1
|
Adzavon KP, Zhao W, He X, Sheng W. Ferroptosis resistance in cancer cells: nanoparticles for combination therapy as a solution. Front Pharmacol 2024; 15:1416382. [PMID: 38962305 PMCID: PMC11219589 DOI: 10.3389/fphar.2024.1416382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Ferroptosis is a form of regulated cell death (RCD) characterized by iron-dependent lipid peroxidation. Ferroptosis is currently proposed as one of the most promising means of combating tumor resistance. Nevertheless, the problem of ferroptosis resistance in certain cancer cells has been identified. This review first, investigates the mechanisms of ferroptosis induction in cancer cells. Next, the problem of cancer cell resistance to ferroptosis, as well as the underlying mechanisms is discussed. Recently discovered ferroptosis-suppressing biomarkers have been described. The various types of nanoparticles that can induce ferroptosis are also discussed. Given the ability of nanoparticles to combine multiple agents, this review proposes nanoparticle-based ferroptosis cell death as a viable method of circumventing this resistance. This review suggests combining ferroptosis with other forms of cell death, such as apoptosis, cuproptosis and autophagy. It also suggests combining ferroptosis with immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Wang Sheng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| |
Collapse
|
2
|
Qin Y, Xiong S, Ren J, Sethi G. Autophagy machinery in glioblastoma: The prospect of cell death crosstalk and drug resistance with bioinformatics analysis. Cancer Lett 2024; 580:216482. [PMID: 37977349 DOI: 10.1016/j.canlet.2023.216482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Brain tumors are common malignancies with high mortality and morbidity in which glioblastoma (GB) is a grade IV astrocytoma with heterogeneous nature. The conventional therapeutics for the GB mainly include surgery and chemotherapy, however their efficacy has been compromised due to the aggressiveness of tumor cells. The dysregulation of cell death mechanisms, especially autophagy has been reported as a factor causing difficulties in cancer therapy. As a mechanism contributing to cell homeostasis, the autophagy process is hijacked by tumor cells for the purpose of aggravating cancer progression and drug resistance. The autophagy function is context-dependent and its role can be lethal or protective in cancer. The aim of the current paper is to highlight the role of autophagy in the regulation of GB progression. The cytotoxic function of autophagy can promote apoptosis and ferroptosis in GB cells and vice versa. Autophagy dysregulation can cause drug resistance and radioresistance in GB. Moreover, stemness can be regulated by autophagy and overall growth as well as metastasis are affected by autophagy. The various interventions including administration of synthetic/natural products and nanoplatforms can target autophagy. Therefore, autophagy can act as a promising target in GB therapy.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Afflicted Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Shengjun Xiong
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, 16 Medical Drive, Singapore, 117600, Singapore.
| |
Collapse
|
3
|
Improvement of synaptic plasticity by nanoparticles and the related mechanisms: Applications and prospects. J Control Release 2022; 347:143-163. [PMID: 35513209 DOI: 10.1016/j.jconrel.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/20/2022]
Abstract
Synaptic plasticity is an important basis of learning and memory and participates in brain network remodelling after different types of brain injury (such as that caused by neurodegenerative diseases, cerebral ischaemic injury, posttraumatic stress disorder (PTSD), and psychiatric disorders). Therefore, improving synaptic plasticity is particularly important for the treatment of nervous system-related diseases. With the rapid development of nanotechnology, increasing evidence has shown that nanoparticles (NPs) can cross the blood-brain barrier (BBB) in different ways, directly or indirectly act on nerve cells, regulate synaptic plasticity, and ultimately improve nerve function. Therefore, to better elucidate the effect of NPs on synaptic plasticity, we review evidence showing that NPs can improve synaptic plasticity by regulating different influencing factors, such as neurotransmitters, receptors, presynaptic membrane proteins and postsynaptic membrane proteins, and further discuss the possible mechanism by which NPs improve synaptic plasticity. We conclude that NPs can improve synaptic plasticity and restore the function of damaged nerves by inhibiting neuroinflammation and oxidative stress, inducing autophagy, and regulating ion channels on the cell membrane. By reviewing the mechanism by which NPs regulate synaptic plasticity and the applications of NPs for the treatment of neurological diseases, we also propose directions for future research in this field and provide an important reference for follow-up research.
Collapse
|
4
|
Wu D, Sun J, Wang H, Ma C. LncRNA SOCS2-AS1 promotes the progression of glioma via regulating ITGB1 expression. Neurosci Lett 2021; 765:136248. [PMID: 34536509 DOI: 10.1016/j.neulet.2021.136248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Accumulating evidence has underscored the important role of long non-coding RNAs (lncRNAs) in the development and progression of glioma. However, the role of lncRNA SOCS2-AS1 in glioma is largely unknown. METHODS lncRNA SOCS2-AS1 silencing was achieved by specific siRNAs. Proliferation of glioma cell line after lncRNA SOCS2-AS1 silencing was examined by MTT assay, Transwell assay was used to confirm changes of invasion and migration of glioma cells, and study the molecular mechanism of lncRNA SOCS2-AS1 by RT-qPCR and bioinformatics analysis. RESULTS We identified that lncRNA SOCS2-AS1 was significantly upregulated in glioma, and its overexpression was closely related with malignant clinical features and poor prognosis. To explore the cellular function of SOCS2-AS1, we performed loss-of function assays in two glioma cells. We demonstrated that SOCS2-AS1 knockdown repressed glioma cell proliferation, migration and invasion. Mechanistically, SOCS2-AS1 expression was positively correlated with the expression levels of core factors ITGB1 of ECM-receptor interaction signaling pathway in glioma. Moreover, SOCS2-AS1 knockdown suppressed ITGB1 expression in glioma cells. Finally, rescue assays were carried out to determine that ITGB1 involved in SOCS2-AS1-mediated glioma cell proliferation, migration and invasion. CONCLUSION Our findings provided the first evidence suggested that SOCS2-AS1 promoted the progression of glioma via upregulating ITGB1 expression.
Collapse
Affiliation(s)
- Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Jinzhang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hongliang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Chunchun Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| |
Collapse
|
5
|
Wen J, Chen H, Ren Z, Zhang P, Chen J, Jiang S. Ultrasmall iron oxide nanoparticles induced ferroptosis via Beclin1/ATG5-dependent autophagy pathway. NANO CONVERGENCE 2021; 8:10. [PMID: 33796911 PMCID: PMC8017028 DOI: 10.1186/s40580-021-00260-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 05/05/2023]
Abstract
Iron-based nanoparticles, which could elicit ferroptosis, is becoming a promising new way to inhibit tumor cell growth. Notably, ultrasmall iron oxide nanoparticles (USIONPs) have been found to upregulate the autophagy process in glioblastoma (GBM) cells. Whether USIONPs could also elicit ferroptosis and the relationship between the USIONPs-induced autophagy and ferroptosis need to be explored. In the current study, our synthesized USIONPs with good water solubility could significantly upregulate the ferroptosis markers in GBM cells, and downregulate the expression of anti-ferroptosis genes. Interestingly,ferrostatin-1 could reverse USIONPs- induced ferroptosis, but inhibitors of apoptosis, pyroptosis, or necrosis could not. Meanwhile, autophagy inhibitor 3-methyladenine could also reverse the USIONPs-induced ferroptosis. In addition, shRNA silencing of upstream genes Beclin1/ATG5 of autophagy process could significantly reverse USIONPs-induced ferroptosis, whereas overexpression of Beclin1/ATG5 of autophagy process could remarkably promote USIONPs-induced ferroptosis. Furthermore, lysosome inhibitors could significantly reverse the USIONPs-induced ferroptosis. Collectively, these facts suggest that USIONPs-induced ferroptosis is regulated via Beclin1/ATG5-dependent autophagy pathway.
Collapse
Affiliation(s)
- Jian Wen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China.
| | - Hanren Chen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China
| | - Zhongyu Ren
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China
| | - Peng Zhang
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China
| | - Jianjiao Chen
- Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin Medical 26, University, 15 Lequn road, Guilin, 541000, People's Republic of China
| | - Shulian Jiang
- Nanjing Second Hospital, 1 Zhongfu road, Nanjing, 210003, People's Republic of China.
| |
Collapse
|
6
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Bjørklund G, Pivina L, Dadar M, Semenova Y, Chirumbolo S, Aaseth J. Mercury Exposure, Epigenetic Alterations and Brain Tumorigenesis: A Possible Relationship? Curr Med Chem 2020; 27:6596-6610. [DOI: 10.2174/0929867326666190930150159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/11/2019] [Accepted: 08/30/2019] [Indexed: 12/09/2022]
Abstract
The risk assessment of mercury (Hg), in both wildlife and humans, represents an increasing
challenge. Increased production of Reactive Oxygen Species (ROS) is a known Hg-induced
toxic effect, which can be accentuated by other environmental pollutants and by complex interactions
between environmental and genetic factors. Some epidemiological and experimental studies
have investigated a possible correlation between brain tumors and heavy metals. Epigenetic modifications
in brain tumors include aberrant activation of genes, hypomethylation of specific genes,
changes in various histones, and CpG hypermethylation. Also, Hg can decrease the bioavailability
of selenium and induce the generation of reactive oxygen that plays important roles in different
pathological processes. Modification of of metals can induce excess ROS and cause lipid peroxidation,
alteration of proteins, and DNA damage. In this review, we highlight the possible relationship
between Hg exposure, epigenetic alterations, and brain tumors.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| |
Collapse
|
8
|
Ferese R, Lenzi P, Fulceri F, Biagioni F, Fabrizi C, Gambardella S, Familiari P, Frati A, Limanaqi F, Fornai F. Quantitative Ultrastructural Morphometry and Gene Expression of mTOR-Related Mitochondriogenesis within Glioblastoma Cells. Int J Mol Sci 2020; 21:ijms21134570. [PMID: 32604996 PMCID: PMC7370179 DOI: 10.3390/ijms21134570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
In glioblastoma (GBM) cells, an impairment of mitochondrial activity along with autophagy suppression occurs. Autophagy suppression in GBM promotes stemness, invasion, and poor prognosis. The autophagy deficit seems to be due, at least in part, to an abnormal up-regulation of the mammalian target of rapamycin (mTOR), which may be counteracted by pharmacological mTORC1 inhibition. Since autophagy activation is tightly bound to increased mitochondriogenesis, a defect in the synthesis of novel mitochondria is expected to occur in GBM cells. In an effort to measure a baseline deficit in mitochondria and promote mitochondriogenesis, the present study used two different GBM cell lines, both featuring mTOR hyperactivity. mTORC1 inhibition increases the expression of genes and proteins related to autophagy, mitophagy, and mitochondriogenesis. Autophagy activation was counted by RT-PCR of autophagy genes, LC3- immune-fluorescent puncta and immune-gold, as well as specific mitophagy-dependent BNIP3 stoichiometric increase in situ, within mitochondria. The activation of autophagy-related molecules and organelles after rapamycin exposure occurs concomitantly with progression of autophagosomes towards lysosomes. Remarkably, mitochondrial biogenesis and plasticity (increased mitochondrial number, integrity, and density as well as decreased mitochondrial area) was long- lasting for weeks following rapamycin withdrawal.
Collapse
Affiliation(s)
- Rosangela Ferese
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy; (P.L.); (F.L.)
| | - Federica Fulceri
- Department of Clinical and Experimental Medicine University of Pisa, via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy;
| | - Stefano Gambardella
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University of Rome, 00185 Roma, Italy;
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy; (P.L.); (F.L.)
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, via Atinense 18, 86077 Pozzilli (IS), Italy; (R.F.); (F.B.); (S.G.); (A.F.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, via Roma 55, 56126 Pisa, Italy; (P.L.); (F.L.)
- Correspondence:
| |
Collapse
|
9
|
Yan R, Cui F, Dong L, Liu Y, Chen X, Fan R. Repression of PCGF1 Decreases the Proliferation of Glioblastoma Cells in Association with Inactivation of c-Myc Signaling Pathway. Onco Targets Ther 2020; 13:253-261. [PMID: 32021272 PMCID: PMC6957096 DOI: 10.2147/ott.s234517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Glioblastoma (GBM) is the most common primary brain tumor with a poor therapeutic outcome. Polycomb group factor 1 (PCGF1), a member of the PcG (Polycomb group) family, is highly expressed in the developing nervous system of mice. However, the function and the mechanism of PCGF1 in GBM proliferation still remain unclear. Methods Knockdown of PCGF1 was performed in U87 GBM cell by shRNA strategy via lentivirus vector. MTT assay, colony formation assays, and flow cytometry were used to measure the properties of cell proliferation and cell cycle distribution, respectively. GeneChip analysis was performed to identify the downstream effector molecules. Rescue assay was constructed to verify the screening results. Results We first found that knockdown of PCGF1 led to the inhibition of U87 cells proliferation and decreased colony formation ability. The data from GeneChip expression profiling and Ingenuity Pathway Analysis (IPA) indicated that many of the altered gene cells are associated with the cell proliferation control pathways. We have further confirmed the suppression of AKT/GSK3β/c-Myc/cyclinD1 expressions by Western blotting analysis. The over-expression of c-Myc could partly restore the attenuated proliferation ability caused by knockdown of PCGF1. Conclusion All the above evidences suggested that PCGF1 might be closely associated with tumorigenesis and progression of glioblastoma (GBM), in which process the oncoprotein c-Myc may participate. PCGF1 could thus be a potential therapeutic target for the treatment of glioblastoma (GBM).
Collapse
Affiliation(s)
- Rui Yan
- Department of Thoracic Surgery, The Third Medical Center, Chinese People's Liberation Army General Hospital, Beijing 100039, People's Republic of China
| | - Fengmei Cui
- Department of Radiation Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | - Lijin Dong
- Editorial Department, Logistic University of Chinese People's Armed Police Force, Tianjin 300309, People's Republic of China
| | - Yong Liu
- Central Laboratory, Xi Qing Hospital, Tianjin 300380, People's Republic of China
| | - Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Rong Fan
- Central Laboratory, Xi Qing Hospital, Tianjin 300380, People's Republic of China
| |
Collapse
|
10
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Modulatory effects of statins on the autophagy: A therapeutic perspective. J Cell Physiol 2019; 235:3157-3168. [DOI: 10.1002/jcp.29227] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine University of Tabriz Tabriz Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center Birjand University of Medical Sciences Birjand Iran
| | - Saeed Samarghandian
- Department of Basic Medical Science Neyshabur University of Medical Sciences Neyshabur Iran
| |
Collapse
|
11
|
Feng F, Zhang M, Yang C, Heng X, Wu X. The dual roles of autophagy in gliomagenesis and clinical therapy strategies based on autophagic regulation mechanisms. Biomed Pharmacother 2019; 120:109441. [PMID: 31541887 DOI: 10.1016/j.biopha.2019.109441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
Autophagy, a self-digestion intracellular catabolic process, plays a crucial role in cellular homeostasis under conditions of starvation, oxidative stress and genotoxic stress. The capability of maintaining homeostasis contributes to preventing malignant behavior in normal cells. Many studies have provided compelling evidence that autophagy is involved in brain tumor recurrence and chemotherapy and radiotherapy resistance. Gliomas, as the primary central nervous system (CNS) tumors, are characterized by rapid, aggressive growth and recurrence and have a poor prognosis and bleak outlook even with modern multimodality strategies involving maximal surgical resection, radiotherapy and alkylating agent-based chemotherapy. Autophagy-associated signaling pathways, such as the extracellular signal-regulated kinase1/2 (ERK1/2) pathway, class I phosphatidylinositol 3-phosphate kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and nuclear factor kappa-B (NF-κB) pathway, act as tumor suppressors or protect tumor cells against chemotherapy/radiotherapy-induced cytotoxicity in gliomagenesis. Through these pathways, both lethal autophagy and protective autophagy play crucial roles in tumor initiation, chemoresistance and glioma stem cell differentiation. Moreover, lethal autophagy and protective autophagy have been identified as novel therapeutic targets in glioma according to the mechanisms described above. Here, we discuss the multiple impacts of the autophagic response on distinct phases of gliomagenesis and the advanced progress of therapies based on this concept.
Collapse
Affiliation(s)
- Fan Feng
- Institute of Clinical Medicine College, Qingdao University, # 38, Dengzhou Road, Qingdao 266071, Shandong, China
| | - Moxuan Zhang
- Weifang Medical University, 261042, # 7166, Baotong Western Road, Weifang, Shandong, China
| | - Chuanchao Yang
- Weifang Medical University, 261042, # 7166, Baotong Western Road, Weifang, Shandong, China
| | - Xueyuan Heng
- Department of Neurosurgery, Linyi People's Hospital, # 27, Jiefang Eastern Road, Linyi 276000, Shandong, China.
| | - Xiujie Wu
- Department of Neurosurgery, Linyi People's Hospital, # 27, Jiefang Eastern Road, Linyi 276000, Shandong, China.
| |
Collapse
|
12
|
Yang P, Kang W, Pan Y, Zhao X, Duan L. Overexpression of HOXC6 promotes cell proliferation and migration via MAPK signaling and predicts a poor prognosis in glioblastoma. Cancer Manag Res 2019; 11:8167-8179. [PMID: 31564976 PMCID: PMC6731974 DOI: 10.2147/cmar.s209904] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022] Open
Abstract
Background Homeobox (HOX) genes encode transcription factors that are critical to morphogenesis and cell differentiation. Although the dysregulation of several HOX genes in glioblastoma (GBM) has been reported, little is known about HOXC6 expression in GBM. Therefore, in this study, we investigated the expression levels of the HOXC6 in GBM and explored the regulatory mechanism underlying the role of HOXC6 in GBM progression. Methods The ONCOMINE and Oncolnc databases were used to predict the expression level of HOXC6 mRNA and its prognostic value in GBM. The expressions of HOXC6 mRNA in GBM tissues and adjacent brain tissues were detected using qRT-PCR and Western blot. Immunohistochemistry was performed to verify the HOXC6 protein expression in 107 GBM tissues. Kaplan–Meier and Cox analyses were performed to validate the correlation between HOXC6 expression and GBM prognosis. Lentivirus-mediated HOXC6 mRNA overexpression and interference system were established and transfected into U251 and U87 cell lines. CCK-8, colony formation, wound healing and transwell assay were utilized to evaluate the effects of HOXC6 on proliferation and migration of human GBM cells. Results High expression of HOXC6 was observed in GBM tissues and GBM cells lines, and it correlated with a decreased overall survival and disease-free survival. Overexpression of HOXC6 promoted the GBM cell proliferation and migration, whereas depletion of HOXC6 reduced GBM cell proliferation and migration. Mechanistic study showed that upregulation of HOXC6 significantly increased the phosphorylation of Jun amino-terminal kinase, ERK and P38, as well as the expression of mitogen-activated protein kinase (MAPK) signaling–related genes, including c-myc, c-jun and p53. Inversely, silencing HOXC6 showed the opposite results. Conclusion HOXC6 promoted proliferation and migration of GBM cells via the activation of MAPK pathway.
Collapse
Affiliation(s)
- PengYu Yang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Wei Kang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - YaWen Pan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - XianJun Zhao
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Lei Duan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou University Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
13
|
Chai E, Zhang L, Li C. LOX-1+ PMN-MDSC enhances immune suppression which promotes glioblastoma multiforme progression. Cancer Manag Res 2019; 11:7307-7315. [PMID: 31447588 PMCID: PMC6683959 DOI: 10.2147/cmar.s210545] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
Background/aims Patients with glioblastoma multiforme (GBM) that is the most common brain cancer in adults have a rather poor prognosis. The accumulation of immune suppressive myeloid-derived suppressor cell (MDSC) is negatively associated with clinical outcomes in various cancers. A recent study identified that lectin-type oxidized LDL receptor 1 (LOX-1) may serve as a specific marker of human polymorphonuclear neutrophil (PMN)-MDSC. Thus, herein we focused on exploring the role of LOX-1+ PMN-MDSC in GBM progression. Methods LOX-1, IFN-γ, dichlorodihydrofluorescein diacetate (DCFDA), CD15, CD4 and CD8 expression levels were examined by flow cytometry. ARG1 and iNOS expression levels in PMN were examined by quantitative real-time PCR. LOX-1 and CD15 expression levels in tumor tissue were determined by immunofluorescent microscopy. T cell proliferation was determined by 3H-thymidine incorporation. Results We identified a protumorigenic subset of PMN, which constitutively expressed LOX-1 and accumulated in the peripheral blood of GBM patients. Compared to LOX-1− PMN, the LOX-1+ PMN exhibited a PMN MDSC profile, with a significant increase in the expression of DCFDA, ARG1 and iNOS, and the capacity of inhibiting the CD3+ T cell proliferation in a dependent-ARG1/iNOS way. Additionally, we found that LOX-1+ PMN negatively correlated with effector immune cells in GBM patients, accumulated in GBM tissues, and was related to early recurrence and disease progression tightly. Conclusion Our study revealed that LOX-1+ PMN-MDSC inhibited the T cell proliferation to enhance immune suppression, which may play a key role in driving the GBM progression.
Collapse
Affiliation(s)
- ErQing Chai
- Department of Neurosurgery, Gansu Provincial Hospital, Lanzhou 730000, People's Republic of China.,Cerebral Vascular Disease Center, Gansu Provincial Hospital, Lanzhou 730000, People's Republic of China
| | - Lan Zhang
- Tuberculosis Prevention and Control Department, Gansu Province Center for Disease Control and Prevention, Lanzhou 730000, People's Republic of China
| | - Changqing Li
- Neurosurgery Department, Gansu University of Chinese Medicine, Lanzhou 730000, People's Republic of China
| |
Collapse
|