1
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
2
|
Liu Y, Zhang L, Chen X, Sun C, Zhang Y, Li Y, Li C. Functional characterization of porcine nucleophosmin (NPM1) gene in promoting the replication of Japanese encephalitis virus and induction of inflammatory cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104902. [PMID: 37536401 DOI: 10.1016/j.dci.2023.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Nucleophosmin (NPM1) is a multifunctional nucleolar protein that plays a role in cell cycle control, tumorigenesis, induction of the inflammatory cytokine, virus replication, as well as the cellular responses to a variety of stress stimuli. However, its physiological functions in pigs have not been well understood. Here, we cloned the porcine NPM1 (porNPM1) gene and analyzed the functions of the porNPM1 protein in pigs. The full-length porNPM1 gene encoded a 294-amino acid protein with 94.5%-99.3% sequence identity to its orthologues in mammals and was extensively expressed in various pig tissues at the mRNA level. The porNPM1 primarily localizes in the nucleus of ST cells, while it translocates from the nucleus to nucleoplasm upon UV irradiation or H2O2 treatment. Notably, JEV infection blocked the translocation of porNPM1 from the nucleolus to the nucleoplasm. Furthermore, porNPM1 interacted with the JEV C protein and facilitated JEV replication in ST cells. The overexpression and knockdown of porNPM1 respectively enhanced or impaired JEV replication, suggesting the important role of porNPM1 in JEV replication. Additionally, the purified ectodomain of porNPM1 induced the production of inflammatory cytokines (TNF-α, IL-6, and IL-8). Together, these data demonstrated that porNPM1 is involved in cellular stress stimuli, JEV replication, and induction of inflammatory cytokines.
Collapse
Affiliation(s)
- Ying Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linjie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chuwen Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yanbing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
3
|
Wei Q, Zhou J, Wang X, Li Z, Chen X, Chen K, Jiang R. Pan-cancer analysis of the prognostic and immunological role of nucleophosmin/nucleoplasmin 3 ( NPM3) and its potential significance in lung adenocarcinoma. CANCER PATHOGENESIS AND THERAPY 2023; 1:238-252. [PMID: 38327603 PMCID: PMC10846304 DOI: 10.1016/j.cpt.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 02/09/2024]
Abstract
Background Nucleophosmin/nucleoplasmin 3 (NPM3), a member of the NPM protein family, is widely expressed in various human tissues. Although previous studies identified elevated NPM3 expression in several cancers, a systematic pan-cancer analysis remains lacking. In this study, we conducted a comprehensive analysis of NPM3 to determine its role in tumorigenesis and tumor development. Methods Using data from The Cancer Genome Atlas (TCGA) and various bioinformatics analysis tools, we conducted a pan-cancer analysis of NPM3. Additionally, we collected gene expression and clinical data from 890 patients with lung adenocarcinoma (LUAD) from TCGA and the Gene Expression Omnibus database. We performed Cox regression analyses to explore the independent prognostic value of NPM3 expression in LUAD and plotted a nomogram to predict patient survival. We also used real-time quantitative polymerase chain reaction (RT-qPCR) to examine the expression levels of NPM3 in seven pairs of LUAD and paraneoplastic tissue samples. Results NPM3 expression was significantly increased in 20 types of cancer and was associated with poor prognosis in five types (P < 0.05). NPM3 expression was negatively correlated with DNA methylation and positively correlated with copy number variation. NPM3 was also significantly associated with immune cell infiltration in various cancers. Cox regression analyses revealed that NPM3 expression could serve as an independent prognostic marker of LUAD. Moreover, our nomogram demonstrated good predictive ability for the prognosis of patients with LUAD. Finally, the high expression of NPM3 in LUAD was verified using RT-qPCR. Conclusion NPM3 is a promising biomarker for predicting pan-cancer prognosis and immunotherapeutic efficacy.
Collapse
Affiliation(s)
- Qianhui Wei
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Jing Zhou
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Zhaona Li
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Xiuqiong Chen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Kaidi Chen
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300202, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300202, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300202, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| |
Collapse
|
4
|
Lirussi L, Ayyildiz D, Liu Y, Montaldo NP, Carracedo S, Aure MR, Jobert L, Tekpli X, Touma J, Sauer T, Dalla E, Kristensen VN, Geisler J, Piazza S, Tell G, Nilsen H. A regulatory network comprising let-7 miRNA and SMUG1 is associated with good prognosis in ER+ breast tumours. Nucleic Acids Res 2022; 50:10449-10468. [PMID: 36156150 PMCID: PMC9561369 DOI: 10.1093/nar/gkac807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Single-strand selective uracil-DNA glycosylase 1 (SMUG1) initiates base excision repair (BER) of uracil and oxidized pyrimidines. SMUG1 status has been associated with cancer risk and therapeutic response in breast carcinomas and other cancer types. However, SMUG1 is a multifunctional protein involved, not only, in BER but also in RNA quality control, and its function in cancer cells is unclear. Here we identify several novel SMUG1 interaction partners that functions in many biological processes relevant for cancer development and treatment response. Based on this, we hypothesized that the dominating function of SMUG1 in cancer might be ascribed to functions other than BER. We define a bad prognosis signature for SMUG1 by mapping out the SMUG1 interaction network and found that high expression of genes in the bad prognosis network correlated with lower survival probability in ER+ breast cancer. Interestingly, we identified hsa-let-7b-5p microRNA as an upstream regulator of the SMUG1 interactome. Expression of SMUG1 and hsa-let-7b-5p were negatively correlated in breast cancer and we found an inhibitory auto-regulatory loop between SMUG1 and hsa-let-7b-5p in the MCF7 breast cancer cells. We conclude that SMUG1 functions in a gene regulatory network that influence the survival and treatment response in several cancers.
Collapse
Affiliation(s)
- Lisa Lirussi
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Yan Liu
- Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Nicola P Montaldo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Sergio Carracedo
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Miriam R Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Laure Jobert
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Joel Touma
- Department of Breast and Endocrine Surgery, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway
| | - Torill Sauer
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway.,Department of Pathology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Campus AHUS, 1478 Lørenskog, Norway.,Department of Oncology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway
| | - Silvano Piazza
- Bioinformatics Core Facility, Centre for Integrative Biology (CIBIO), University of Trento, via Sommarive 18, 38123, Povo (Trento), Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine, University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy
| | - Hilde Nilsen
- Institute of Clinical Medicine, Department of Clinical Molecular Biology, University of Oslo, N-0318 Oslo, Norway.,Section of Clinical Molecular Biology, Akershus University Hospital (AHUS), 1478 Lørenskog, Norway.,Department of Microbiology, Oslo University Hospital, N-0424 Oslo, Norway
| |
Collapse
|
5
|
Yedier-Bayram O, Gokbayrak B, Kayabolen A, Aksu AC, Cavga AD, Cingöz A, Kala EY, Karabiyik G, Günsay R, Esin B, Morova T, Uyulur F, Syed H, Philpott M, Cribbs AP, Kung SHY, Lack NA, Onder TT, Bagci-Onder T. EPIKOL, a chromatin-focused CRISPR/Cas9-based screening platform, to identify cancer-specific epigenetic vulnerabilities. Cell Death Dis 2022; 13:710. [PMID: 35973998 PMCID: PMC9381743 DOI: 10.1038/s41419-022-05146-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
Dysregulation of the epigenome due to alterations in chromatin modifier proteins commonly contribute to malignant transformation. To interrogate the roles of epigenetic modifiers in cancer cells, we generated an epigenome-wide CRISPR-Cas9 knockout library (EPIKOL) that targets a wide-range of epigenetic modifiers and their cofactors. We conducted eight screens in two different cancer types and showed that EPIKOL performs with high efficiency in terms of sgRNA distribution and depletion of essential genes. We discovered novel epigenetic modifiers that regulate triple-negative breast cancer (TNBC) and prostate cancer cell fitness. We confirmed the growth-regulatory functions of individual candidates, including SS18L2 and members of the NSL complex (KANSL2, KANSL3, KAT8) in TNBC cells. Overall, we show that EPIKOL, a focused sgRNA library targeting ~800 genes, can reveal epigenetic modifiers that are essential for cancer cell fitness under in vitro and in vivo conditions and enable the identification of novel anti-cancer targets. Due to its comprehensive epigenome-wide targets and relatively high number of sgRNAs per gene, EPIKOL will facilitate studies examining functional roles of epigenetic modifiers in a wide range of contexts, such as screens in primary cells, patient-derived xenografts as well as in vivo models.
Collapse
Affiliation(s)
- Ozlem Yedier-Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Bengul Gokbayrak
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Ali Cenk Aksu
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Ayse Derya Cavga
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Istanbul, Türkiye
| | - Ahmet Cingöz
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Ezgi Yagmur Kala
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Goktug Karabiyik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Rauf Günsay
- Koç University School of Medicine, Istanbul, Türkiye
| | - Beril Esin
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Tunc Morova
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Fırat Uyulur
- Koç University Department of Computational Biology, Istanbul, Türkiye
| | - Hamzah Syed
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Istanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sonia H Y Kung
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Nathan A Lack
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Tamer T Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye.
- Koç University School of Medicine, Istanbul, Türkiye.
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye.
- Koç University School of Medicine, Istanbul, Türkiye.
| |
Collapse
|
6
|
Kadamb R, Leibovitch BA, Farias EF, Dahiya N, Suryawanshi H, Bansal N, Waxman S. Invasive phenotype in triple negative breast cancer is inhibited by blocking SIN3A-PF1 interaction through KLF9 mediated repression of ITGA6 and ITGB1. Transl Oncol 2021; 16:101320. [PMID: 34968869 PMCID: PMC8718897 DOI: 10.1016/j.tranon.2021.101320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/17/2022] Open
Abstract
We show that the PAH2 domain of SIN3A is a target when it is inhibited from binding to PF1 results in inhibition of invasive phenotype in TNBC. Epigenetic repression of integrins expression and downstream pathways results from enhanced binding of KLF9 /SIN3A repressor complex to their promoters. Genome wide transcriptomic analysis showed downregulation of multiple invasion related genes. Tumor growth and lung metastasis were markedly decreased in vivo. Our studies highlight that PF1 might serve as a gatekeeper for trafficking SID protein binding to PAH2 of SIN3A and has functional role in presentation of different regulatory complexes. Blocking the function of PAH2 offers a promising targeted therapy approach for inhibiting the invasive phenotype in TNBC.
SIN3A, a scaffold protein has regulatory functions in tumor biology. Through its Paired amphipathic helix (PAH2) domain, SIN3A interacts with PHF12 (PF1), a protein with SIN3 interaction domain (SID) that forms a complex with MRG15 and KDM5A/B. These components are often overexpressed in cancer. In the present study, we evaluated the role of SIN3A and its interacting partner PF1 in mediating inhibition of tumor growth and invasion in triple negative breast cancer (TNBC). We found profound inhibition of invasion, migration, and induction of cellular senescence by specific disruption of the PF1/SIN3A PAH2 domain interaction in TNBC cells expressing PF1-SID transcript or peptide treatment. Genome-wide transcriptomic analysis by RNA-seq revealed that PF1-SID downregulates several gene sets and pathways linked to invasion and migration. Integrin α6 (ITGA6) and integrin ß1 (ITGB1) and their downstream target proteins were downregulated in PF1-SID cells. We further determined increased presence of SIN3A and transcriptional repressor, KLF9, on promoters of ITGA6 and ITGB1 in PF1-SID cells. Knockdown of KLF9 leads to re-expression of ITGA6 and ITGB1 and restoration of the invasive phenotype, functionally linking KLF9 to this process. Overall, these data demonstrate that specific disruption of PF1/SIN3A, inhibits tumor growth, migration, and invasion. Also, PF1-SID not only inhibits tumor growth by senescence induction and reduced proliferation, but it also targets cancer stem cell gene expression and blocks mammosphere formation. Overall, these data demonstrate a mechanism whereby invasion and metastasis of TNBC can be suppressed by inhibiting SIN3A-PF1 interaction and enhancing KLF9 mediated suppression of ITGA6 and ITGB1.
Collapse
Affiliation(s)
- Rama Kadamb
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Boris A Leibovitch
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eduardo F Farias
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nisha Dahiya
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Nidhi Bansal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel Waxman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Zhou Y, Fang Y, Zhou J, Liu Y, Wu S, Xu B. NPM1 is a Novel Therapeutic Target and Prognostic Biomarker for Ewing Sarcoma. Front Genet 2021; 12:771253. [PMID: 34899858 PMCID: PMC8662625 DOI: 10.3389/fgene.2021.771253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ewing sarcoma (ES) is a cancer that may originate from stem mesenchymal or neural crest cells and is highly prevalent in children and adolescents. In recent years, targeted therapies against immune-related genes have shown good efficacy in a variety of cancers. However, effective targets for immunotherapy in ES are yet to be developed. In our study, we first identified the immune-associated differential hub gene NPM1 by bioinformatics methods as a differentially expressed gene, and then validated it using real time-PCR and western blotting, and found that this gene is not only closely related to the immune infiltration in ES, but also can affect the proliferation and apoptosis of ES cells, and is closely related to the survival of patients. The results of our bioinformatic analysis showed that NPM1 can be a hub gene in ES and an immunotherapeutic target to reactivate immune infiltration in patients with ES. In addition, treatment with NPM1 promoted apoptosis and inhibited the proliferation of ES cells. The NPM1 inhibitor NSC348884 can induce apoptosis of ES cells in a dose-dependent manner and is expected to be a potential therapeutic agent for ES.
Collapse
Affiliation(s)
- Yangfan Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuan Fang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junjie Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yulian Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shusheng Wu
- The First Affiliated Hospital of (University of Science and Technology of China) USTC, Hefei, China
| | - Bin Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Zheng S, Li X, Deng T, Liu R, Bai J, Zuo T, Guo Y, Chen J. KPNA2 promotes renal cell carcinoma proliferation and metastasis via NPM. J Cell Mol Med 2021; 25:9255-9267. [PMID: 34469024 PMCID: PMC8500977 DOI: 10.1111/jcmm.16846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 02/03/2023] Open
Abstract
Karyopherin α2 (KPNA2), involved in nucleocytoplasmic transport, has been reported to be up‐regulated in tumorigenesis. However, comprehensive studies of KPNA2 functions in renal cell carcinoma (RCC) are still lacking. In this study, we aim to investigate the roles of KPNA2 in kidney tumour development. Our results showed that down‐regulation of KPNA2 inhibited the proliferation and invasion of kidney tumour cell cells in vitro, while the cell cycle arrest and cellular apoptosis were induced once KPNA2 was silenced. Repression of KPNA2 was proved to be efficient to repress tumorigenesis and development of kidney tumour in in nude mice. Furthermore, one related participator, NPM, was identified based on Co‐IP/MS and bioinformatics analyses. The up‐regulation of NPM attenuates the efficiency of knockdown KPNA2. These results indicated that KPNA2 may regulate NPM to play a crucial role for kidney tumour development.
Collapse
Affiliation(s)
- Song Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaofan Li
- Department of Hematology, Fujian Institute of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory on Hematology, Fujian Medical University, Fuzhou, China
| | - Ting Deng
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Rong Liu
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Junjie Bai
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Teng Zuo
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yinan Guo
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
9
|
Preoperative lymphocyte/C-reactive protein ratio and its correlation with CD8 + tumor-infiltrating lymphocytes as a predictor of prognosis after resection of intrahepatic cholangiocarcinoma. Surg Today 2021; 51:1985-1995. [PMID: 34009433 DOI: 10.1007/s00595-021-02295-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE To clarify whether the preoperative lymphocyte/C-reactive protein (CRP) ratio (LCR) is a prognostic factor for patients with intrahepatic cholangiocarcinoma (IHCC), and investigate its mechanism via tumor-infiltrating lymphocytes. METHODS The subjects of this retrospective study were 42 patients who had undergone hepatectomy for IHCC. We divided the patients into low LCR and high LCR groups (cutoff value: 8780) and analyzed their overall survival (OS) and disease-free survival (DFS) with respect to LCR and other clinicopathological factors. We also investigated the levels of stromal tumor-infiltrating lymphocytes (TILs) and CD8+ TILs in surgical specimens, and the relationship between LCR and TILs. RESULTS A low LCR was identified in 21 patients and was significantly correlated with older age, a high CRP-albumin ratio, and advanced disease stage, and was a prognostic factor for OS and DFS. Multivariate analysis revealed that a low LCR was an independent prognostic factor for worse OS (HR 10.40, P = 0.0077). Although the LCR and levels of stromal TILs were not significantly related, LCR and levels of CD8+ TILs were significantly related (P = 0.0297). CONCLUSION The preoperative LCR may predict the postsurgical prognosis of patients with IHCC and reflect the CD8+ TILs.
Collapse
|
10
|
Karimi Dermani F, Gholamzadeh Khoei S, Afshar S, Amini R. The potential role of nucleophosmin (NPM1) in the development of cancer. J Cell Physiol 2021; 236:7832-7852. [PMID: 33959979 DOI: 10.1002/jcp.30406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Nucleophosmin (NPM1) is a well-known nucleocytoplasmic shuttling protein that performs several cellular functions such as ribosome biogenesis, chromatin remodeling, genomic stability, cell cycle progression, and apoptosis. NPM1 has been identified to be necessary for normal cellular functions, and its altered regulation by overexpression, mutation, translocation, loss of function, or sporadic deletion can lead to cancer and tumorigenesis. In this review, we focus on the gene and protein structure of NPM1 and its physiological roles. Finally, we discuss the association of NPM1 with various types of cancer including solid tumors and leukemia.
Collapse
Affiliation(s)
- Fateme Karimi Dermani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Wang YF, Dang HF, Luo X, Wang QQ, Gao C, Tian YX. Downregulation of SOX9 suppresses breast cancer cell proliferation and migration by regulating apoptosis and cell cycle arrest. Oncol Lett 2021; 22:517. [PMID: 33986877 PMCID: PMC8114479 DOI: 10.3892/ol.2021.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 03/16/2021] [Indexed: 01/10/2023] Open
Abstract
SRY-related high-mobility group box 9 (SOX9) is an important transcriptional factor that regulates diverse genes involved in development and stemness. Dysregulation of SOX9 encourages carcinogenesis in various types of cancer, including breast cancer. The present study aimed to explore the role of SOX9 in triple-negative breast cancer (TNBC). SOX9 expression was significantly upregulated in the TNBC MDA-MB-231, MDA-MB-436 and MDA-MB-468 cell lines compared with that in BT-549 cells. Based on a lentivirus assay, SOX9 inhibition in MDA-MB-231 and MDA-MB-436 cells suppressed cell proliferation and colony formation. Apoptosis was increased and the cell cycle was arrested at the G0/G1 phase in SOX9-knockdown cells. Transwell and wound-healing assays demonstrated that SOX9 inhibition decreased the migration and invasion of MDA-MB-231 and MDA-MB-436 cells. RNA sequencing identified that numerous genes were regulated by SOX9, including nucleophosmin, thioredoxin reductase 1, succinate dehydrogenase complex subunit D, nuclear receptor binding SET domain protein 2, eukaryotic translation initiation factor 4γ1 and glycogen phosphorylase L. Overall, the current study suggested that SOX9 acted as an oncogene in TNBC.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Hui-Feng Dang
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Xu Luo
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Qian-Qian Wang
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Chen Gao
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| | - Ying-Xia Tian
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
12
|
Nandy D, Rajam SM, Dutta D. A three layered histone epigenetics in breast cancer metastasis. Cell Biosci 2020; 10:52. [PMID: 32257110 PMCID: PMC7106732 DOI: 10.1186/s13578-020-00415-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thanks to the advancement in science and technology and a significant number of cancer research programs being carried out throughout the world, the prevention, prognosis and treatment of breast cancer are improving with a positive and steady pace. However, a stern thoughtful attention is required for the metastatic breast cancer cases—the deadliest of all types of breast cancer, with a character of relapse even when treated. In an effort to explore the less travelled avenues, we summarize here studies underlying the aspects of histone epigenetics in breast cancer metastasis. Authoritative reviews on breast cancer epigenetics are already available; however, there is an urgent need to focus on the epigenetics involved in metastatic character of this cancer. Here we put forward a comprehensive review on how different layers of histone epigenetics comprising of histone chaperones, histone variants and histone modifications interplay to create breast cancer metastasis landscape. Finally, we propose a hypothesis of integrating histone-epigenetic factors as biomarkers that encompass different breast cancer subtypes and hence could be exploited as a target of larger population.
Collapse
Affiliation(s)
- Debparna Nandy
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014 India
| | - Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014 India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014 India
| |
Collapse
|
13
|
Netsirisawan P, Chokchaichamnankit D, Saharat K, Srisomsap C, Svasti J, Champattanachai V. Quantitative proteomic analysis of the association between decreasing O‑GlcNAcylation and metastasis in MCF‑7 breast cancer cells. Int J Oncol 2020; 56:1387-1404. [PMID: 32236627 PMCID: PMC7170043 DOI: 10.3892/ijo.2020.5022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common type of cancer and leading cause of cancer-associated mortality in women worldwide. O-linked N-acetyl glucosaminylation (O-GlcNAcylation) is a dynamic post-translational modification of nuclear, cytoplasmic and mitochondrial proteins. Mounting evidence suggests that abnormal O-GlcNAcylation status is associated with cancer malignancy. In our previous study, it was reported that O-GlcNAc and O-GlcNAc transferase (OGT; an enzyme responsible for the addition of O-GlcNAc) were upregulated in breast cancer tissues and cells. Moreover, O-GlcNAcylation was required for resistance to anoikis and the anchorage-independent growth of breast cancer cells. However, the precise roles of this modification on the development of malignancy are yet to be elucidated. Therefore, in the present study, the effects of inhibiting O-GlcNAc on the malignant transformation of MCF-7 breast cancer cells under different culture conditions were determined, using monolayer (primary growth), anoikis resistance (spheroid growth) and reseeding (secondary growth) to mimic the metastatic process. Decreasing O-GlcNAc levels using small interfering (si)RNA targeting OGT resulted in a reduction in cell viability and invasiveness in anoikis resistant and reseeding conditions. Furthermore, gel-free quantitative proteomics was performed to identify the proteins affected by a reduction of O-GlcNAc. A total of 317 proteins were identified and compared, and the expression of 162 proteins was altered >1.5 fold in the siOGT treated cells compared with the siScamble (siSC) treated cells. Notably, 100 proteins involved in cellular metabolism, cellular localization, stress responses and gene expression were significantly altered in the reseeding condition. Among these differentially expressed proteins, the levels of small nuclear ribonucleoprotein Sm D1 exhibited the largest decrease in expression following knockdown of OGT, and this reduction in expression was associated with a significant decrease in the levels of mTOR expression, a protein which promotes tumor growth and progression. Taken together, the results of the present study demonstrate that decreasing O-GlcNAcylation altered protein expression, and ultimately influenced the metastatic processes, particulary regarding the invasion and reattached growth of MCF-7 breast cancer cells.
Collapse
Affiliation(s)
| | | | - Kittirat Saharat
- Laboratory of Biochemistry, Chulabhorn Research Institue, Bangkok 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institue, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institue, Bangkok 10210, Thailand
| | | |
Collapse
|
14
|
Li C, Cui J, Zou L, Zhu L, Wei W. Bioinformatics analysis of the expression of HOXC13 and its role in the prognosis of breast cancer. Oncol Lett 2019; 19:899-907. [PMID: 31897205 PMCID: PMC6924138 DOI: 10.3892/ol.2019.11140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
The homeobox (HOX) genes, a class of transcription factors, are known to promote embryonic development and induce tumor formation. To date, the HOXA and HOXB gene families have been reported to be associated with breast cancer. However, the expression and exact role of homeobox C13 (HOXC13) in breast cancer has not yet been investigated. In the present study, the HOXC13 expression in human breast cancer was evaluated using the Oncomine database and Cancer Cell Line Encyclopedia (CCLE). Next, the Gene expression-based Outcome for Breast cancer online database, cBioportal, University of California Santa Cruz Xena browser and bc-GenExMinerv were used to explore the specific expression of HOXC13 in breast cancer. The methylation and mutation status of HOXC13 in breast cancer was then validated using the CCLE and cBioportal databases. Finally, the co-expression of HOX transcript antisense RNA (HOTAIR) and HOXC13 in breast cancer were analyzed and their impact on clinical prognosis determined. It was found that the expression of HOXC13 was high in breast cancer compared with other types of cancer, such as gastric cancer and colon cancer. Following co-expression analysis, a significant positive association was identified between HOTAIR and HOXC13. An association between HOTAIR and HOXC13, and lymph node and distant metastasis recurrence was also revealed during the development of breast cancer. Of note, survival analysis showed that high expression of HOTAIR and HOXC13 predicted poor prognosis. These findings revealed that HOXC13 plays an important role in the progression of breast cancer. However, the specific mechanism needs to be confirmed by subsequent experiments.
Collapse
Affiliation(s)
- Changyou Li
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Junwei Cui
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Li Zou
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Lizhang Zhu
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Wei Wei
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
15
|
Evaluation of miR-302b-5p expression and molecular mechanism in hepatocellular carcinoma: Findings based on RT-qPCR and in silico analysis. Pathol Res Pract 2019; 215:152424. [DOI: 10.1016/j.prp.2019.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/07/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022]
|
16
|
Liu M, Gong C, Xu R, Chen Y, Wang X. MicroRNA-5195-3p enhances the chemosensitivity of triple-negative breast cancer to paclitaxel by downregulating EIF4A2. Cell Mol Biol Lett 2019; 24:47. [PMID: 31308851 PMCID: PMC6604428 DOI: 10.1186/s11658-019-0168-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Background Chemotherapy based on paclitaxel (PTX) is the standard treatment for a range of cancers, including triple-negative breast cancer (TNBC), but the increasing development of resistance has reduced/has negatively impacted its clinical utility. A previous study demonstrated that miR-5195-3p could suppress lung cancer cell growth. This study was designed to investigate whether miR-5195-3p attenuates chemoresistance to PTX by regulating target genes in TNBC cells. Methods The study used both PTX-resistant tumor tissues and PTX-resistant TNBC cell lines. The expression of miR-5195-3p was determined using quantitative real-time PCR. Cell viability, cell cycle distribution and apoptosis were analyzed using CCK-8 and flow cytometry assays. The target genes of miR-5195-3p were predicted with bioinformatics analysis and confirmed using the luciferase reporter assay. Results MiR-5195-3p expression was lower in PTX-resistant tumor tissues and PTX-resistant TNBC cell lines. Upregulation of miR-5195-3p enhanced the sensitivity of PTX-resistant TNBC cells to PTX treatment. EIF4A2 was confirmed as a potential target of miR-5195-3p. EIF4A2 knockdown imitated the effects of miR-5195-3p on chemosensitivity, while restoration of EIF4A2 rescued them. Conclusion These data demonstrate that miR-5195-3p might be a potential therapeutic target to reverse chemoresistance in TNBC through its targeting of EIF4A2.
Collapse
Affiliation(s)
- Mei Liu
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| | - Can Gong
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| | - Renyuan Xu
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| | - Yu Chen
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| | - Xiaodong Wang
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| |
Collapse
|
17
|
Liang WQ, Zeng D, Chen CF, Sun SM, Lu XF, Peng CY, Lin HY. Long noncoding RNA H19 is a critical oncogenic driver and contributes to epithelial-mesenchymal transition in papillary thyroid carcinoma. Cancer Manag Res 2019; 11:2059-2072. [PMID: 30881130 PMCID: PMC6411319 DOI: 10.2147/cmar.s195906] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Growing evidence has indicated that the long noncoding RNA H19 (lncRNA H19), frequently deregulated in almost all tumor types tested, acted as a pivotal contributor to both cancer initiation and progression. However, the role of lncRNA H19 in human papillary thyroid carcinoma (PTC) remains controversial. The aim of the study was to investigate the expression and potential function of lncRNA H19 in human PTC. PATIENTS AND METHODS The lncRNA H19 level was determined by quantitative real-time (RT)-PCR analyses in 58 PTC tissue samples and their paired paracancerous tissue samples. RNA interference, RT-PCR analysis, and Western blot assay were used to determine the impact of lncRNA H19 on epithelial-mesenchymal transition (EMT) markers in human PTC cells. The migratory and invasive capacities of PTC cells were determined by wound-healing and transwell migration and invasion assays. RESULTS lncRNA H19 expression was 2.417-fold higher in PTC tissues than their paired paracancerous tissue (95% CI: 1.898-2.935, P<0.0001). Higher level of lncRNA H19 was correlated to elevated expression of Vimentin, ZEB2, Twist, and Snail2. Inhibition of lncRNA H19 resulted in upregulation of E-cadherin and downregulation of Vimentin both at mRNA and protein levels. Conversely, enforced expression of the exogenous lncRNA H19 led to E-cadherin mRNA and protein downregulation and relative upregulation of Vimentin. Moreover, wound-healing and transwell migration and invasion assays showed that lncRNA H19 could promote the migratory and invasive abilities of PTC cells. CONCLUSION The level of lncRNA H19 was significantly higher in PTC tissues than paired paracancerous tissue or normal tissues. Overexpression of lncRNA H19 was correlated with higher tumor burden of PTC. It also contributes to EMT process, as well as promotes migration and invasion of PTC cells.
Collapse
Affiliation(s)
- Wei-Quan Liang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, People's Republic of China
| | - Chun-Fa Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - Shu-Ming Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - Xiao-Feng Lu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| | - Chun-Yan Peng
- Department of Clinical Laboratory, Taihe Hospital of Hubei University of Medicine, Hubei 442008, People's Republic of China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, People's Republic of China,
| |
Collapse
|