapse
|
32
|
Khazaei G, Shamsabadi FT, Yamchi A, Golalipour M, Jhingan GD, Shahbazi M. Proteomics evaluation of MDA-MB-231 breast cancer cells in response to RNAi-induced silencing of hPTTG. Life Sci 2019; 239:116873. [PMID: 31521689 DOI: 10.1016/j.lfs.2019.116873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022]
Abstract
AIMS Breast cancer is the most common cancer in women worldwide. Several genes are up-regulated in breast cancer such as human pituitary tumor transforming gene (hPTTG). This study aims to evaluate cell proliferation and the downstream expression pattern of hPTTG1 gene at the mRNA and protein levels after specific down-regulation of hPTTG1 by siRNA. MAIN METHODS The human breast cancer MDA-MB-231 cell line was transfected with siRNA against hPTTG1. The mRNA and protein expression levels were examined by Real-time PCR and Western blot, respectively. The cell proliferation was assayed by MTS. To investigate the pattern of protein expression, total cellular protein was analyzed by 2D gel electrophoresis and mass spectroscopy. Subsequently, the possible biological consequences were determined by the bioinformatics databases. KEY FINDINGS Subsequent of hPTTG1 silencing in the MDA_MB-231 cells, the proliferation of cells decreased obviously. In response to hPTTG1 silencing, the levels mRNA and protein were effectively down-regulated 80% and 50%, respectively, at 48 h post-transfection. The proteomics evidenced that PTTG1 increased the expression of 5 proteins. The reduced expression of PTTG1 was functionally involved in hypoxia (NPM1, ENO1), cell proliferation and apoptosis (ENO1, NPM1, NME1, STMN1), and metastasis (NPM1, NME1). SIGNIFICANCE We identified the hPTTG1-regulated proteins and its molecular mechanism in pathogenesis of breast cancer. Further study emphasis is to understand the association of hPTTG1 with other genes in cancer progression. This novel modality might also consider for identification of targeted drugs, prognosis and follow up in breast cancer gene therapy.
Collapse
Affiliation(s)
- Ghasem Khazaei
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh T Shamsabadi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahad Yamchi
- Department of Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Masoud Golalipour
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gagan Deep Jhingan
- VProteomics, K-37A, Ground Floor Green Park Main, New Delhi 110016, India
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; AryaTinaGene Biopharmaceutical Company, Gorgan, Iran.
| |
Collapse
|
33
|
Up-regulated ENO1 promotes the bladder cancer cell growth and proliferation via regulating β-catenin. Biosci Rep 2019; 39:BSR20190503. [PMID: 31431517 PMCID: PMC6734116 DOI: 10.1042/bsr20190503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) is the ninth most common malignancy throughout the world. The molecular mechanisms of this disease remain largely unclear. The glycolytic enzyme enolase 1 (ENO1) has been shown to regulate the development of various cancers. However, the significance of ENO1 in BC is underdetermined. In this study, we found that ENO1 was highly expressed in BC tissues and cells. High expression of ENO1 was associated with the poor survival of BC patients. Using lentivirus-mediated knockdown and over-expression, we revealed that ENO1 was critical for the growth and proliferation of BC cells. ENO1 over-expression also promoted the proliferation of SV-HUC-1 cells. At the molecular level, the cell cycle and apoptosis related genes were regulated by ENO1. β-catenin expression was positively regulated by ENO1. Furthermore, ectopic expression of β-catenin reversed the effect of ENO1 knockdown on T24 cell proliferation and growth. Opposite results were observed in β-catenin knockdown T24 cells. Our findings suggested that ENO1 functioned as an oncogene in BC through regulating cell cycle, apoptosis and β-catenin. Targeting ENO1/β-catenin cascade may benefit for BC patients.
Collapse
|
34
|
Liu X, Liu L, Dong Z, Li J, Yu Y, Chen X, Ren F, Cui G, Sun R. Expression patterns and prognostic value of m 6A-related genes in colorectal cancer. Am J Transl Res 2019; 11:3972-3991. [PMID: 31396313 PMCID: PMC6684930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/29/2019] [Indexed: 06/10/2023]
Abstract
Colorectal cancer (CRC), including colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ), is one of the most prevalent malignancies worldwide. N6-methyladenosine (m6A) is a ubiquitous RNA modification that plays a vital role in human tumors, but its expression patterns and prognostic value in CRC have not yet been determined. Here, we first used the Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO) and the Human Protein Atlas (HPA) databases and a tissue microarray (TMA) cohort to verify the expression of m6A-related genes at the mRNA and protein levels. We found that most m6A-related genes were substantially upregulated in tumor tissues compared with normal tissues, but METTL14, YTHDF3 and ALKBH5 were downregulated in CRC. There was no obvious difference in FTO. In addition, WTAP, METTL16, HNRNPC and YTHDC1 were abundantly expressed in COAD but not in READ. Moreover, immunofluorescence (IF) analyses of SW480 and HCT116 cells showed that most of the m6A-related proteins were expressed in the nucleus and cytoplasm. Survival analysis demonstrated that the expression levels of METTL3, METTL14, METTL16, FTO and ALKBH5 were associated with the clinical outcomes of CRC patients. Taken together, all the results revealed that m6A-related genes were dysregulated in CRC and might play a significant role in the progression of CRC.
Collapse
Affiliation(s)
- Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Zihui Dong
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Jianhao Li
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Yan Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Xiaolong Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Fang Ren
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
- National Engineering Laboratory for Internet Medical System and Application, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, China
| |
Collapse
|