1
|
Tong X, Ma L, Wu D, Liu Y, Liu Y. Comprehensive landscape of integrator complex subunits and their association with prognosis and tumor microenvironment in gastric cancer. Open Med (Wars) 2024; 19:20240997. [PMID: 39027882 PMCID: PMC11255557 DOI: 10.1515/med-2024-0997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Backgrounds The integrator complex (INT) is a multiprotein assembly in gene transcription. Although several subunits of INT complex have been implicated in multiple cancers, the complex's role in gastric cancer (GC) is poorly understood. Methods The gene expressions, prognostic values, and the associations with microsatellite instability (MSI) of INT subunits were confirmed by GEO and The Cancer Genome Atlas (TCGA) databases. cBioPortal, GeneMANIA, TISIDB, and MCPcounter algorithm were adopted to investigate the mutation frequency, protein-protein interaction network, and the association with immune cells of INT subunits in GC. Additionally, in vitro experiments were performed to confirm the role of INTS11 in pathogenesis of GC. Results The mRNA expression levels of INTS2/4/5/7/8/9/10/11/12/13/14 were significantly elevated both in GSE183904 and TCGA datasets. Through functional enrichment analysis, the functions of INT subunits were mainly associated with snRNA processing, INT, and DNA-directed 5'-3' RNA polymerase activity. Moreover, these INT subunit expressions were associated with tumor-infiltrating lymphocytes and MSI in GC. In vitro experiments demonstrated that knockdown of the catalytic core INTS11 in GC cells inhibits cell proliferation ability. INTS11 overexpression showed opposite effects. Conclusions Our data demonstrate that the INT complex might act as an oncogene and can be used as a prognosis biomarker for GC.
Collapse
Affiliation(s)
- Xiaoxia Tong
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 201700, Shanghai, China
| | - Li Ma
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 201700, Shanghai, China
| | - Di Wu
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 201700, Shanghai, China
| | - Yibing Liu
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 201700, Shanghai, China
| | - Yonglei Liu
- Experimental Research Center, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 East Gongyuan Road, 201700, Shanghai, China
| |
Collapse
|
2
|
Xu Y, Liao W, Wang T, Zhang L, Zhang H. Comprehensive bioinformatics analysis of integrator complex subunits: expression patterns, immune infiltration, and prognostic signature, validated through experimental approaches in hepatocellular carcinoma. Discov Oncol 2024; 15:246. [PMID: 38926181 PMCID: PMC11208364 DOI: 10.1007/s12672-024-01118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common gastrointestinal malignancy with a high incidence and poor prognosis. The subunits of the integrator complex (INTS1-14) play a crucial role in regulating genes dependent on RNA Polymerase II, which may be associated with cancer. However, the role of INTSs in HCC remains unclear. This study aims to comprehensively analyze the clinical value and potential role of INTS family genes in HCC through systematic bioinformatics analysis. METHODS We employed various public databases, including UALCAN, HPA, Kaplan-Meier Plotter, GEPIA2, TNMplot, STRING, TIMER, and TISIDB, to investigate the expression levels, clinicopathological correlations, diagnostic and prognostic value, genetic alterations, co-expression network, molecular targets, and immune infiltration of INTSs in HCC. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to investigate the biological functions of genes associated with INTSs. Furthermore, Western blot, real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-qPCR), and immunohistochemistry techniques were employed to assess the expression of relevant proteins and genes. The proliferation of HCC cells was evaluated using the CCK8 assay. RESULTS We found that in HCC, there was a significant upregulation of INTSs at the transcriptional level, particularly INTS1, INTS4, INTS7, and INTS8. Additionally, the protein levels of INTS1 and INTS8 were notably elevated. The overexpression of these INTSs was strongly correlated with tumor stages in HCC patients. INTS1, INTS4, INTS7, and INTS8 exhibited significant diagnostic and prognostic value in HCC. Moreover, their expression was associated with immune infiltrations and activated status, including B cells, CD8 + T cells, CD4 + T cells, NK cells, macrophages, and dendritic cells. Functional predictions indicated that INTS1, INTS4, INTS7, and INTS8 were involved in various cancer-related signaling pathways, such as TRAIL, IFN-gamma, mTOR, CDC42, Apoptosis, and the p53 pathway. Furthermore, we observed a significant upregulation of INTS1, INTS4, INTS7, and INTS8 expression in HCC cell lines compared to normal liver cell lines. The level of INTS1 protein was higher in cancerous tissues compared to adjacent non-cancerous tissues (n = 16), and the suppression of INTS1 resulted in a significant decrease in the proliferation of Huh7 cells. CONCLUSION These findings indicate the potential of INTS family genes as diagnostic biomarkers and therapeutic targets in HCC. Further research is needed to understand the underlying mechanisms and explore clinical applications.
Collapse
Affiliation(s)
- Yifei Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenlian Liao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ting Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liwei Zhang
- Department of Anesthesiology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, Fujian, China.
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Wang B, Du Z, Lin C, Liu D, Guo J, Shi J, Wang X. Comprehensive analysis of INTS family related to expression, prognosis, diagnosis and immune features in hepatocellular carcinoma. Heliyon 2024; 10:e30244. [PMID: 38720706 PMCID: PMC11076979 DOI: 10.1016/j.heliyon.2024.e30244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose The integrator subunit (INTS) family, a group exclusive to metazoans, participates in various biologic processes. However, their roles in hepatocellular carcinoma (HCC) remain largely unexplored. Methods Public databases were utilized to investigate the transcriptional and protein expression, and clinical relevance of the INTS family in HCC. Meanwhile, the effects of INTS13 knockdown and overexpression on cell proliferation and apoptosis were studied using HCC cell lines. Results The mRNA expression of most INTSs were higher in tumor than normal tissues. Higher expression of INTS1/2/3/4/7/8/9/11/12/13 were correlated with poorer overall survival (OS) in Kaplan-Meier Survival Analysis. Multivariate analysis revealed higher level of INTS13 was an independent prognostic factor for shorter OS. Furthermore, genetic alteration of INTS3/6/7/8/9/10 were found in HCC patients and was associated with shorter disease-free survival and progression-free survival. INTS1/2/3/5/7/11/13/14 were associated with activation of tumor-induced immune response and immune infiltration in HCC. Knockdown of INTS13 inhibited cell proliferation and induced apoptosis in HCC cell lines, while overexpression of INTS13 had the opposite effect. Conclusion Our results indicate that INTS13 is an independent prognostic biomarker in HCC. Furthermore, INTS13 enhances cell proliferation and decreases cell apoptosis in HCC cell lines leading to a poorer OS in HCC patients.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Science and Education, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zifei Du
- Department of Science and Education, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - ChongSen Lin
- Department of Orthopedics, Huizhou Hospital of Guangzhou University of Chinese Medicine, Huicheng, Guangdong, China
| | - Dandan Liu
- Department of Respiratory Medicine, Taixing Hospital of TCM, Taixing, Jiangsu, China
| | - Jiewen Guo
- Department of Science and Education, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiawei Shi
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaobo Wang
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Lin YC, Chang PC, Hueng DY, Huang SM, Li YF. Decoding the prognostic significance of integrator complex subunit 9 (INTS9) in glioma: links to TP53 mutations, E2F signaling, and inflammatory microenvironments. Cancer Cell Int 2023; 23:154. [PMID: 37537630 PMCID: PMC10401760 DOI: 10.1186/s12935-023-03006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
INTRODUCTION Gliomas, a type of brain neoplasm, are prevalent and often fatal. Molecular diagnostics have improved understanding, but treatment options are limited. This study investigates the role of INTS9 in processing small nuclear RNA (snRNA), which is crucial to generating mature messenger RNA (mRNA). We aim to employ advanced bioinformatics analyses with large-scale databases and conduct functional experiments to elucidate its potential role in glioma therapeutics. MATERIALS AND METHODS We collected genomic, proteomic, and Whole-Exon-Sequencing data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) for bioinformatic analyses. Then, we validated INTS9 protein expression through immunohistochemistry and assessed its correlation with P53 and KI67 protein expression. Gene Set Enrichment Analysis (GSEA) was performed to identify altered signaling pathways, and functional experiments were conducted on three cell lines treated with siINTS9. Then, we also investigate the impacts of tumor heterogeneity on INTS9 expression by integrating single-cell sequencing, 12-cell state prediction, and CIBERSORT analyses. Finally, we also observed longitudinal changes in INTS9 using the Glioma Longitudinal Analysis (GLASS) dataset. RESULTS Our findings showed increased INTS9 levels in tumor tissue compared to non-neoplastic components, correlating with high tumor grading and proliferation index. TP53 mutation was the most notable factor associated with upregulated INTS9, along with other potential contributors, such as combined chromosome 7 gain/10 loss, TERT promoter mutation, and increased Tumor Mutational Burden (TMB). In GSEA analyses, we also linked INTS9 with enhanced cell proliferation and inflammation signaling. Downregulating INTS9 impacted cellular proliferation and cell cycle regulation during the function validation. In the context of the 12 cell states, INTS9 correlated with tumor-stem and tumor-proliferative-stem cells. CIBERSORT analyses revealed increased INTS9 associated with increased macrophage M0 and M2 but depletion of monocytes. Longitudinally, we also noticed that the INTS9 expression declined during recurrence in IDH wildtype. CONCLUSION This study assessed the role of INTS9 protein in glioma development and its potential as a therapeutic target. Results indicated elevated INTS9 levels were linked to increased proliferation capacity, higher tumor grading, and poorer prognosis, potentially resulting from TP53 mutations. This research highlights the potential of INTS9 as a promising target for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, 325, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
| | - Pei-Chi Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
- Department of Neurologic Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
- Department of Biochemistry, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China
| | - Yao-Feng Li
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China.
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China.
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipe, 114, Taiwan, Republic of China.
| |
Collapse
|
5
|
Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol 2023; 24:204-220. [PMID: 36180603 PMCID: PMC9974566 DOI: 10.1038/s41580-022-00534-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.
Collapse
|
6
|
Feng F, Zhao Z, Cai X, Heng X, Ma X. Cyclin-dependent kinase subunit2 (CKS2) promotes malignant phenotypes and epithelial-mesenchymal transition-like process in glioma by activating TGFβ/SMAD signaling. Cancer Med 2023; 12:5889-5907. [PMID: 36284444 PMCID: PMC10028050 DOI: 10.1002/cam4.5381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Gliomas are a group of primary intracranial tumors with high morbidity and mortality. The previous researches indicated a crucial role of CKS2 (cyclin-dependent kinases regulatory subunit 2) in hepatocellular carcinoma and breast cancer; however, little is known about the molecular mechanism of CKS2 in the tumorigenesis and epithelial-mesenchymal transition-like (EMT) process in glioma. METHODS Datasets for bioinformatics analysis were obtained from the GEO, TCGA and CGGA databases. qRT-PCR, western blotting (WB), and immunohistochemistry (IHC) assays were used to investigate the expression patterns of CKS2 among glioma and brain tissues. Glioma cells were transfected with small interfering RNA/overexpression plasmid against CKS2, then clone formation assay, CCK-8, wound healing, Transwell assay, and flow cytometry were performed to detect changes in cell viability, invasiveness, and the apoptosis rate. Markers of cell invasion, apoptosis, EMT and TGFβ/SMAD signaling were evaluated by WB and immunofluorescence (IF) assays. RESULTS We found that CKS2 overexpression correlates with poor prognosis in human glioma and knockdown of CKS2 could inhibit cell proliferation, migration, invasion, and induced apoptosis in glioma cells. Besides, we also found that knockdown of CKS2 could reverse the EMT process via modulating EMT-related molecules. Glioma cells with overexpression of CKS2 were constructed to confirmed the fact that CKS2 induced nucleocytoplasmic translocation of SMAD2/3 and activated TGFβ/SMAD pathway, then upregulated its downstream targets expression, while inhibition of TGFβ/SMAD (by TGFβ inhibitor LY2157299 or SMAD4 siRNA) could reverse the tumor-promoting effects and malignant phenotype caused by CKS2 overexpression. CONCLUSIONS We identified CKS2 as a critical contributor to the gliomagenesis, which might provide a novel therapeutic target for inhibiting the spread and infiltration of glioma.
Collapse
Affiliation(s)
- Fan Feng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Institute of Brain Science and Brain-Like Intelligence, Linyi People's Hospital, Linyi, China
- Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Zongqing Zhao
- Institute of Brain Science and Brain-Like Intelligence, Linyi People's Hospital, Linyi, China
- Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Xuechang Cai
- Department of Neurosurgery, Qingdao Huangdao District Central Hospital, Qingdao, China
| | - Xueyuan Heng
- Institute of Brain Science and Brain-Like Intelligence, Linyi People's Hospital, Linyi, China
- Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| | - Ximeng Ma
- Department of Neurosurgery, Linyi People's Hospital, Linyi, China
| |
Collapse
|
7
|
Zhou Q, Ji L, Shi X, Deng D, Guo F, Wang Z, Liu W, Zhang J, Xia S, Shang D. INTS8 is a therapeutic target for intrahepatic cholangiocarcinoma via the integration of bioinformatics analysis and experimental validation. Sci Rep 2021; 11:23649. [PMID: 34880328 PMCID: PMC8654853 DOI: 10.1038/s41598-021-03017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (CHOL) remains a rare malignancy, ranking as the leading lethal primary liver cancer worldwide. However, the biological functions of integrator complex subunit 8 (INTS8) in CHOL remain unknown. Thus, this research aimed to explore the potential role of INTS8 as a novel diagnostic or therapeutic target in CHOL. Differentially expressed genes (DEGs) in two Gene Expression Omnibus (GEO) datasets were obtained by the “RRA” package in R software. The “maftools” package was used to visualize the CHOL mutation data from The Cancer Genome Atlas (TCGA) database. The expression of INTS8 was detected by performing quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemistry in cell lines and human samples. The association between subtypes of tumour-infiltrating immune cells (TIICs) and INTS8 expression in CHOL was determined by using CIBERSORT tools. We evaluated the correlations between INTS8 expression and mismatch repair (MMR) genes and DNA methyltransferases (DNMTs) in pan-cancer analysis. Finally, the pan-cancer prognostic signature of INTS8 was identified by univariate analysis. We obtained the mutation landscapes of an RRA gene set in CHOL. The expression of INTS8 was upregulated in CHOL cell lines and human CHOL samples. Furthermore, INTS8 expression was closely associated with a distinct landscape of TIICs, MMR genes, and DNMTs in CHOL. In addition, the high INTS8 expression group presented significantly poor outcomes, including overall survival (OS), disease-specific survival (DSS) and disease-free interval (DFI) (p < 0.05) in pan-cancer. INTS8 contributes to the tumorigenesis and progression of CHOL. Our study highlights the significant role of INTS8 in CHOL and pan-cancers, providing a valuable molecular target for cancer research.
Collapse
Affiliation(s)
- Qi Zhou
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, China
| | - Li Ji
- Gastroenterology Department, DongZhiMen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing, China
| | - Xueying Shi
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, China
| | - Dawei Deng
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, China
| | - Fangyue Guo
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, China
| | - Zhengpeng Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, China
| | - Wenhui Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, China
| | - Jinnan Zhang
- Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, China.
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, China. .,Institute (College) of Integrative Medicine, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, China. .,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, China.
| |
Collapse
|
8
|
Predicting the Clinical Outcome of Lung Adenocarcinoma Using a Novel Gene Pair Signature Related to RNA-Binding Protein. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8896511. [PMID: 33195699 PMCID: PMC7643376 DOI: 10.1155/2020/8896511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Adenocarcinoma is the most common type of lung cancer, and patients have varying prognoses. RNA-binding proteins (RBP) are deemed to be closely associated with tumorigenesis and development, but the exact mechanism is currently unknown. This study was aimed at constructing a new robust prognostic model based on RNA-binding protein-related gene pair scores for better clinical guidance. The model for this study was constructed based on data of lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database. Prognosis-related RBP gene pair models were created based on differentially expressed genes, and the accuracy of the models was verified in a different age, staging, and other subdatasets. A total of 379 RNA-binding protein-related genes were differentially expressed in tumor tissue. From these genes, we constructed a prognostic model consisting of 33 gene pairs, which were found to be significantly associated with survival in TCGA dataset (P < 0.0001, hazard ratio (HR) = 4.380 (3.139 to 6.111)) and different subdatasets. As expected, the results were verified in the GEO validation cohort (P = 7.8 × 10−3, HR = 1.597 (1.095 to 2.325)). We found that the signature exhibited an independent prognostic factor in both the univariate and multivariate Cox regression analyses (P < 0.001). CIBERSORT was applied to estimate the fractions of infiltrated immune cells in bulk tumor tissues. CD8 T cells, activated dendritic cells, regulatory T cells (Tregs), and activated CD4 memory T cells presented a significantly lower fraction in the high-risk group (P < 0.01). Patients in the high-risk group had significantly higher tumor mutational burden (TMB) (P = 4.953e − 04) and lower levels of immune cells (P = 3.473e − 05) and stromal cells (P = 0.005) in the tumor microenvironment than those in the low-risk group. Furthermore, the Protein-protein interaction (PPI) network and various enrichment analyses have genuinely uncovered the interrelationships and potential functions of the RBP genes within the model. The results of the present study validated the importance of RNA-binding proteins in tumorigenesis and progression and support the RBP gene-related signature as a promising marker for prognosis prediction in lung adenocarcinoma.
Collapse
|
9
|
Wei Z, Liu Y, Qiao S, Li X, Li Q, Zhao J, Hu J, Wei Z, Shan A, Sun X, Xu B. Identification of the potential therapeutic target gene UBE2C in human hepatocellular carcinoma: An investigation based on GEO and TCGA databases. Oncol Lett 2019; 17:5409-5418. [PMID: 31186759 PMCID: PMC6507459 DOI: 10.3892/ol.2019.10232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the third major cause of cancer-associated mortality globally. Numerous studies have attempted to elucidate the underlying mechanisms of HCC using various biomarkers. In the present study, two expression profiles datasets from Gene Expression Omnibus (GSE76427 and GSE84402) and data associated with liver cancer samples from The Cancer Genome Atlas (TCGA) were downloaded for integrated analysis. Five differentially expressed genes (DEGs) exhibiting high expression, including ubiquitin-conjugating enzyme 2C (UBE2C), topoisomerase II α, pituitary tumor transforming gene 1, glypican-3 and polycomb-repressive complex 1, were selected and considered as candidate genes. Enrichment analysis demonstrated that these genes were associated with Gene Ontology terms of cellular components and molecular functions, including regulation of apoptosis, stabilization of p53 and Anaphase Promoting Complex/Cyclosome (APC/C) (APC/C:Cdc20)-mediated degradation of Securin. The expression profiles of these genes in HCC, other human malignancies and different human HCC cell lines were validated using GSE14520, GSE3500 and TCGA data. The results confirmed the upregulation of UBE2C in tissues from patients with HCC or other human malignancies and human liver cancer cell lines, compared with the expression levels in the corresponding adjacent non-tumor tissues and cell lines, respectively. Patients with HCC who exhibited an increased messenger RNA level of UBE2C exhibited a significantly shorter survival time. The results of the present study suggest that the overexpression of UBE2C may be used as a novel prognostic biomarker of HCC.
Collapse
Affiliation(s)
- Zilun Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Shuaihua Qiao
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xueling Li
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Qiaoling Li
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jinxuan Zhao
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jiaxin Hu
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhonghai Wei
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Anqi Shan
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|