1
|
Huang Z, Yoo KH, Li D, Yu Q, Ye L, Wei W. Pan-cancer analysis of m1A writer gene RRP8: implications for immune infiltration and prognosis in human cancers. Discov Oncol 2024; 15:437. [PMID: 39266915 PMCID: PMC11393379 DOI: 10.1007/s12672-024-01299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Ribosomal RNA Processing 8 (RRP8) is a gene associated with RNA modification and has been implicated in the development of several types of tumors in recent research. Nevertheless, the biological importance of RRP8 in pan-cancer has not yet been thoroughly and comprehensively investigated. METHODS In this study, we conducted an analysis of various public databases to investigate the biological functions of RRP8. Our analysis included examining its correlation with pan-cancer prognosis, heterogeneity, stemness, immune checkpoint genes, and immune cell infiltration. Furthermore, we utilized the GDSC and CTRP databases to assess the sensitivity of RRP8 to small molecule drugs. RESULTS Our findings indicate that RRP8 exhibits differential expression between tumor and normal samples, particularly impacting the prognosis of various cancers such as Adrenocortical carcinoma (ACC) and Kidney Chromophobe (KICH). The expression of RRP8 is intricately linked to tumor heterogeneity and stemness markers. Additionally, RRP8 shows a positive correlation with the presence of tumor-infiltrating cells, with TP53 being the predominant mutated gene in these malignancies. CONCLUSION Our findings suggest that RRP8 may serve as a potential prognostic marker and therapeutic target in a variety of cancer types.
Collapse
Affiliation(s)
- Zhihui Huang
- Operating Room, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
- West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Duohui Li
- Department of Pharmacy Management, Anqing Municipal Hospital, Anqing, 246000, Anhui, China.
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, Zhejiang, China.
- Department of pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China.
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zhu DH, Su KK, Ou-Yang XX, Zhang YH, Yu XP, Li ZH, Ahmadi-Nishaboori SS, Li LJ. Mechanisms and clinical landscape of N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers. Mol Cell Biochem 2024; 479:1553-1570. [PMID: 38856795 PMCID: PMC11254988 DOI: 10.1007/s11010-024-05040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Epigenetics encompasses reversible and heritable chemical modifications of non-nuclear DNA sequences, including DNA and RNA methylation, histone modifications, non-coding RNA modifications, and chromatin rearrangements. In addition to well-studied DNA and histone methylation, RNA methylation has emerged as a hot topic in biological sciences over the past decade. N6-methyladenosine (m6A) is the most common and abundant modification in eukaryotic mRNA, affecting all RNA stages, including transcription, translation, and degradation. Advances in high-throughput sequencing technologies made it feasible to identify the chemical basis and biological functions of m6A RNA. Dysregulation of m6A levels and associated modifying proteins can both inhibit and promote cancer, highlighting the importance of the tumor microenvironment in diverse biological processes. Gastrointestinal tract cancers, including gastric, colorectal, and pancreatic cancers, are among the most common and deadly malignancies in humans. Growing evidence suggests a close association between m6A levels and the progression of gastrointestinal tumors. Global m6A modification levels are substantially modified in gastrointestinal tumor tissues and cell lines compared to healthy tissues and cells, possibly influencing various biological behaviors such as tumor cell proliferation, invasion, metastasis, and drug resistance. Exploring the diagnostic and therapeutic potential of m6A-related proteins is critical from a clinical standpoint. Developing more specific and effective m6A modulators offers new options for treating these tumors and deeper insights into gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Dan-Hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kun-Kai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Xi Ou-Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yan-Hong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Peng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zu-Hong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | | | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Li YJ, Qiu YL, Li MR, Shen M, Zhang F, Shao JJ, Xu XF, Zhang ZL, Zheng SZ. New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1130-1141. [PMID: 38195693 PMCID: PMC11130213 DOI: 10.1038/s41401-023-01214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancy, presenting a formidable challenge to the medical community owing to its intricate pathogenic mechanisms. Although current prevention, surveillance, early detection, diagnosis, and treatment have achieved some success in preventing HCC and controlling overall disease mortality, the imperative to explore novel treatment modalities for HCC remains increasingly urgent. Epigenetic modification has emerged as pivotal factors in the etiology of cancer. Among these, RNA N6-methyladenosine (m6A) modification stands out as one of the most prevalent, abundant, and evolutionarily conserved post-transcriptional alterations in eukaryotes. The literature underscores that the dynamic and reversible nature of m6A modifications orchestrates the intricate regulation of gene expression, thereby exerting a profound influence on cell destinies. Increasing evidence has substantiated conspicuous fluctuations in m6A modification levels throughout the progression of HCC. The deliberate modulation of m6A modification levels through molecular biology and pharmacological interventions has been demonstrated to exert a discernible impact on the pathogenesis of HCC. In this review, we elucidate the multifaceted biological functions of m6A modifications in HCC, and concurrently advancing novel therapeutic strategies for the management of this malignancy.
Collapse
Affiliation(s)
- Yu-Jia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang-Ling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Ran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang-Juan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Fen Xu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zi-Li Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shi-Zhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Cheng L, Guo L, Zou T, Yang Y, Tao R, Liu S. Research progress on oncoprotein hepatitis B X‑interacting protein (Review). Mol Med Rep 2024; 29:89. [PMID: 38577934 PMCID: PMC11019400 DOI: 10.3892/mmr.2024.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Hepatitis B X‑interacting protein (HBXIP) is a membrane protein located on the lysosomal surface and encoded by the Lamtor gene. It is expressed by a wide range of tumor types, including breast cancer, esophageal squamous cell carcinoma and hepatocellular carcinoma, and its expression is associated with certain clinicopathological characteristics. In the past decade, research on the oncogenic mechanisms of HBXIP has increased and the function of HBXIP in normal cells has been gradually elucidated. In the present review, the following was discussed: The normal physiological role of the HBXIP carcinogenic mechanism; the clinical significance of high levels of HBXIP expression in different tumors; HBXIP regulation of transcription, post‑transcription and post‑translation processes in tumors; the role of HBXIP in improving the antioxidant capacity of tumor cells; the inhibition of ferroptosis of tumor cells and regulating the metabolic reprogramming of tumor cells; and the role of HBXIP in promoting the malignant progression of tumors. In conclusion, the present review summarized the existing knowledge of HBXIP, established its carcinogenic mechanism and discussed future related research on HBXIP.
Collapse
Affiliation(s)
- Lei Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Teng Zou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Yisong Yang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China
| |
Collapse
|
5
|
Sun L, Chen X, Zhu S, Wang J, Diao S, Liu J, Xu J, Li X, Sun Y, Huang C, Meng X, Lv X, Li J. Decoding m 6A mRNA methylation by reader proteins in liver diseases. Genes Dis 2024; 11:711-726. [PMID: 37692496 PMCID: PMC10491919 DOI: 10.1016/j.gendis.2023.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/22/2023] [Indexed: 09/12/2023] Open
Abstract
N6-methyladenosine (m6A) is a dynamic and reversible epigenetic regulation. As the most prevalent internal post-transcriptional modification in eukaryotic RNA, it participates in the regulation of gene expression through various mechanisms, such as mRNA splicing, nuclear export, localization, translation efficiency, mRNA stability, and structural transformation. The involvement of m6A in the regulation of gene expression depends on the specific recognition of m6A-modified RNA by reader proteins. In the pathogenesis and treatment of liver disease, studies have found that the expression levels of key genes that promote or inhibit the development of liver disease are regulated by m6A modification, in which abnormal expression of reader proteins determines the fate of these gene transcripts. In this review, we introduce m6A readers, summarize the recognition and regulatory mechanisms of m6A readers on mRNA, and focus on the biological functions and mechanisms of m6A readers in liver cancer, viral hepatitis, non-alcoholic fatty liver disease (NAFLD), hepatic fibrosis (HF), acute liver injury (ALI), and other liver diseases. This information is expected to be of high value to researchers deciphering the links between m6A readers and human liver diseases.
Collapse
Affiliation(s)
- Lijiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jianan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinjin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Yingyin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaoming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, Anhui 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
6
|
Su X, Lu R, Qu Y, Mu D. Diagnostic and therapeutic potentials of methyltransferase-like 3 in liver diseases. Biomed Pharmacother 2024; 172:116157. [PMID: 38301420 DOI: 10.1016/j.biopha.2024.116157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Methyltransferase-like 3 (METTL3), a component of the RNA N6-methyladenosine (m6A) modification with a specific catalytic capacity, controls gene expression by actively regulating RNA splicing, nuclear export, stability, and translation, determines the fate of RNAs and assists in regulating biological processes. Studies conducted in recent decades have demonstrated the pivotal regulatory role of METTL3 in liver disorders, including hepatic lipid metabolism disorders, liver fibrosis, nonalcoholic steatohepatitis, and liver cancer. Although METTL3's roles in these diseases have been extensively investigated, the regulatory network of METTL3 and its potential applications remain unexplored. In this review, we provide a comprehensive overview of the roles and mechanisms of METTL3 implicated in these diseases, establish a regulatory network of METTL3, evaluate the potential for targeting METTL3 for diagnosis and treatment, and discuss avenues for future development and research. We found relatively upregulated expressions of METTL3 in these liver diseases, demonstrating its potential as a diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China
| | - Ruifeng Lu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China.
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu 610041, China.
| |
Collapse
|
7
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
8
|
Murata T, Iwahori S, Okuno Y, Nishitsuji H, Yanagi Y, Watashi K, Wakita T, Kimura H, Shimotohno K. N6-methyladenosine Modification of Hepatitis B Virus RNA in the Coding Region of HBx. Int J Mol Sci 2023; 24:ijms24032265. [PMID: 36768585 PMCID: PMC9917364 DOI: 10.3390/ijms24032265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
N6-methyladenosine (m6A) is a post-transcriptional modification of RNA involved in transcript transport, degradation, translation, and splicing. We found that HBV RNA is modified by m6A predominantly in the coding region of HBx. The mutagenesis of methylation sites reduced the HBV mRNA and HBs protein levels. The suppression of m6A by an inhibitor or knockdown in primary hepatocytes decreased the viral RNA and HBs protein levels in the medium. These results suggest that the m6A modification of HBV RNA is needed for the efficient replication of HBV in hepatocytes.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence:
| | - Satoko Iwahori
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hironori Nishitsuji
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Yusuke Yanagi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kunitada Shimotohno
- Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| |
Collapse
|
9
|
Zhou R, Ni W, Qin C, Zhou Y, Li Y, Huo J, Bian L, Zhou A, Li J. A functional loop between YTH domain family protein YTHDF3 mediated m 6A modification and phosphofructokinase PFKL in glycolysis of hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:334. [PMID: 36471428 PMCID: PMC9724358 DOI: 10.1186/s13046-022-02538-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS N6-methyladenosine (m6A) modification plays a critical role in progression of hepatocellular carcinoma (HCC), and aerobic glycolysis is a hallmark of cancer including HCC. However, the role of YTHDF3, one member of the core readers of the m6A pathway, in aerobic glycolysis and progression of HCC is still unclear. METHODS Expression levels of YTHDF3 in carcinoma and surrounding tissues of HCC patients were evaluated by immunohistochemistry. Loss and gain-of-function experiments in vitro and in vivo were used to assess the effects of YTHDF3 on HCC cell proliferation, migration and invasion. The role of YTHDF3 in hepatocarcinogenesis was observed in a chemically induced HCC model with Ythdf3-/- mice. Untargeted metabolomics and glucose metabolism phenotype assays were performed to evaluate relationship between YTHDF3 and glucose metabolism. The effect of YTHDF3 on PFKL was assessed by methylated RNA immunoprecipitation assays (MeRIP). Co-immunoprecipitation and immunofluorescence assays were performed to investigate the connection between YTHDF3 and PFKL. RESULTS We found YTHDF3 expression was greatly upregulated in carcinoma tissues and it was correlated with poor prognosis of HCC patients. Gain-of-function and loss-of-function assays demonstrated YTHDF3 promoted proliferation, migration and invasion of HCC cells in vitro, and YTHDF3 knockdown inhibited xenograft tumor growth and lung metastasis of HCC cells in vivo. YTHDF3 knockout significantly suppressed hepatocarcinogenesis in chemically induced mice model. Mechanistically, YTHDF3 promoted aerobic glycolysis by promoting phosphofructokinase PFKL expression at both mRNA and protein levels. MeRIP assays showed YTHDF3 suppressed PFKL mRNA degradation via m6A modification. Surprisingly, PFKL positively regulated YTHDF3 protein expression, not as a glycolysis rate-limited enzyme, and PFKL knockdown effectively rescued the effects of YTHDF3 overexpression on proliferation, migration and invasion ability of Sk-Hep-1 and HepG2 cells. Notably, co-immunoprecipitation assays demonstrated PFKL interacted with YTHDF3 via EFTUD2, a core subunit of spliceosome involved in pre-mRNA splicing process, and ubiquitination assays showed PFKL could positively regulate YTHDF3 protein expression via inhibiting ubiquitination of YTHDF3 protein by EFTUD2. CONCLUSIONS our study uncovers the key role of YTHDF3 in HCC, characterizes a positive functional loop between YTHDF3 and phosphofructokinase PFKL in glucose metabolism of HCC, and suggests the connection between pre-mRNA splicing process and m6A modification.
Collapse
Affiliation(s)
- Rong Zhou
- grid.412536.70000 0004 1791 7851Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China ,grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Wen Ni
- grid.412536.70000 0004 1791 7851Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China ,grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Chao Qin
- grid.412536.70000 0004 1791 7851Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Yunxia Zhou
- grid.511083.e0000 0004 7671 2506The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107 China
| | - Yuqing Li
- grid.412536.70000 0004 1791 7851Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China ,grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Jianping Huo
- grid.412536.70000 0004 1791 7851Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China ,grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Lijuan Bian
- grid.412536.70000 0004 1791 7851Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Aijun Zhou
- grid.412536.70000 0004 1791 7851Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Jianming Li
- grid.412536.70000 0004 1791 7851Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China ,grid.12981.330000 0001 2360 039XGuangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| |
Collapse
|
10
|
Qu N, Zhang X, Wu X, Zhou X, Deng Z, Ma L, Liu Y, Ge W, Jiang H, Xu L, Jiang H. Clinical implications of m6A‐related regulators YTHDF1 and YTHDF2 in hepatocellular carcinoma. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Nanfang Qu
- Department of Gastroenterology Affiliated Hospital of Guilin Medical University Guilin People's Republic of China
| | - Xuemei Zhang
- Department of Pathology Affiliated Hospital of Guilin Medical University Guilin People's Republic of China
| | - Xianbin Wu
- Department of Gastroenterology Nanning Second Peoples Hospital Nanning People's Republic of China
| | - Xia Zhou
- Emergency Department Guizhou Provincial People's Hospital Guizhou People's Republic of China
| | - Zhejun Deng
- Department of Gastroenterology The First Affiliated Hospital of Guangxi Medical University Nanning People's Republic of China
| | - Lei Ma
- Department of Gastroenterology Affiliated Hospital of Guilin Medical University Guilin People's Republic of China
| | - Yanhua Liu
- Department of Gastroenterology Affiliated Hospital of Guilin Medical University Guilin People's Republic of China
| | - Wenhong Ge
- Department of Gastroenterology Affiliated Hospital of Guilin Medical University Guilin People's Republic of China
| | - Huanghuang Jiang
- Department of Gastroenterology Affiliated Hospital of Guilin Medical University Guilin People's Republic of China
| | - Longkuan Xu
- Department of Pathology Affiliated Hospital of Guilin Medical University Guilin People's Republic of China
| | - Haixing Jiang
- Department of Gastroenterology The First Affiliated Hospital of Guangxi Medical University Nanning People's Republic of China
| |
Collapse
|
11
|
Feng Q, Wang D, Xue T, Lin C, Gao Y, Sun L, Jin Y, Liu D. The role of RNA modification in hepatocellular carcinoma. Front Pharmacol 2022; 13:984453. [PMID: 36120301 PMCID: PMC9479111 DOI: 10.3389/fphar.2022.984453] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
12
|
Bai X, Huang Y, Huang W, Zhang Y, Zhang K, Li Y, Ouyang H. Wnt3a/YTHDF1 Regulated Oxaliplatin-Induced Neuropathic Pain Via TNF-α/IL-18 Expression in the Spinal Cord. Cell Mol Neurobiol 2022; 43:1583-1594. [PMID: 35939138 DOI: 10.1007/s10571-022-01267-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
Oxaliplatin is widely used in cancer treatment, however, many patients will suffer from neuropathic pain (NP) induced by it at the same time. Therefore exploring the mechanism and founding novel target for this problem are needed. In this study, YTHDF1 showed upregulation in oxaliplatin treated mice. As m6A is known as conserved and it widely functions in numerous physiological and pathological processes. Therefore, we focused on exploring the molecular mechanism of whether and how YTHDF1 functions in NP induced by oxaliplatin. IHC and western blotting were conducted to measure proteins. Intrathecal injection for corresponding siRNAs in C57/BL6 mice or spinal microinjection for virus in YTHDF1flox/flox mice were applied to specially knockdown the expression of molecular. Von Frey, acetone test and ethyl chloride (EC) test were applied to evaluate NP behavior. YTHDF1, Wnt3a, TNF-α and IL-18 were increased in oxaliplatin treated mice, restricted the molecular mentioned above respectively can significantly attenuate oxaliplatin-induced NP, including the mechanical allodynia and cold allodynia. Silencing YTHDF1 and inhibiting Wnt3a and Wnt signaling pathways can reduce the enhancement of TNF-α and IL-18, and the decreasing of the upregulation of YTHDF1 can be found when inhibiting Wnt3a and Wnts signaling pathways in oxaliplatin treated mice. Our study indicated a novel pathway that can contribute to oxaliplatin-induced NP, the Wnt3a/YTHDF1 to cytokine pathway, which upregulating YTHDF1 functioned as the downstream of Wnt3a signal and promoted the translation of TNF-α and IL-18 in oxaliplatin treated mice.
Collapse
Affiliation(s)
- Xiaohui Bai
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, China
| | - Yongtian Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China
| | - Yingjun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China
| | - Kun Zhang
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, China
| | - Yujuan Li
- Department of Anesthesiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yanjiang Road West, Guangzhou, China.
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, China.
| |
Collapse
|
13
|
N6-Methyladenosine RNA-Binding Protein YTHDF1 in Gastrointestinal Cancers: Function, Molecular Mechanism and Clinical Implication. Cancers (Basel) 2022; 14:cancers14143489. [PMID: 35884552 PMCID: PMC9320224 DOI: 10.3390/cancers14143489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNA and plays a crucial role in the occurrence and development of diseases. YTHDF1 is the most powerful and abundant m6A-encoded RNA reader. In this review, we summarize the evidence of the involvement of YTHDF1 in gastrointestinal cancers, its molecular mechanisms of action, and therapeutic implications. Abstract N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic cell mRNA, and this modification plays a key role in regulating mRNA translation, splicing, and stability. Emerging evidence implicates aberrant m6A as a crucial player in the occurrence and development of diseases, especially GI cancers. Among m6A regulators, YTHDF1 is the most abundant m6A reader that functionally connects m6A-modified mRNA to its eventual fate, mostly notably protein translation. Here, we summarized the function, molecular mechanisms, and clinical implications of YTHDF1 in GI cancers. YTHDF1 is largely upregulated in multiple GI cancer and its high expression predicts poor patient survival. In vitro and in vivo experimental evidence largely supports the role of YTDHF1 in promoting cancer initiation, progression, and metastasis, which suggests the oncogenic function of YTHDF1 in GI cancers. Besides, YTHDF1 overexpression is associated with changes in the tumor microenvironment that are favorable to tumorigenesis. Mechanistically, YTHDF1 regulates the expression of target genes by promoting translation, thereby participating in cancer-related signaling pathways. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy. In summary, YTHDF1-mediated regulation of m6A modified mRNA is an actionable target and a prognostic factor for GI cancers.
Collapse
|
14
|
Zhang HM, Qi FF, Wang J, Duan YY, Zhao LL, Wang YD, Zhang TC, Liao XH. The m6A Methyltransferase METTL3-Mediated N6-Methyladenosine Modification of DEK mRNA to Promote Gastric Cancer Cell Growth and Metastasis. Int J Mol Sci 2022; 23:ijms23126451. [PMID: 35742899 PMCID: PMC9223399 DOI: 10.3390/ijms23126451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer and the third deadliest cancer in the world, and the occurrence and development of GC are influenced by epigenetics. Methyltransferase-like 3 (METTL3) is a prominent RNA n6-adenosine methyltransferase (m6A) that plays an important role in tumor growth by controlling the work of RNA. This study aimed to reveal the biological function and molecular mechanism of METTL3 in GC. The expression level of METTL3 in GC tissues and cells was detected by qPCR, Western blot and immunohistochemistry, and the expression level and prognosis of METTL3 were predicted in public databases. CCK-8, colony formation, transwell and wound healing assays were used to study the effect of METTL3 on GC cell proliferation and migration. In addition, the enrichment effect of METTL3 on DEK mRNA was detected by the RIP experiment, the m6A modification effect of METTL3 on DEK was verified by the MeRIP experiment and the mRNA half-life of DEK when METTL3 was overexpressed was detected. The dot blot assay detects m6A modification at the mRNA level. The effect of METTL3 on cell migration ability in vivo was examined by tail vein injection of luciferase-labeled cells. The experimental results showed that METTL3 was highly expressed in GC tissues and cells, and the high expression of METTL3 was associated with a poor prognosis. In addition, the m6A modification level of mRNA was higher in GC tissues and GC cell lines. Overexpression of METTL3 in MGC80-3 cells and AGS promoted cell proliferation and migration, while the knockdown of METTL3 inhibited cell proliferation and migration. The results of in vitro rescue experiments showed that the knockdown of DEK reversed the promoting effects of METTL3 on cell proliferation and migration. In vivo experiments showed that the knockdown of DEK reversed the increase in lung metastases caused by the overexpression of METTL3 in mice. Mechanistically, the results of the RIP experiment showed that METTL3 could enrich DEK mRNA, and the results of the MePIP and RNA half-life experiments indicated that METTL3 binds to the 3'UTR of DEK, participates in the m6A modification of DEK and promotes the stability of DEK mRNA. Ultimately, we concluded that METTL3 promotes GC cell proliferation and migration by stabilizing DEK mRNA expression. Therefore, METTL3 is a potential biomarker for GC prognosis and a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tong-Cun Zhang
- Correspondence: (T.-C.Z.); (X.-H.L.); Tel.: +86-027-6889-7109 (T.-C.Z.); +86-027-6889-3368 (X.-H.L.)
| | - Xing-Hua Liao
- Correspondence: (T.-C.Z.); (X.-H.L.); Tel.: +86-027-6889-7109 (T.-C.Z.); +86-027-6889-3368 (X.-H.L.)
| |
Collapse
|
15
|
Chen F, Xie X, Chao M, Cao H, Wang L. The Potential Value of m6A RNA Methylation in the Development of Cancers Focus on Malignant Glioma. Front Immunol 2022; 13:917153. [PMID: 35711459 PMCID: PMC9196637 DOI: 10.3389/fimmu.2022.917153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation is an epigenetic modification that has emerged in the last few years and has received increasing attention as the most abundant internal RNA modification in eukaryotic cells. m6A modifications affect multiple aspects of RNA metabolism, and m6A methylation has been shown to play a critical role in the progression of multiple cancers through a variety of mechanisms. This review summarizes the mechanisms by which m6A RNA methylation induced peripheral cancer cell progression and its potential role in the infiltration of immune cell of the glioblastoma microenvironment and novel immunotherapy. Assessing the pattern of m6A modification in glioblastoma will contribute to improving our understanding of microenvironmental infiltration and novel immunotherapies, and help in developing immunotherapeutic strategies.
Collapse
Affiliation(s)
- Fan Chen
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Xuan Xie
- Reproductive Medicine Center, Department of Gynecology & Obstetrics, Xijing Hospital of Fourth Military Medical University, Xi’an, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Haiyan Cao
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi’an, China
- *Correspondence: Liang Wang,
| |
Collapse
|
16
|
An Alternatively Spliced Variant of METTL3 Mediates Tumor Suppression in Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13040669. [PMID: 35456475 PMCID: PMC9031889 DOI: 10.3390/genes13040669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Many post-transcriptional mRNA processing steps play crucial roles in tumorigenesis and the progression of cancers, such as N6-methyladenosine (m6A) modification and alternative splicing. Upregulation of methyltransferase-like 3 (METTL3), the catalytic core of the m6A methyltransferase complex, increases m6A levels and results in significant effects on the progression of hepatocellular carcinoma (HCC). However, alternative splicing of METTL3 has not been fully investigated, and the functions of its splice variants remain unclear. Here, we analyzed both our and online transcriptomic data, obtaining 13 splice variants of METTL3 in addition to canonical full-length METTL3-A in HCC cell lines and tissues. Validated by RT–qPCR and Western blotting, we found that METTL3-D, one of the splice variants expressing a truncated METTL3 protein, exhibits higher levels than METTL3-A in normal human livers but lower levels than METTL3-A in HCC tumor tissues and cell lines. Further functional assays demonstrated that METTL3-D expression decreased cellular m6A modification, inhibited the proliferation, migration, and invasion of HCC cells, and was negatively associated with the malignancy of patient tumors, exhibiting functions opposite to those of full-length METTL3-A. This study demonstrates that the METTL3-D splice variant is a tumor suppressor that could potentially be used as a target for HCC therapy.
Collapse
|
17
|
Liao J, Wei Y, Liang J, Wen J, Chen X, Zhang B, Chu L. Insight into the structure, physiological function, and role in cancer of m6A readers—YTH domain-containing proteins. Cell Death Dis 2022; 8:137. [PMID: 35351856 PMCID: PMC8964710 DOI: 10.1038/s41420-022-00947-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
YT521-B homology (YTH) domain-containing proteins (YTHDF1-3, YTHDC1-2) are the most crucial part of N6-methyladenosine (m6A) readers and play a regulatory role in almost all stages of methylated RNA metabolism and the progression of various cancers. Since m6A is identified as an essential post-transcriptional type, YTH domain-containing proteins have played a key role in the m6A sites of RNA. Hence, it is of great significance to study the interaction between YTH family proteins and m6A-modified RNA metabolism and tumor. In this review, their basic structure and physical functions in RNA transcription, splicing, exporting, stability, and degradation as well as protein translation are introduced. Then we discussed the expression regulation of YTH domain-containing proteins in cancers. Furthermore, we introduced the role of the YTH family in cancer biology and systematically demonstrated their functions in various aspects of tumorigenesis and development. To provide a more institute understanding of the role of YTH family proteins in cancers, we summarized their functions and specific mechanisms in various cancer types and presented their involvement in cancer-related signaling pathways.
Collapse
|
18
|
Wang JM, Li X, Yang P, Geng WB, Wang XY. Identification of a novel m6A-related lncRNA pair signature for predicting the prognosis of gastric cancer patients. BMC Gastroenterol 2022; 22:76. [PMID: 35189810 PMCID: PMC8862389 DOI: 10.1186/s12876-022-02159-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Accumulating studies have demonstrated that lncRNAs play vital roles in the prognosis of gastric cancer (GC); however, the prognostic value of N6-methyladenosine-related lncRNAs has not been fully reported in GC. This study aimed to construct and validate an m6A-related lncRNA pair signature (m6A-LPS) for predicting the prognosis of GC patients. Methods GC cohort primary data were downloaded from The Cancer Genome Atlas. We analysed the coexpression of m6A regulators and lncRNAs to identify m6A-related lncRNAs. Based on cyclical single pairing along with a 0-or-1 matrix and least absolute shrinkage and selection operator-penalized regression analyses, we constructed a novel prognostic signature of m6A-related lncRNA pairs with no dependence upon specific lncRNA expression levels. All patients were divided into high-risk and low-risk group based on the median risk score. The predictive reliability was evaluated in the testing dataset and whole dataset with receiver operating characteristic (ROC) curve analysis. Gene set enrichment analysis was used to identify potential pathways. Results Fourteen m6A-related lncRNA pairs consisting of 25 unique lncRNAs were used to construct the m6A-LPS. Kaplan–Meier analysis showed that the high-risk group had poor prognosis. The area under the curve for 5-year overall survival was 0.906, 0.827, and 0.882 in the training dataset, testing dataset, and whole dataset, respectively, meaning that the m6A-LPS was highly accurate in predicting GC patient prognosis. The m6A-LPS served as an independent prognostic factor for GC patients after adjusting for other clinical factors (p < 0.05). The m6A-LPS had more accuracy and a higher ROC value than other prognostic models for GC. Functional analysis revealed that high-risk group samples mainly showed enrichment of extracellular matrix receptor interactions and focal adhesion. Moreover, N-cadherin and vimentin, known biomarkers of epithelial–mesenchymal transition, were highly expressed in high-risk group samples. The immune infiltration analysis showed that resting dendritic cells, monocytes, and resting memory CD4 T cells were significantly positively related to the risk score. Thus, m6A-LPS reflected the infiltration of several types of immune cells. Conclusions The signature established by pairing m6A-related lncRNAs regardless of expression levels showed high and independent clinical prediction value in GC patients.
Collapse
Affiliation(s)
- Jun-Mei Wang
- Department of Gastroenterology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China.,Dalian Medical University, Dalian, 116044, China
| | - Xuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Peng Yang
- Department of Gastroenterology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China.,Dalian Medical University, Dalian, 116044, China
| | - Wen-Bin Geng
- Department of Gastroenterology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China.,Dalian Medical University, Dalian, 116044, China
| | - Xiao-Yong Wang
- Department of Gastroenterology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
19
|
Huang JB, Hu BB, He R, He L, Zou C, Man CF, Fan Y. Analysis of N6-Methyladenosine Methylome in Adenocarcinoma of Esophagogastric Junction. Front Genet 2022; 12:787800. [PMID: 35140740 PMCID: PMC8820482 DOI: 10.3389/fgene.2021.787800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 11/21/2022] Open
Abstract
Background: From previous studies, we found that there are more than 100 types of RNA modifications in RNA molecules. m6A methylation is the most common. The incidence rate of adenocarcinoma of the esophagogastric junction (AEG) at home and abroad has increased faster than that of stomach cancer at other sites in recent years. Here, we systematically analyze the modification pattern of m6A mRNA in adenocarcinoma at the esophagogastric junction. Methods: m6A sequencing, RNA sequencing, and bioinformatics analysis were used to describe the m6A modification pattern in adenocarcinoma and normal tissues at the esophagogastric junction. Results: In AEG samples, a total of 4,775 new m6A peaks appeared, and 3,054 peaks disappeared. The unique m6A-related genes in AEG are related to cancer-related pathways. There are hypermethylated or hypomethylated m6A peaks in AEG in differentially expressed mRNA transcripts. Conclusion: This study preliminarily constructed the first m6A full transcriptome map of human AEG. This has a guiding role in revealing the mechanism of m6A-mediated gene expression regulation.
Collapse
|
20
|
Chen J, Zhang Q, Liu T, Tang H. Roles of M6A Regulators in Hepatocellular Carcinoma: Promotion or Suppression. Curr Gene Ther 2021; 22:40-50. [PMID: 34825870 DOI: 10.2174/1566523221666211126105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/15/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the sixth globally diagnosed cancer with a poor prognosis. Although the pathological factors of hepatocellular carcinoma are well elucidated, the underlying molecular mechanisms remain unclear. N6-methyladenosine (m6A) is an adenosine methylation occurring at the N6 site, which is the most prevalent modification of eukaryotic mRNA. Recent studies have shown that m6A can regulate gene expression, thus modulating the processes of cell self-renewal, differentiation, and apoptosis. The methyls in m6A are installed by methyltransferases ("writers"), removed by demethylases ("erasers") and recognized by m6A-binding proteins ("readers"). In this review, we discuss the roles of above regulators in the progression and prognosis of HCC, and summarize the clinical association between m6A modification and hepatocellular carcinoma, so as to provide more valuable information for clinical treatment.
Collapse
Affiliation(s)
- Jiamao Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ting Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hua Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
21
|
Pei G, Ma N, Chen F, Guo L, Bai J, Deng J, He Z. Screening and Identification of Hub Genes in the Corticosteroid Resistance Network in Human Airway Epithelial Cells via Microarray Analysis. Front Pharmacol 2021; 12:672065. [PMID: 34707493 PMCID: PMC8542788 DOI: 10.3389/fphar.2021.672065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: Corticosteroid resistance is a major barrier to chronic obstructive pulmonary disease (COPD), but the exact mechanism of corticosteroid resistance in COPD has been less well studied. Methods: The microarray dataset GSE11906, which includes genomic and clinical data on COPD, was downloaded from the Gene Expression Omnibus (GEO) database, and the differentially expressed genes (DEGs) were identified using R software. Gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes (KEGG) were utilized to enrich and analyze the gene cohort related to the response to steroid hormones, respectively. The Connectivity Map (CMap) database was used to screen corticosteroid resistance-related drugs that might exert a potential therapeutic effect. STRING was used to construct a protein-protein interaction (PPI) network of the gene cohort, and the CytoHubba plug-in of Cytoscape was used to screen the hub genes in the PPI network. The expression levels of hub genes in cigarette smoke extract (CSE)-stimulated bronchial epithelial cells were assayed by quantitative real-time PCR and western blotting. Results: Twenty-one genes were found to be correlated with the response to steroid hormones. In the CMap database, 32 small-molecule compounds that might exert a therapeutic effect on corticosteroid resistance in COPD were identified. Nine hub genes were extracted from the PPI network. The expression levels of the BMP4, FOS, FN1, EGFR, and SPP1 proteins were consistent with the microarray data obtained from molecular biology experiments. Scopoletin significantly restrained the increases in the levels of AKR1C3, ALDH3A1, FN1 and reversed the decreases of phosphorylated GR and HDAC2 caused by CSE exposure. Conclusion: The BMP4, FOS, FN1, EGFR, and SPP1 genes are closely correlated with CSE-induced glucocorticoid resistance in airway epithelial cells. Scopoletin may be a potential drug for the treatment of glucocorticoid resistance caused by CSE.
Collapse
Affiliation(s)
- Guangsheng Pei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Nan Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fugang Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liyan Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingmin Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Deng M, Fang L, Li SH, Zhao RC, Mei J, Zou JW, Wei W, Guo RP. Expression pattern and prognostic value of N6-methyladenosine RNA methylation key regulators in hepatocellular carcinoma. Mutagenesis 2021; 36:369-379. [PMID: 34467992 PMCID: PMC8493108 DOI: 10.1093/mutage/geab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is still one of the most common malignancies worldwide. The accuracy of biomarkers for predicting the prognosis of HCC and the therapeutic effect is not satisfactory. N6-methyladenosine (m6A) methylation regulators play a crucial role in various tumours. Our research aims further to determine the predictive value of m6A methylation regulators and establish a prognostic model for HCC. In this study, the data of HCC from The Cancer Genome Atlas (TCGA) database was obtained, and the expression level of 15 genes and survival was examined. Then we identified two clusters of HCC with different clinical factors, constructed prognostic markers and analysed gene set enrichment, proteins’ interaction and gene co-expression. Three subgroups by consensus clustering according to the expression of the 13 genes were identified. The risk score generated by five genes divided HCC patients into high-risk and low-risk groups. In addition, we developed a prognostic marker that can identify high-risk HCC. Finally, a novel prognostic nomogram was developed to accurately predict HCC patients’ prognosis. The expression levels of 13 m6A RNA methylation regulators were significantly upregulated in HCC samples. The prognosis of cluster 1 and cluster 3 was worse. Patients in the high-risk group show a poor prognosis. Moreover, the risk score was an independent prognostic factor for HCC patients. In conclusion, we reveal the critical role of m6A RNA methylation modification in HCC and develop a predictive model based on the m6A RNA methylation regulators, which can accurately predict HCC patients’ prognosis and provide meaningful guidance for clinical treatment.
Collapse
Affiliation(s)
- Min Deng
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shao-Hua Li
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rong-Ce Zhao
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jie Mei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing-Wen Zou
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
23
|
Wei J, Fang DL, Zhou W, He YF. N6-methyladenosine (m6A) regulatory gene divides hepatocellular carcinoma into three subtypes. J Gastrointest Oncol 2021; 12:1860-1872. [PMID: 34532134 DOI: 10.21037/jgo-21-378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background The N6-methyladenosine (m6A) plays an important role in epigenetic modification and tumor progression, but the modulations of m6A in hepatocellular carcinoma (HCC) have not been determined while the relationship between m6A regulation and immune cell infiltration remains unclear. Methods This study investigated the modification patterns of m6A by analyzing HCC samples from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) dataset, and performed molecular typing based on the characteristics of immune cell infiltration. The m6Ascore was also constructed to quantify m6A modifications and predict the immunotherapy response and prognosis of HCC patients. Results Of the 364 samples, 31 (8.52%) were genetically altered in the m6A regulatory gene, with the highest frequency of mutations in HNRNPC, ZC3H13, and LRPPRC. Three distinct molecular subtypes of m6A were identified in 590 HCC samples, which were associated with different immune cell infiltrates: immunodepletion type, immune activation type, and immune immunity type. According to the construction of the m6Ascore system in the m6A genotype, HCC patients could be divided into high and low groups. The m6A modified pattern, characterized by immune immunity and immune failure, showed a lower score and a better prognosis. However, the immune-activated type of m6A had a higher score and a poorer prognosis. Further analysis showed that the m6Ascore was correlated with tumor mutation burden (TMB), and the higher the TMB, the worse the prognosis. m6Ascore was also correlated with the expression of cytotoxic T-lymphocyte-associated protein 4 (CTAL-4), and the higher the score, the higher the expression of HCC in patients. Conclusions HCC has a unique m6A modification pattern, and 3 different m6A subtypes help to classify HCC, provide knowledge of drug regimens for immunotherapy, and can be used to predict treatment response and prognosis.
Collapse
Affiliation(s)
- Jie Wei
- Department of Hematology, Baise People's Hospital, Baise, China
| | - Da Lang Fang
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Weijie Zhou
- Clinical Laboratory, Baise People's Hospital, Baise, China
| | - Yong Fei He
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nannning, China
| |
Collapse
|
24
|
Comprehensive Analysis of YTH Domain Family in Lung Adenocarcinoma: Expression Profile, Association with Prognostic Value, and Immune Infiltration. DISEASE MARKERS 2021; 2021:2789481. [PMID: 34497675 PMCID: PMC8420974 DOI: 10.1155/2021/2789481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
Background All YTH domain family members are m6A reader proteins accounting for the methylation modulation involved in the process of tumorgenesis and tumor progression. However, the expression profiles and roles of the YTH domain family in lung adenocarcinoma (LUAD) remain to be further illustrated. Methods GEPIA2 and TNMplot databases were used to generate the expression profiles of the YTH family. Kaplan-Meier plotter database was employed to analysis the prognostic value of the YTH family. Coexpression profiles and genetic alterations analysis of the YTH family were undertaken using the cBioPortal database. YTH family protein-associated protein-protein interaction (PPI) network was identified by using STRING. Functional enrichment analysis was performed with the help of the WebGestalt database. The correlation analysis between the YTH family and immune cell infiltration in LUAD was administrated by using the TIMER2.0 database. Results mRNA expression of YTHDC1 and YTHDC2 was significantly lower in LUAD, whereas YTHDF1, YTHDF2, and YTHDF3 with apparently higher expression. YTHDF2 expression was observed to be the highest in the nonsmoker subgroup, and its expression gradually decreased with the increased severity of smoking habit. LUAD patients with low expression of YTHDC2, YTHDF1, and YTHDF2 were correlated with a better overall survival (OS) time. The YTHDF1 genetic alteration rate was 26%, which was the highest in the YTH family. The major cancer-associated functions of YTH family pointed in the direction of immunomodulation, especially antigen processing and presentation. Most of the YTH family members were significantly correlated with the infiltration of CD4+ T cells, CD8+ T cells, macrophages, and neutrophils, indicating the deep involvement of the YTH domain family in the immune cell infiltration in LUAD. Conclusion The molecular and expression profiles of the YTH family were dysregulated in LUAD. YTH family members (especially YTHDC2) were promising biomarkers and potential therapeutic targets that may bring benefit for the patients with LUAD.
Collapse
|
25
|
Liang RH, Zhu NX, Hou Q, Wu LF. Role of m6A methylation in occurrence and progression of digestive system malignancies. Shijie Huaren Xiaohua Zazhi 2021; 29:747-757. [DOI: 10.11569/wcjd.v29.i14.747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common modification in higher eukaryotic messenger RNA (mRNA), which is closely related to the mRNA processing, nuclear output, translation, and degradation. M6A modification is regulated by methyltransferase and demethylase dynamically and reversibly. M6A plays an essential role in tumors progression by regulating epigenetic modification of tumor suppressor genes and oncogenes. In recent years, more and more studies have shown that m6A is related to the occurrence and development of digestive system malignant tumors and may serve as a novel potential biomarker for the diagnosis and prognosis of digestive cancer. This article reviews the latest progress in the research of m6A in digestive system malignant tumors.
Collapse
Affiliation(s)
- Rui-Huang Liang
- Department of Gastroenterology, the 2nd Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Nan-Xing Zhu
- Department of Gastroenterology, the 2nd Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Qin Hou
- Department of Gastroenterology, the 2nd Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ling-Fei Wu
- Department of Gastroenterology, the 2nd Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
26
|
Huang J, Shao Y, Gu W. Function and clinical significance of N6-methyladenosine in digestive system tumours. Exp Hematol Oncol 2021; 10:40. [PMID: 34246319 PMCID: PMC8272376 DOI: 10.1186/s40164-021-00234-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/03/2021] [Indexed: 12/21/2022] Open
Abstract
RNA modification, like DNA methylation, histone modification, non-coding RNA modification and chromatin rearrangement, plays an important role in tumours. N6-methyladenosine (m6A) is the most abundant RNA modification in cells, and it regulates RNA transcription, processing, splicing, degradation, and translation. m6A-associated proteins have been used as new biomarkers and therapeutic targets for tumour prediction and monitoring. There are three main types of proteins involved in m6A methylation: methyltransferases (METTL3, METTL14, WTAP, RBM15, ZC3H13 and KIAA1429), demethylases (FTO, ALKBH5 and ALKBH3) and RNA-binding proteins (YTHDF1-3, YTHDC1-2, IGF2BPs and HNRNPs). This article reviews the origins, characteristics and functions of m6A and its relationship with digestive system tumours based on recent research. The expression of m6A regulators can be used as an evaluation indicator of tumour growth and progression and as a prognostic indicator. In-depth research on m6A methylation in digestive system tumours may provide new directions for clinical prediction and further treatment.
Collapse
Affiliation(s)
- Junchao Huang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003 China
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003 China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003 China
| |
Collapse
|
27
|
Guo J, Liu Z, Yang Y, Guo M, Zhang J, Zheng J. KDM5B promotes self-renewal of hepatocellular carcinoma cells through the microRNA-448-mediated YTHDF3/ITGA6 axis. J Cell Mol Med 2021; 25:5949-5962. [PMID: 33829656 PMCID: PMC8256355 DOI: 10.1111/jcmm.16342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Histone methylation plays important roles in mediating the onset and progression of various cancers, and lysine-specific demethylase 5B (KDM5B), as a histone demethylase, is reported to be an oncogene in hepatocellular carcinoma (HCC). However, the mechanism underlying its tumorigenesis remains undefined. Hence, we explored the regulatory role of KDM5B in HCC cells, aiming to identify novel therapeutic targets for HCC. Gene Expression Omnibus database and StarBase were used to predict important regulatory pathways related to HCC. Then, the expression of KDM5B and microRNA-448 (miR-448) in HCC tissues was detected by RT-qPCR and Western blot analysis. The correlation between KDM5B and miR-448 expression was analysed by Pearson's correlation coefficient and ChIP experiments, and the targeting of YTH N6-methyladenosine RNA binding protein 3 (YTHDF3) by miR-448 was examined by luciferase assay. Additionally, the effect of KDM5B on the proliferation, migration, invasion and apoptosis as well as tumorigenicity of transfected cells was assessed using ectopic expression and depletion experiments. KDM5B was highly expressed in HCC cells and was inversely related to miR-448 expression. KDM5B demethylated H3K4me3 on the miR-448 promoter and thereby inhibited the expression of miR-448, which in turn targeted YTHDF3 and integrin subunit alpha 6 (ITGA6) to promote the malignant phenotype of HCC. Moreover, KDM5B accelerated HCC progression in nude mice via the miR-448/YTHDF3/ITGA6 axis. Our study uncovered that KDM5B regulates the YTHDF3/ITGA6 axis by inhibiting the expression of miR-448 to promote the occurrence of HCC.
Collapse
Affiliation(s)
| | - Zhuo Liu
- Hainan Medical University of Hainan Hospital affiliatedHaikouChina
| | - Yi‐Jun Yang
- Central South University Xiangya School of Medicine Affiliated Haikou HospitalHaikouChina
| | - Min Guo
- Hainan General HospitalHaikouChina
| | - Jian‐Quan Zhang
- Central South University Xiangya School of Medicine Affiliated Haikou HospitalHaikouChina
| | | |
Collapse
|
28
|
Xu Y, He X, Deng J, Xiong L, Li Y, Zhang X, Chen W, Liu X, Xu X. Comprehensive Analysis of the Immune Infiltrates and PD-L1 of m 6A RNA Methylation Regulators in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:681745. [PMID: 34277622 PMCID: PMC8277965 DOI: 10.3389/fcell.2021.681745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022] Open
Abstract
Recently, N6-methyladenosine (m6A) RNA methylation in eukaryotic mRNA has become increasingly obvious in the pathogenesis and prognosis of cancer. Moreover, tumor microenvironment is involved in the regulation of tumorigenesis. In our research, the clinical data, including 374 tumor and 50 normal patients, were obtained from The Cancer Genome Atlas (TCGA). Then 19 m6A regulators were selected from other studies. Hepatocellular carcinoma (HCC) patients were clustered in cluster1/2, according to the consensus clustering for the m6A RNA regulators. We found that m6A regulators were upregulated in cluster1. The cluster1 was associated with higher programmed death ligand 1 (PD-L1) expression level, higher immunoscore, worse prognosis, and distinct immune cell infiltration compared with cluster2. Five risk signatures were identified, including YTH N6-methyladenosine RNA-binding protein 1, YTHDF2, heterogeneous nuclear ribonucleoprotein C, WT1-associated protein, and methyltransferase-like 3, based on univariate Cox and least absolute shrinkage and selection operator regression analysis. High-risk group and low-risk group HCC patients were selected based on the risk score. Similarly, the high-risk group was extremely associated with higher PD-L1 expression level, higher grade, and worse overall survival (OS). Also, cluster1 was mainly enriched in high-risk group. Receiver operating characteristic (ROC) and a nomogram were used to predict the ability and the probability of 3- and 5-year OS of HCC patients. The time-dependent ROC curve (AUC) reached 0.77, 0.67, and 0.68 at 1, 3, and 5 years in the training dataset. Also, AUC areas of 1, 3, and 5 years were 0.7, 0.63, and 0.55 in the validation dataset. The gene set enrichment analysis showed that MTOR signaling pathway and WNT signaling pathway were correlated with cluster1 and high-risk group. Collectively, the research showed that the m6A regulators were significantly associated with tumor immune microenvironment in HCC. Risk characteristics based on m6A regulators may predict prognosis in patients with HCC and provide a new therapeutic target for improving the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junjian Deng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Xiong
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yue Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Identification of an m6A-Related Signature as Biomarker for Hepatocellular Carcinoma Prognosis and Correlates with Sorafenib and Anti-PD-1 Immunotherapy Treatment Response. DISEASE MARKERS 2021; 2021:5576683. [PMID: 34221187 PMCID: PMC8213471 DOI: 10.1155/2021/5576683] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Background N6-methyladenosine (m6A) modification plays an essential role in diverse key biological processes and may take part in the development and progression of hepatocellular carcinoma (HCC). Here, we systematically analyzed the expression profiles and prognostic values of 13 widely reported m6A modification-related genes in HCC. Methods The mRNA expression of 13 m6A modification-related genes and clinical parameters of HCC patients were downloaded from TCGA, ICGC, GSE109211, and GSE78220. Univariate and LASSO analyses were used to develop risk signature. Time-dependent ROC was performed to assess the predictive accuracy and sensitivity of risk signature. Results FTO, YTHDC1, YTHDC2, ALKBH5, KIAA1429, HNRNPC, METTL3, RBM15, YTHDF2, YTHDF1, and WTAP were significantly overexpressed in HCC patients. YTHDF1, HNRNPC, RBM15, METTL3, and YTHDF2 were independent prognostic factors for OS and DFS in HCC patients. Next, a risk signature was also developed and validated with five m6A modification-related genes in TCGA and ICGC HCC cohort. It could effectively stratify HCC patients into high-risk patients with shorter OS and DFS and low-risk patients with longer OS and DFS and showed good predictive efficiency in predicting OS and DFS. Moreover, significantly higher proportions of macrophages M0 cells, neutrophils, and Tregs were found to be enriched in HCC patients with high risk scores, while significantly higher proportions of memory CD4 T cells, gamma delta T cells, and naive B cells were found to be enriched in HCC patients with low scores. Finally, significantly lower risk scores were found at sorafenib treatment responders and anti-PD-1 immunotherapy responders compared to that in nonresponders, and anti-PD-1 immunotherapy-treated patients with lower risk scores had better OS than patients with higher risk scores. Conclusion A risk signature developed with the expression of 5 m6A-related genes could improve the prediction of prognosis of HCC and correlated with sorafenib treatment and anti-PD-1 immunotherapy response.
Collapse
|
30
|
Luo X, Cao M, Gao F, He X. YTHDF1 promotes hepatocellular carcinoma progression via activating PI3K/AKT/mTOR signaling pathway and inducing epithelial-mesenchymal transition. Exp Hematol Oncol 2021; 10:35. [PMID: 34088349 PMCID: PMC8176587 DOI: 10.1186/s40164-021-00227-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification, as the most abundant RNA modification, widely participates in the physiological process and is involved in multiple disease progression, especially cancer. YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) is a pivotal m6A "reader" protein, which has been reported in multiple cancers. However, the role and molecular mechanism of YTHDF1 in HCC are still not fully elucidated. METHODS Based on various bioinformatics databases, q-RT PCR, western blot, and a tissue microarray containing 90 HCC samples, we examined the expression of YTHDF1 in HCC. Then, we applied the loss-of-function experiments to explore the role of YTHDF1 in HCC by in vitro and in vivo assays. Finally, we performed the gene set enrichment analysis (GSEA) to predict the potential signaling pathway of YTHDF1 involved in HCC and further verified this prediction. RESULTS YTHDF1 was overexpressed in HCC and associated with HCC grade. Depletion of YTHDF1 markedly impaired the proliferation, migration, invasion, and cell cycle process of HCC cells. Mechanistically, YTHDF1 promoted the growth of HCC cells via activating the PI3K/AKT/mTOR signaling pathway. Moreover, we also demonstrated that the epithelial-mesenchymal transition (EMT) mediated the promoting effect of YTHDF1 on the migration and invasion of HCC cells. CONCLUSIONS YTHDF1 contributes to the progression of HCC by activating PI3K/AKT/mTOR signaling pathway and inducing EMT.
Collapse
Affiliation(s)
- Xiangyuan Luo
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengdie Cao
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Gao
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingxing He
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
m 6A RNA Methylation Regulators Elicit Malignant Progression and Predict Clinical Outcome in Hepatocellular Carcinoma. DISEASE MARKERS 2021; 2021:8859590. [PMID: 34234878 PMCID: PMC8218914 DOI: 10.1155/2021/8859590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/22/2021] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and N6-methyladenosine (m6A) is a predominant internal modification of RNA in various cancers. We obtained the expression profiles of m6A-related genes for HCC patients from the International Cancer Genome Consortium and The Cancer Genome Atlas datasets. Most of the m6A RNA methylation regulators were confirmed to be differentially expressed among groups stratified by clinical characteristics and tissues. The clinical factors (including stage, grade, and gender) were correlated with the two subgroups (cluster 1/2). We identified an m6A RNA methylation regulator-based signature (including METTL3, YTHDC2, and YTHDF2) that could effectively stratify a high-risk subset of these patients by univariate and LASSO Cox regression, and receiver operating characteristic (ROC) analysis indicated that the signature had a powerful predictive ability. Immune cell analysis revealed that the genes in the signature were correlated with B cell, CD4 T cell, CD8 T cell, dendritic cell, macrophage, and neutrophil. Functional enrichment analysis suggested that these three genes may be involved in genetic and epigenetic events with known links to HCC. Moreover, the nomogram was established based on the signature integrated with clinicopathological features. The calibration curve and the area under ROC also demonstrated the good performance of the nomogram in predicting 3- and 5-year OS in the ICGC and TCGA cohorts. In summary, we demonstrated the vital role of m6A RNA methylation regulators in the initial presentation and progression of HCC and constructed a nomogram which would predict the clinical outcome and provide a basis for individualized therapy.
Collapse
|
32
|
Dai XY, Shi L, Li Z, Yang HY, Wei JF, Ding Q. Main N6-Methyladenosine Readers: YTH Family Proteins in Cancers. Front Oncol 2021; 11:635329. [PMID: 33928028 PMCID: PMC8076607 DOI: 10.3389/fonc.2021.635329] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Among the over 150 RNA modifications, N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic RNAs, not only in messenger RNAs, but also in microRNAs and long non-coding RNAs. It is a dynamic and reversible process in mammalian cells, which is installed by “writers,” consisting of METTL3, METTL14, WTAP, RBM15/15B, and KIAA1429 and removed by “erasers,” including FTO and ALKBH5. Moreover, m6A modification is recognized by “readers,” which play the key role in executing m6A functions. IYT521-B homology (YTH) family proteins are the first identified m6A reader proteins. They were reported to participate in cancer tumorigenesis and development through regulating the metabolism of targeted RNAs, including RNA splicing, RNA export, translation, and degradation. There are many reviews about function of m6A and its role in various diseases. However, reviews only focusing on m6A readers, especially YTH family proteins are few. In this review, we systematically summarize the recent advances in structure and biological function of YTH family proteins, and their roles in human cancer and potential application in cancer therapy.
Collapse
Affiliation(s)
- Xin-Yuan Dai
- Jiangsu Breast Disease Center, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Liang Shi
- Jiangsu Breast Disease Center, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhi Li
- Jiangsu Breast Disease Center, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Hai-Yan Yang
- Jiangsu Breast Disease Center, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Kang J, Huang X, Dong W, Zhu X, Li M, Cui N. MicroRNA-1269b inhibits gastric cancer development through regulating methyltransferase-like 3 (METTL3). Bioengineered 2021; 12:1150-1160. [PMID: 33818282 PMCID: PMC8806277 DOI: 10.1080/21655979.2021.1909951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) expression is relevant to the progression of many tumors. As reported, the abnormal expression of miR-1269b is pivotal in certain cancers’ progression. This work was designed to study the role and hidden mechanism of miR-1269b in gastric cancer (GC) progression. In this work, we proved that miR-1269b was lowly expressed in GC tissues and cell lines, which was associated with larger tumor size and lymph node metastasis. MiR-1269b overexpression repressed the multiplication, migration and invasion of GC cells while miR-1269b inhibition had the opposite effects. Methyltransferase-like 3 (METTL3) was identified as the direct target of miR-1269b in GC cells, and its overexpression reversed the inhibitory effect of transfection of miR-1269b mimics on GC cell viability, migration and invasion. On all accounts, these data indicated that miR-1269b inhibits GC progression via targeting METTL3.
Collapse
Affiliation(s)
- Jian Kang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan Hubei Province, China
| | - Xu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan Hubei Province, China
| | - Xueying Zhu
- Department of General Practice, Renmin Hospital of Wuhan University, Wuhan Hubei Province, China
| | - Ming Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan Hubei Province, China
| | - Ning Cui
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan Hubei Province, China
| |
Collapse
|
34
|
Shi R, Ying S, Li Y, Zhu L, Wang X, Jin H. Linking the YTH domain to cancer: the importance of YTH family proteins in epigenetics. Cell Death Dis 2021; 12:346. [PMID: 33795663 PMCID: PMC8016981 DOI: 10.1038/s41419-021-03625-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
N6-methyladenosine (m6A), the most prevalent and reversible modification of mRNA in mammalian cells, has recently been extensively studied in epigenetic regulation. YTH family proteins, whose YTH domain can recognize and bind m6A-containing RNA, are the main "readers" of m6A modification. YTH family proteins perform different functions to determine the metabolic fate of m6A-modified RNA. The crystal structure of the YTH domain has been completely resolved, highlighting the important roles of several conserved residues of the YTH domain in the specific recognition of m6A-modified RNAs. Upstream and downstream targets have been successively revealed in different cancer types and the role of YTH family proteins has been emphasized in m6A research. This review describes the regulation of RNAs by YTH family proteins, the structural features of the YTH domain, and the connections of YTH family proteins with human cancers.
Collapse
Affiliation(s)
- Rongkai Shi
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Cancer Center, Zhejiang University, Hangzhou, China
| | - Shilong Ying
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yadan Li
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Cancer Center, Zhejiang University, Hangzhou, China
| | - Liyuan Zhu
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Cancer Center, Zhejiang University, Hangzhou, China
| | - Xian Wang
- grid.13402.340000 0004 1759 700XDepartment of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hongchuan Jin
- grid.13402.340000 0004 1759 700XLaboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Liu GM, Zeng HD, Zhang CY, Xu JW. Identification of METTL3 as an Adverse Prognostic Biomarker in Hepatocellular Carcinoma. Dig Dis Sci 2021; 66:1110-1126. [PMID: 32333311 DOI: 10.1007/s10620-020-06260-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION N6-methyladenosine (m6A), the most prominent mRNA modification, plays a critical role in many physiological and pathological processes. However, the roles of m6A RNA modification in hepatocellular carcinoma (HCC) remain largely unknown. MATERIALS AND METHODS We investigated the mRNA expression and clinical significance of m6A-related genes using data from The Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma cohort. Mutation, copy number variation (CNV), methylation, differential expression, and gene ontology analyses, gene set enrichment analysis and the construction of a competing endogenous RNA (ceRNA) regulatory network were performed to investigate the underlying mechanisms of the aberrant expression of m6A-related genes. RESULTS m6A-related genes were frequently dysregulated in cancers but with a cancer-specific pattern. METTL3, YTHDF2, and ZC3H13 were found to be independent prognostic factors of overall survival (OS); however, only METTL3 was found to be an independent prognostic factor of recurrence-free survival (RFS). Joint effects analysis showed the predictive capacity of combining METTL3, YTHDF2, and ZC3H13 for HCC OS. Then the potential mechanisms of METTL3 were further explored due to its prognostic role in both OS and RFS. CNV and DNA methylation, but not somatic mutations, might contribute to the abnormal upregulation of METTL3 in HCC. Significantly altered genes, microRNAs, and lncRNAs were identified, and a ceRNA regulatory network was constructed to explain the upregulation of METTL3 in HCC. CONCLUSIONS Our study identified several m6A-related genes, especially METTL3, that could be potential prognostic biomarkers in HCC.
Collapse
Affiliation(s)
- Gao-Min Liu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 63 Huangtang Road, Meizhou, 514000, China. .,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China.
| | - Hua-Dong Zeng
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 63 Huangtang Road, Meizhou, 514000, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Cai-Yun Zhang
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 63 Huangtang Road, Meizhou, 514000, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Ji-Wei Xu
- Department of Hepatobiliary Surgery, Meizhou People's Hospital, No. 63 Huangtang Road, Meizhou, 514000, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| |
Collapse
|
36
|
Wu X, Sheng H, Wang L, Xia P, Wang Y, Yu L, Lv W, Hu J. A five-m6A regulatory gene signature is a prognostic biomarker in lung adenocarcinoma patients. Aging (Albany NY) 2021; 13:10034-10057. [PMID: 33795529 PMCID: PMC8064222 DOI: 10.18632/aging.202761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
We analyzed the prognostic value of N6-methyladenosine (m6A) regulatory genes in lung adenocarcinoma (LADC) and their association with tumor immunity and immunotherapy response. Seventeen of 20 m6A regulatory genes were differentially expressed in LDAC tissue samples from the TCGA and GEO databases. We developed a five-m6A regulatory gene prognostic signature based on univariate and Lasso Cox regression analysis. Western blot analysis confirmed that the five prognostic m6A regulatory proteins were highly expressed in LADC tissues. We constructed a nomogram with five-m6A regulatory gene prognostic risk signature and AJCC stages. ROC curves and calibration curves showed that the nomogram was well calibrated and accurately distinguished high-risk and low-risk LADC patients. Weighted gene co-expression analysis showed significant correlation between prognostic risk signature genes and the turquoise module enriched with cell cycle genes. The high-risk LADC patients showed significantly higher PD-L1 levels, increased tumor mutational burden, and a lower proportion of CD8+ T cells in the tumor tissues and improved response to immune checkpoint blockade therapy. These findings show that this five-m6A regulatory gene signature is a prognostic biomarker in LADC and that immune checkpoint blockade is a potential therapeutic option for high-risk LADC patients.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hongxu Sheng
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Luming Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Pinghui Xia
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yiqing Wang
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li Yu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
37
|
Geng X, Zhang Y, Zeng Z, Zhu Z, Wang H, Yu W, Li Q. Molecular Characteristics, Prognostic Value, and Immune Characteristics of m 6A Regulators Identified in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:629718. [PMID: 33816266 PMCID: PMC8014089 DOI: 10.3389/fonc.2021.629718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
N6-methyladenosine (m6A) plays crucial roles in a diverse range of physiological and pathological processes, and it is believed that it tremendously promotes neoplasia and progression. However, knowledge of the molecular characteristics of m6A modification, its prognostic value, and the infiltration of immune cell populations in head and neck squamous cell carcinoma (HNSCC) is still insufficient. Therefore, a pan-cancer genomic analysis was systematically performed here by examining m6A regulators at the molecular level within 33 multiple cancer types, and the correlations between the expression of m6A molecules were researched using datasets from The Cancer Genome Atlas (TCGA). Based on the above analysis, insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is upregulated in HNSCC and may serve as an independent prognostic factor of overall survival, thus showing potential as a prognostic biomarker in HNSCC. Genetic alteration analyses elucidated the reasons for the abnormal upregulation of IGF2BP2 in HNSCC. As a result, IGF2BP2 was selected for further univariate and multivariate analyses. The functions of the related genes were annotated through gene set enrichment analysis, and the activation states of multiple biological pathways were shown by gene set variation analysis. We found that LRRC59 and STIP1 may act as IGF2BP2-associated genes to have a regulatory function in the m6A modification. In addition, we found that the status of immune cell infiltration was correlated with the level of IGF2BP2 gene expression. Our results provide supplementation at the molecular level for epigenetic regulation in HNSCC and insight into effective immunotherapy targets and strategies.
Collapse
Affiliation(s)
- Xiuchao Geng
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuhao Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China.,School of Clinical Medicine, Hebei University, Baoding, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China.,School of Clinical Medicine, Hebei University, Baoding, China
| | - Zhongrui Zhu
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hong Wang
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.,Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China.,Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China.,School of Clinical Medicine, Hebei University, Baoding, China
| | - Wentao Yu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China.,Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
38
|
Chen L, Hu B, Song X, Wang L, Ju M, Li Z, Zhou C, Zhang M, Wei Q, Guan Q, Jiang L, Chen T, Wei M, Zhao L. m 6A RNA Methylation Regulators Impact Prognosis and Tumor Microenvironment in Renal Papillary Cell Carcinoma. Front Oncol 2021; 11:598017. [PMID: 33796449 PMCID: PMC8008109 DOI: 10.3389/fonc.2021.598017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has proven that N6-methyladenosine (m6A) RNA methylation plays an essential role in tumorigenesis. However, the significance of m6A RNA methylation modulators in the malignant progression of papillary renal cell carcinoma (PRCC) and their impact on prognosis has not been fully analyzed. The present research set out to explore the roles of 17 m6A RNA methylation regulators in tumor microenvironment (TME) of PRCC and identify the prognostic values of m6A RNA methylation regulators in patients afflicted by PRCC. We investigated the different expression patterns of the m6A RNA methylation regulators between PRCC tumor samples and normal tissues, and systematically explored the association of the expression patterns of these genes with TME cell-infiltrating characteristics. Additionally, we used LASSO regression to construct a risk signature based upon the m6A RNA methylation modulators. Two-gene prognostic risk model including IGF2BP3 and HNRNPC was constructed and could predict overall survival (OS) of PRCC patients from the Cancer Genome Atlas (TCGA) dataset. The prognostic signature-based risk score was identified as an independent prognostic indicator in Cox regression analysis. Moreover, we predicted the three most significant small molecule drugs that potentially inhibit PRCC. Taken together, our study revealed that m6A RNA methylation regulators might play a significant role in the initiation and progression of PRCC. The results might provide novel insight into exploration of m6A RNA modification in PRCC and provide essential guidance for therapeutic strategies.
Collapse
Affiliation(s)
- Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Zinan Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Chenyi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Ting Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
39
|
Chang X, Lv YF, He J, Cao Y, Li CQ, Guo QN. Gene Expression Profile and Prognostic Value of m6A RNA Methylation Regulators in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:85-101. [PMID: 33738268 PMCID: PMC7966299 DOI: 10.2147/jhc.s296438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/23/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation is the most prevalent modification of mammalian RNA, and it is associated with tumorigenesis and cancer progression. Its regulation is mediated via m6A-related regulators, including "erasers," "readers," and "writers". The present study evaluated the expression profile, risk signature and prognostic value of 13 m6A regulators in hepatocellular carcinoma (HCC) using different datasets, including The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and clinical samples. METHODS We used 374 HCC samples derived from the TCGA database, 569 HCC samples from 2 GEO datasets, and clinical tumour and nontumour tissues derived from 60 patients with HCC who underwent surgery in Xinqiao Hospital Chongqing to assess the gene expression profiles and prognostic values of m6A-related regulators in HCC. RESULTS Eight of 13 core m6A-related regulators were overexpressed in all databases, including TCGA, GSE, clinical tumour and nontumour tissues of HCC. Two clusters (Cluster 1 and Cluster 2) were identified via consensus clustering. Cluster 2 was associated with poorer prognosis, higher tumour grade, higher AFP levels, and worse outcome compared to Cluster 1, which indicates that these m6A-related regulators are highly correlated with HCC malignancy. We performed survival analyses using the Log rank tests and a Cox regression model. Gene enrichment analysis was used to detect the related KEGG and GO pathways. We derived a prognostic risk signature using five selected m6A-related regulators. CONCLUSION Our work suggested that m6A-related regulators might be key participants in the tumour progression of HCC and potential biomarkers with prognostic value.
Collapse
Affiliation(s)
- Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, People’s Republic of China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, People’s Republic of China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People’s Republic of China
| | - Ya Cao
- Department of Pathology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, People’s Republic of China
| | - Chang-Qing Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, People’s Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, People’s Republic of China
| |
Collapse
|
40
|
Liu K, Gao Y, Gan K, Wu Y, Xu B, Zhang L, Chen M. Prognostic Roles of N6-Methyladenosine METTL3 in Different Cancers: A System Review and Meta-Analysis. Cancer Control 2021; 28:1073274821997455. [PMID: 33631954 PMCID: PMC8482712 DOI: 10.1177/1073274821997455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recent studies have shown that methyltransferase-like 3, a catalytic enzyme that is predominant in the N6-methyladenosine methyltransferase system, is abnormally expressed in various types of carcinoma and is correlated with poorer prognosis. However, the clinical functions of methyltransferase-like 3 in the prognosis of tumors are not fully understood. METHODS We identified studies by searching PubMed, Web of Science, and MedRvix for literature (up to June 30, 2020), and collected a total of 9 studies with 1257 patients for this meta-analysis. The cancer types included gastric cancer, breast cancer, non-small cell lung cancer, bladder cancer, colorectal cancer and ovarian. We further used The Cancer Genome Atlas dataset to validate the results. RESULTS High methyltransferase-like 3 expression clearly predicted a worse outcome (high vs. low methyltransferase-like 3 expression group; hazard ratio = 2.09, 95% confidence interval 1.53-2.89, P = 0.0001). Moreover, methyltransferase-like 3 expression was associated with differentiation (moderate + poor vs. well, pooled odds ratio = 1.76, 95% confidence interval 1.32-2.35, P = 0.0001), and gender (male vs. female, pooled odds ratio = 0.73, 95% confidence interval 0.55-0.97, P = 0.029). CONCLUSION Our results suggest that methyltransferase-like 3 upregulation is significantly associated with poor prognosis and could potentially function as a tumor biomarker in cancer prognosis.
Collapse
Affiliation(s)
- KuangZheng Liu
- Medical College of 12579Southeast University, Nanjing, Jiangsu, China
| | - Yue Gao
- Medical College of 12579Southeast University, Nanjing, Jiangsu, China
| | - Kai Gan
- Medical College of 12579Southeast University, Nanjing, Jiangsu, China
| | - YuQing Wu
- Medical College of 12579Southeast University, Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, 12579Southeast University Affiliated Zhongda Hospital, Nanjing, Jiangsu, China
| | - LiHua Zhang
- Department of Pathology, 12579Southeast University Affiliated Zhongda Hospital, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, 12579Southeast University Affiliated Zhongda Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
41
|
Chi F, Cao Y, Chen Y. Analysis and Validation of circRNA-miRNA Network in Regulating m 6A RNA Methylation Modulators Reveals CircMAP2K4/miR-139-5p/YTHDF1 Axis Involving the Proliferation of Hepatocellular Carcinoma. Front Oncol 2021; 11:560506. [PMID: 33708621 PMCID: PMC7940687 DOI: 10.3389/fonc.2021.560506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
The m6A RNA methylation modulators play a crucial role in regulating hepatocellular carcinoma (HCC) progression. The circular RNA (circRNA) regulatory network in regulating m6A RNA methylation modulators in HCC remains largely unknown. In this study, 5 prognostic m6A RNA methylation modulators in HCC were identified from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) projects. The differentially expressed microRNAs (DEmiRNAs) and circRNAs (DEcircRNAs) between paired tumor and normal tissues were screened out from TCGA and or Gene Expression Omnibus (GEO) database to construct the circRNA-miRNA- m6A RNA methylation modulator regulatory network, which included three m6A RNA methylation modulators (HNRNPC, YTHDF1, and YTHDF2), 11 DEmiRNAs, and eight DEcircRNAs. Among the network, hsa-miR-139-5p expression was negatively correlated with YTHDF1. Hsa-miR-139-5p low or YTHDF1 high expression was correlated with high pathological grade, advanced stage and poor survival of HCC. Additionally, cell cycle, base excision repair, and homologous recombination were enriched in YTHDF1 high expression group by GSEA. A hub circRNA regulatory network was constructed based on hsa-miR-139-5p/YTHDF1 axis. Furthermore, hsa_circ_0007456(circMAP2K4) was validated to promote HCC cell proliferation by binding with hsa-miR-139-5p to promote YTHDF1 expression. Taken together, we identified certain circRNA regulatory network related to m6A RNA methylation modulators and provided clues for mechanism study and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Fanwu Chi
- Cardiovascular Surgery Department, The People's Hospital of Gaozhou, Gaozhou, China
| | - Yong Cao
- Cardiovascular Surgery Department, The People's Hospital of Gaozhou, Gaozhou, China
| | - Yuhan Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Xu Y, Zhang W, Shen F, Yang X, Liu H, Dai S, Sun X, Huang J, Guo Q. YTH Domain Proteins: A Family of m 6A Readers in Cancer Progression. Front Oncol 2021; 11:629560. [PMID: 33692959 PMCID: PMC7937903 DOI: 10.3389/fonc.2021.629560] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/07/2021] [Indexed: 02/05/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs). m6A RNA methylation is involved in all stages of RNA life cycle, from RNA processing, nuclear output, translation regulation to RNA degradation, indicating that m6A has various functions affecting RNA metabolism positively or negatively. Reading proteins are vital in regulating the translation and stability of m6A mRNAs positively or negatively. Recent studies have enhanced the understanding of the molecular mechanism of the YT521-B homology (YTH) domain family and the modification of m6A. This study aimed to review the specific mechanisms, functions, and interactions of the YTH domain protein family. It also discussed future research directions, thus providing new ideas for the clinical diagnosis and targeted therapy of cancer.
Collapse
Affiliation(s)
- Yirong Xu
- Department of Oncology, Taizhou People's Hospital, Taizhou, China.,Graduate school, Dalian Medical University, Dalian, China
| | - Wei Zhang
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Feng Shen
- Department of Neurosurgery, Taizhou People's Hospital, Taizhou, China
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huilan Liu
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Shengbin Dai
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxing Huang
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Qing Guo
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
43
|
Pan XY, Huang C, Li J. The emerging roles of m 6A modification in liver carcinogenesis. Int J Biol Sci 2021; 17:271-284. [PMID: 33390849 PMCID: PMC7757034 DOI: 10.7150/ijbs.50003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The 'epitranscriptome', a collective term for chemical modifications that influence the structure, metabolism, and functions of RNA, has recently emerged as vitally important for the regulation of gene expression. N6-methyladenosine (m6A), the most prevalent mammalian mRNA internal modification, has been demonstrated to have a pivotal role in almost all vital bioprocesses, such as stem cell self-renewal and differentiation, heat shock or DNA damage response, tissue development, and maternal-to-zygotic transition. Hepatocellular carcinoma (HCC) is prevalent worldwide with high morbidity and mortality because of late diagnosis at an advanced stage and lack of effective treatment strategies. Epigenetic modifications including DNA methylation and histone modification have been demonstrated to be crucial for liver carcinogenesis. However, the role and underlying molecular mechanism of m6A in liver carcinogenesis are mostly unknown. In this review, we summarize recent advances in the m6A region and how these new findings remodel our understanding of m6A regulation of gene expression. We also describe the influence of m6A modification on liver carcinoma and lipid metabolism to instigate further investigations of the role of m6A in liver biological diseases and its potential application in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Xue-Yin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education.,Institute for Liver Diseases of Anhui Medical University
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education.,Institute for Liver Diseases of Anhui Medical University
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education.,Institute for Liver Diseases of Anhui Medical University
| |
Collapse
|
44
|
Yang N, Wang T, Li Q, Han F, Wang Z, Zhu R, Zhou J. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α. J Cell Physiol 2020; 236:3863-3880. [PMID: 33305825 DOI: 10.1002/jcp.30128] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
Cancer cells sustain high levels of glycolysis and glutaminolysis via reprogramming of intracellular metabolism, which represents a driver of hepatocellular carcinoma (HCC) progression. Understanding the mechanisms of cell metabolic reprogramming may present a new basis for liver cancer treatment. Herein, we collected HCC tissues and noncancerous liver tissues and found hepatitis B virus X-interacting protein (HBXIP) was found to be upregulated in HCC tissues and associated with poor prognosis. The N6-methyladenosine (m6A) level of hypoxia-inducible factor-1α (HIF-1α) in HCC cells was evaluated after the intervention of METTL3. The possible m6A site of HIF-1α was queried and the binding relationship between METTL3 and HIF-1α was verified. The interference of HBXIP suppressed HCC malignant behaviors and inhibited the Warburg effect in HCC cells. METTL3 was upregulated in HCC tissues and positively regulated by HBXIP. Overexpression of METTL3 restored cell metabolic reprogramming in HCC cells with partial loss of HBXIP. HBXIP mediated METTL3 to promote the metabolic reprogramming and malignant biological behaviors of HCC cells. The levels of total m6A in HCC cells and m6A in HIF-1α were increased. METTL3 had a binding relationship with HIF-1α and mediated the m6A modification of HIF-1α. In conclusion, HBXIP drives metabolic reprogramming in HCC cells via METTL3-mediated m6A modification of HIF-1α.
Collapse
Affiliation(s)
- Nanmu Yang
- Department of Hepatopancreatobiliary Surgery, Henan Cancer Hospital, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tao Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingjun Li
- Department of Hepatopancreatobiliary Surgery, Henan Cancer Hospital, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Han
- Department of Hepatopancreatobiliary Surgery, Henan Cancer Hospital, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengzheng Wang
- Department of Hepatopancreatobiliary Surgery, Henan Cancer Hospital, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruili Zhu
- Department of Hepatopancreatobiliary Surgery, Henan Cancer Hospital, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinxue Zhou
- Department of Hepatopancreatobiliary Surgery, Henan Cancer Hospital, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
45
|
Liu T, Yang S, Cheng YP, Kong XL, Du DD, Wang X, Bai YF, Yin LH, Pu YP, Liang GY. The N6-Methyladenosine (m6A) Methylation Gene YTHDF1 Reveals a Potential Diagnostic Role for Gastric Cancer. Cancer Manag Res 2020; 12:11953-11964. [PMID: 33244271 PMCID: PMC7685380 DOI: 10.2147/cmar.s279370] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Gastric cancer (GC) is aggressive cancer with a high mortality rate worldwide. N6-methyladenosine (m6A) RNA methylation is related to tumorigenesis, which is dynamically regulated by m6A modulators ("writer," "eraser," and "reader"). We conducted a comprehensive analysis of the m6A genes of GC patients in TCGA datasets to identify the potential diagnostic biomarkers. Materials and Methods We analyzed the expression profile of m6A genes in the TCGA cohort and constructed a diagnostic-m6A-score (DMS) by the LASSO-logistic model. In addition, by consensus cluster analysis, we identified two different subgroups of GC risk individuals by the expression profile of m6A modulators, revealing that YTHDF1's expression variation profile in GC diagnosis. We also performed RT-qPCR and WB verification in 17 pairs of GC specimens and paired adjacent non-tumor tissues and GC cell lines, and verified the expression trend of YTHDF1 in five GEO GC datasets. YTHDF1 expression and clinical features of GC patients were assessed by the UALCAN. Results The DMS with high specificity and sensitivity (AUC = 0.986) is proven to distinguish cancer from normal controls better. Moreover, we found that the expression profile variation of YTHDF1 was significantly associated with the high-risk subtype of GC patients. RT-qPCR and Western blot results are consistent with silicon analysis, revealing that YTHDF1's potential oncogene role in GC tumor. Conclusion In conclusion, we developed the m6A gene-based diagnostic signature for GC and found that YTHDF1 was significantly correlated with the high-risk subtype of GC patients, suggesting that YTHDF1 might be a potential target in GC early diagnosis.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, People's Republic of China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, People's Republic of China
| | - Yan-Ping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, People's Republic of China
| | - Xiao-Ling Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, People's Republic of China
| | - Dan-Dan Du
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, People's Republic of China
| | - Xian Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, People's Republic of China
| | - Yun-Fei Bai
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Li-Hong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, People's Republic of China
| | - Yue-Pu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, People's Republic of China
| | - Ge-Yu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
46
|
Shen X, Hu B, Xu J, Qin W, Fu Y, Wang S, Dong Q, Qin L. The m6A methylation landscape stratifies hepatocellular carcinoma into 3 subtypes with distinct metabolic characteristics. Cancer Biol Med 2020; 17:937-952. [PMID: 33299645 PMCID: PMC7721089 DOI: 10.20892/j.issn.2095-3941.2020.0402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Epigenetic aberration plays an important role in the development and progression of hepatocellular carcinoma (HCC). However, the alteration of RNA N6-methyladenosine (m6A) modifications and its role in HCC progression remain unclear. We therefore aimed to provide evidence using bioinformatics analysis. Methods We comprehensively analyzed the m6A regulator modification patterns of 605 HCC samples and correlated them with metabolic alteration characteristics. We elucidated 390 gene-based m6A-related signatures and defined an m6Ascore to quantify m6A modifications. We then assessed their values for predicting prognoses and therapeutic responses in HCC patients. Results We identified 3 distinct m6A modification patterns in HCC, and each pattern had distinct metabolic characteristics. The evaluation of m6A modification patterns using m6Ascores could predict the prognoses, tumor stages, and responses to sorafenib treatments of HCC patients. A nomogram based on m6Ascores showed high accuracy in predicting the overall survival of patients. The area under the receiver operating characteristic curve of predictions of 1, 3, and 5-year overall survivals were 0.71, 0.69, and 0.70 in the training cohort, and in the test cohort it was 0.74, 0.75, and 0.71, respectively. M6Acluster C1, which corresponded to hypoactive mRNA methylation, lower expression of m6A regulators, and a lower m6Ascore, was characterized by metabolic hyperactivity, lower tumor stage, better prognosis, and lower response to sorafenib treatment. In contrast, m6Acluster C3 was distinct in its hyperactive mRNA methylations, higher expression of m6A regulators, and higher m6Ascores, and was characterized by hypoactive metabolism, advanced tumor stage, poorer prognosis, and a better response to sorafenib. The m6Acluster, C2, was intermediate between C1 and C3. Conclusions HCCs harbored distinct m6A regulator modification patterns that contributed to the metabolic heterogeneity and diversity of HCC. Development of m6A gene signatures and the m6Ascore provides a more comprehensive understanding of m6A modifications in HCC, and helps predict the prognosis and treatment response.
Collapse
Affiliation(s)
- Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Beiyuan Hu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Xu
- Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Wei Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai 250040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Mu Z, Dong D, Sun M, Li L, Wei N, Hu B. Prognostic Value of YTHDF2 in Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:1566. [PMID: 33102202 PMCID: PMC7546891 DOI: 10.3389/fonc.2020.01566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
m6A, the main form of mRNA modification, participates in regulating multiple normal and pathological biological events, especially in tumorigenesis. However, there is little known about the association of m6A-related genes with prognosis of clear cell renal cell cancer (ccRCC). Therefore, the prognostic value of m6A-related genes was investigated using Kaplan–Meier curves of overall survival (OS) with the log-rank test and Cox regression analysis. The differential expression of YTHDF2 mRNA in ccRCC and tumor-adjacent normal tissues and associated with clinicopathological characteristics was also analyzed. The alteration of cancer signaling pathways was screened by Gene Set Enrichment Analysis (GSEA). Univariate analysis showed that 15 m6A-related genes (including YTHDF2) were closely related to prognosis. Multivariate analysis further confirmed that YTHDF2 could serve as an independent prognostic factor for the OS of ccRCC patients (P < 0.001). Low-level expression of YTHDF2 had poor prognosis in ccRCC patients with lower tumor–node–metastasis (TNM) stage, age > 61, non-distant metastasis, non-lymph node metastasis, female gender, and higher histological grade (P < 0.05). Moreover, YTHDF2 expression in ccRCC tissues (N = 529) is significantly lower than that of tumor-adjacent normal tissues (N = 72, P = 0.0086). Furthermore, GSEA demonstrated that AKT/mTOR/GSK3 pathway, EIF4 pathway, CHREBP2 pathway, MET pathway, NFAT pathway, FAS pathway, EDG1 pathway, and CTCF pathway are altered in tumors with high YTHDF2 expression. Taken together, our results demonstrated that YTHDF2 (an m6A-related gene) could serve as a potential prognostic biomarker of ccRCC, and targeting epigenetic modification may be a novel therapeutic strategy for the treatment of ccRCC.
Collapse
Affiliation(s)
- Zhongyi Mu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Liwen Li
- Department of Biostatistics, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, United States
| | - Ning Wei
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bin Hu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
48
|
Xu Z, Peng B, Cai Y, Wu G, Huang J, Gao M, Guo G, Zeng S, Gong Z, Yan Y. N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochem Pharmacol 2020; 182:114258. [PMID: 33017575 DOI: 10.1016/j.bcp.2020.114258] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023]
Abstract
Several strategies, including chemotherapy and radiotherapy, have improved therapeutic outcomes among cancer patients in clinical practice. However, due to their heterogeneity, cancer cells frequently display primary or acquired therapeutic resistance, thereby resulting in treatment failure. The mechanisms underlying cancer therapeutic resistance are complex and varied. Among them, N6-methyladenosine (m6A) RNA modification has gained increasing attention as a potential determinant of therapy resistance within various cancers. In this review, we primarily describe evidence for the effect of the m6A epitranscriptome on RNA homeostasis modulation, which has been shown to alter multiple cellular pathways in cancer research and treatment. Additionally, we discuss the profiles and biological implications of m6A RNA methylation, which is undergoing intensive investigation for its effect on the control of therapeutic resistance.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Geting Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
49
|
Zhang L, Qiao Y, Huang J, Wan D, Zhou L, Lin S, Zheng S. Expression Pattern and Prognostic Value of Key Regulators for m6A RNA Modification in Hepatocellular Carcinoma. Front Med (Lausanne) 2020; 7:556. [PMID: 33072775 PMCID: PMC7534531 DOI: 10.3389/fmed.2020.00556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 01/12/2023] Open
Abstract
As the most prevalent type of mRNA modification in mammals, N6-methyladenosine (m6A) is involved in various biological processes. Accumulating studies have indicated that the deregulation of m6A RNA modification is linked to cancer and other diseases. However, its implications in hepatocellular carcinoma (HCC) remain poorly characterized. Herein, we sought to investigate the expression pattern of 13 key regulators for m6A RNA modification and to evaluate their prognostic value in HCC. First, we systematically analyzed data from The Cancer Genome Atlas (TCGA) database pertaining to patient clinical information and mRNA gene expression data. We found that 11 out of 13 key regulators for m6A RNA modification showed significantly higher expression levels in HCC. Subsequently, we identified two subgroups (clusters 1 and 2) via consensus clustering based on the expression of 13 m6A RNA methylation regulators. Cluster 2 had a worse prognosis and was also significantly correlated with higher histological grade and pathological stage when compared with cluster 1. Moreover, cluster 2 was remarkedly enriched for cancer-related pathways. We further constructed a robust risk signature of five regulators for m6A RNA modification. Further analysis indicated that this risk signature could be an independent prognostic factor for HCC, and the prognostic relevance of this five-gene risk signature was successfully validated using the Gene Expression Omnibus (GEO) dataset. Finally, we established a novel prognostic nomogram on the basis of age, gender, histological grade, pathological stage, and risk score to precisely predict the prognosis of patients with HCC. In summary, we herein uncovered the vital role of regulators for m6A RNA modification in HCC and developed a risk signature as a promising prognostic marker in HCC patients.
Collapse
Affiliation(s)
- Lele Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Yiting Qiao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Jiacheng Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Dalong Wan
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China
| | - Lin Zhou
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, China.,Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Shusen Zheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, China.,Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| |
Collapse
|
50
|
Zhao Z, Meng J, Su R, Zhang J, Chen J, Ma X, Xia Q. Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. J Hepatol 2020; 73:664-679. [PMID: 32330603 DOI: 10.1016/j.jhep.2020.04.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
The development of next-generation sequencing technology and the discovery of specific antibodies targeting chemically modified nucleotides have paved the way for a new era of epitranscriptomics. Cellular RNA is known to dynamically and reversibly undergo different chemical modifications after transcription, such as N6-methyladenosine (m6A), N1-methyladenosine, N6,2'-O-dimethyladenosine, 5-methylcytosine, and 5-hydroxymethylcytidine, whose identity and location comprise the field of epitranscriptomics. Dynamic post-transcriptional modifications determine the fate of target RNAs by regulating various aspects of their processing, including RNA export, transcript processing, splicing, and degradation. The most abundant internal mRNA modification in eukaryotic cells is m6A, which exhibits essential roles in physiological processes, such as embryogenesis, carcinogenesis, and neurogenesis. m6A is deposited by the m6A methyltransferase complex (composed of METTL3/14/16, WTAP, KIAA1429, and RBM15/15B), erased by demethylases (FTO and ALKBH5), and recognised by binding proteins (e.g., YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3). The liver is the largest digestive and metabolic organ, and m6A modifications play unique roles in critical physiological hepatic functions and various liver diseases. This review focuses on the biological roles of m6A RNA methylation in lipid metabolism, viral hepatitis, non-alcoholic fatty liver disease, liver cancer, and tumour metastasis. In addition, we summarise the existing inhibitors targeting m6A regulators and discuss the potential of modulating m6A modifications as a therapeutic strategy.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jiaxiang Meng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jun Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai 200001, China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai 200001, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|