1
|
Vlahopoulos SA, Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V. Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia. Int J Oncol 2024; 65:115. [PMID: 39513593 PMCID: PMC11575927 DOI: 10.3892/ijo.2024.5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) is a member of the aldehyde dehydrogenase gene subfamily that encode enzymes with the ability to oxidize retinaldehyde. It was recently shown that high ALDH1A1 RNA abundance correlates with a poor prognosis in acute myeloid leukemia (AML). AML is a hematopoietic malignancy associated with high morbidity and mortality rates. Although there are a number of agents that inhibit ALDH activity, it would be crucial to develop methodologies for adjustable genetic interference, which would permit interventions on several oncogenic pathways in parallel. Intervention in multiple oncogenic pathways is theoretically possible with microRNAs (miRNAs or miRs), a class of small non‑coding RNAs that have emerged as key regulators of gene expression in AML. A number of miRNAs have shown the ability to interfere with ALDH1A1 gene expression directly in solid tumor cells, and these miRNAs can be evaluated in AML model systems. There are indications that a few of these miRNAs actually do have an association with AML disease course, rendering them a promising target for genetic intervention in AML cells.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
2
|
Fathi D, Elballal MS, Elesawy AE, Abulsoud AI, Elshafei A, Elsakka EG, Ismail A, El-Mahdy HA, Elrebehy MA, Doghish AS. An emphasis on the interaction of signaling pathways highlights the role of miRNAs in the etiology and treatment resistance of gastric cancer. Life Sci 2023; 322:121667. [PMID: 37023952 DOI: 10.1016/j.lfs.2023.121667] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
Gastric cancer (GC) is 4th in incidence and mortality rates globally. Several genetic and epigenetic factors, including microRNAs (miRNAs), affect its initiation and progression. miRNAs are short chains of nucleic acids that can regulate several cellular processes by controlling their gene expression. So, dysregulation of miRNAs expressions is associated with GC initiation, progression, invasion capacity, apoptosis evasions, angiogenesis, promotion and EMT enhancement. Of important pathways in GC and controlled by miRNAs are Wnt/β-catenin signaling, HMGA2/mTOR/P-gp, PI3K/AKT/c-Myc, VEGFR and TGFb signaling. Hence, this review was conducted to review an updated view of the role of miRNAs in GC pathogenesis and their modulatory effects on responses to different GC treatment modalities.
Collapse
|
3
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
4
|
Yi H, Han Y, Li S. Oncogenic circular RNA circ_0007534 contributes to paclitaxel resistance in endometrial cancer by sponging miR-625 and promoting ZEB2 expression. Front Oncol 2022; 12:985470. [PMID: 35992812 PMCID: PMC9386306 DOI: 10.3389/fonc.2022.985470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 12/05/2022] Open
Abstract
Circular RNAs (circRNAs) and epithelial to mesenchymal transition (EMT) have been implicated in the development of human cancer and paclitaxel resistance. CircRNA circ_0007534 has been described as a key oncogenic circular RNA that is upregulated in a variety of cancer tissues. However, whether circ_0007534 causes EMT and paclitaxel resistance in endometrial cancer is still unknown. In this work, we revealed that circ_0007534 levels were significantly higher in endometrial cancer tissues, and that high circ_0007534 expression was associated with poor differentiation, advanced tumor stage, cancer invasion, cancer metastasis, and poor prognosis in endometrial cancer patients. Overexpression of circ_0007534 boosted endometrial cancer cell proliferation, invasion, EMT, and paclitaxel resistance. Knockdown of circ_0007534 restored paclitaxel sensitivity and reversed EMT in endometrial cancer cells. We also showed that circ_0007534 enhanced endometrial cancer aggressiveness, progression, and paclitaxel resistance by sponging microRNA-625 (miR-625) and subsequently increasing the expression of the miR-625 target gene ZEB2. Our cell functional studies demonstrated that inhibiting miR-625 or increasing ZEB2 mimicked the effects of circ_0007534 overexpression. Consequently, our data show that circ_0007534 plays a crucial role in EMT and paclitaxel resistance through miR-625/ZEB2 signaling. Targeting the circ_0007534/miR-625/ZEB2 pathway might be an effective strategy for overcoming paclitaxel resistance in endometrial cancer.
Collapse
Affiliation(s)
- Hanjie Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqing Han
- Department of Oncology, ShangRao People’s Hospital, Shangrao, China
| | - Shanfeng Li
- Department of Nosocomial Infection Management, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Shanfeng Li,
| |
Collapse
|
5
|
Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y, Zhou Y. ALDH1A1 in Cancers: Bidirectional Function, Drug Resistance, and Regulatory Mechanism. Front Oncol 2022; 12:918778. [PMID: 35814382 PMCID: PMC9256994 DOI: 10.3389/fonc.2022.918778] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 01/16/2023] Open
Abstract
Aldehyde dehydrogenases 1 family member A1(ALDH1A1) gene codes a cytoplasmic enzyme and shows vital physiological and pathophysiological functions in many areas. ALDH1A1 plays important roles in various diseases, especially in cancers. We reviewed and summarized representative correlative studies and found that ALDH1A1 could induce cancers via the maintenance of cancer stem cell properties, modification of metabolism, promotion of DNA repair. ALDH1A1 expression is regulated by several epigenetic processes. ALDH1A1 also acted as a tumor suppressor in certain cancers. The detoxification of ALDH1A1 often causes chemotherapy failure. Currently, ALDH1A1-targeted therapy is widely used in cancer treatment, but the mechanism by which ALDH1A1 regulates cancer development is not fully understood. This review will provide insight into the status of ALDH1A1 research and new viewpoint for cancer therapy.
Collapse
Affiliation(s)
- Hanxun Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zenan Hu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zeying Guo
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| |
Collapse
|
6
|
Tumor Suppressive Role of miR-342-5p and miR-491-5p in Human Osteosarcoma Cells. Pharmaceuticals (Basel) 2022; 15:ph15030362. [PMID: 35337159 PMCID: PMC8949568 DOI: 10.3390/ph15030362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Osteosarcomas are the most common type of malignant bone tumor. These tumors are characterized by the synthesis of an osteoid matrix. Current treatments are based on surgery and combination chemotherapy. However, for metastatic or recurrent tumors, chemotherapy is generally ineffective, and osteosarcomas are sometimes unresectable. Thus, the use of microRNAs (miRNAs) may represent an attractive alternative for the development of new therapies. Using high-throughput functional screening based on impedancemetry, we previously selected five miRNAs with potential chemosensitizing or antiproliferative effects on chondrosarcoma cells. We validated the tumor-suppressive activity of miR-491-5p and miR-342-5p in three chondrosarcoma cell lines. Here, we carried out individual functional validation of these five miRNAs in three osteosarcoma cell lines used as controls to evaluate their specificity of action on another type of bone sarcoma. The cytotoxic effects of miR-491-5p and miR-342-5p were also confirmed in osteosarcoma cells. Both miRNAs induced apoptosis. They increased Bcl-2 homologous antagonist killer (Bak) protein expression and directly targeted Bcl-2 lymphoma-extra large (Bcl-xL). MiR-342-5p also decreased B-cell lymphoma-2 (Bcl-2) protein expression, and miR-491-5p decreased that of Epidermal Growth Factor Receptor (EGFR). MiR-342-5p and miR-491-5p show tumor-suppressive activity in osteosarcomas. This study also confirms the potential of Bcl-xL as a therapeutic target in osteosarcomas.
Collapse
|
7
|
Aldehyde Dehydrogenase 1 in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5734549. [PMID: 35310914 PMCID: PMC8926486 DOI: 10.1155/2022/5734549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/01/2022] [Accepted: 02/03/2022] [Indexed: 01/09/2023]
Abstract
Gastric cancer (GC) is a disease that threatens human health. It is thus crucial to clarify the mechanisms involved in GC development and discover diagnostic biomarkers and therapeutics. As a cancer stem cell marker, aldehyde dehydrogenase 1 (ALDH1) is involved in the development, progression, and treatment of GC. This review evaluated the prognostic value of ALDH1 and explored its mechanism of action in GC. Importantly, ALDH1 is an informative biomarker in clinical practice as it has specific relationships with indicators, such as metastasis and overall survival. Additionally, ALDH1 interacts with genes and exhibits properties that mimic stem cell characteristics amongst other mechanisms employed in the occurrence and progression of GC. Our results, therefore, provide evidence of possible clinical utility of ALDH1 as a GC therapeutic target.
Collapse
|
8
|
Zhang M, Xiong F, Zhang S, Guo W, He Y. Crucial Roles of miR-625 in Human Cancer. Front Med (Lausanne) 2022; 9:845094. [PMID: 35308517 PMCID: PMC8931282 DOI: 10.3389/fmed.2022.845094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic and epigenetic characteristics are core factors of cancer. MicroRNAs (miRNAs) are small non-coding RNAs which regulate gene expression at the post-transcriptional level via binding to corresponding mRNAs. Recently, increasing evidence has proven that miRNAs regulate the occurrence and development of human cancer. Here, we mainly review the abnormal expression of miR-625 in a variety of cancers. In summarizing the role and potential molecular mechanisms of miR-625 in various tumors in detail, we reveal that miR-625 is involved in a variety of biological processes, such as cell proliferation, invasion, migration, apoptosis, cell cycle regulation, and drug resistance. In addition, we discuss the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA networks and briefly explain the specific mechanisms of competing endogenous RNAs. In conclusion, we reveal the potential value of miR-625 in cancer diagnosis, treatment, and prognosis and hope to provide new ideas for the clinical application of miR-625.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Fei Xiong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
9
|
Zou C, Rong F, Zeng Y, Zeng J, Wei R, Wei D. Circ-SNAP47 (hsa_circ_0016760) and miR-625-5p are regulators of WEE1 in regulation of chemoresistance, growth and invasion of DDP-tolerant NSCLC cells via ceRNA pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:224-236. [PMID: 34664776 DOI: 10.1002/tox.23391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Circular RNA-synaptosome associated protein 47 (circ-SNAP47; Hsa_circ_0016760) is oncogenic in non-small-cell lung cancer (NSCLC); however, its role is undescribed in cis-diamminedichloroplatinum II (DDP) resistance. We attempted to investigate its expression, role and mechanism in DDP-tolerant NSCLC. As a result, circ-SNAP47 expression was upregulated in human DDP-tolerant NSCLC tissues and cells, accompanied with WEE1 G2 checkpoint kinase (WEE1) upregulation and microRNA (miR)-625-5p downregulation. Functionally, interfering circ-SNAP47 and/or restoring miR-625-5p curbed the 50% inhibitory concentration of DDP, colony formation, cell proliferation and invasion, accompanied with apoptotic rate promotion and depressions of multidrug resistance (MDR) markers MDR1 and MRP1, anti-apoptosis protein Bcl-2, and pro-invasion protein MMP9. Notably, circ-SNAP47 interference suppressed xenograft tumor growth of DDP-tolerant NSCLC cells by elevating miR-625-5p and descending WEE1. Mechanistically, circ-SNAP47 directly targeted miR-625-5p, and miR-625-5p further targeted WEE1. Therefore, circ-SNAP47-miR-625-5p-WEE1 axis might participate in chemoresistance and progression of DDP-tolerant NSCLC.
Collapse
Affiliation(s)
- Can Zou
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Feng Rong
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yan Zeng
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Jing Zeng
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Rong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Dong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| |
Collapse
|
10
|
LINC00852 Regulates Cell Proliferation, Invasion, Migration and Apoptosis in Hepatocellular Carcinoma Via the miR-625/E2F1 Axis. Cell Mol Bioeng 2021; 15:207-217. [DOI: 10.1007/s12195-021-00714-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
|
11
|
Mahmoudi R, Saidijam M, Nikzad S, Tapak L, Alvandi M, Afshar S. Human exposure to low dose ionizing radiation affects miR-21 and miR-625 expression levels. Mol Biol Rep 2021; 49:1321-1327. [PMID: 34797493 DOI: 10.1007/s11033-021-06960-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Recently exposure to ionizing radiation driven by artificial radiation sources such as Medical X-rays and Nuclear medicine has increased hastily. Ionizing radiation-induced the DNA damage and activate the DNA damage response signaling pathways. The aim of this study was to evaluate the role of miR-21 and miR-625 in response to low-dose ionizing radiation. MATERIALS AND METHODS In this study, the blood sample of 38 volunteer patients who underwent Cardiac scans before and after 99mTc-MIBI injection were used. The WBC of patients was used for RNA extraction and after cDNA synthesis by the poly-A method the expression level of miR-21 and miR-625 was evaluated by real-time PCR method. RESULTS The results of this study indicated that miR-21 and miR- 625 were significantly upregulated under exposure to low-dose ionizing radiation. The expression level of these miRNAs was not significantly correlated with the age and BMI of patients. More ever the bioinformatics analysis indicated that SP1 was a common target of both miRNAs and had the highest degree between hub genes. CONCLUSION In summary miR-21 and miR-625 can contribute to the response to acute low dose ionizing radiation by targeting the SP1. However further studies should be carried out on the molecular mechanism of effects of miR-21 and miR-625 in response to low dose ionizing radiation by targeting the SP1.
Collapse
Affiliation(s)
- Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoora Nikzad
- Department of Medical Physics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leili Tapak
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Veys C, Benmoussa A, Contentin R, Duchemin A, Brotin E, Lafont JE, Saintigny Y, Poulain L, Denoyelle C, Demoor M, Legendre F, Galéra P. Tumor Suppressive Role of miR-342-5p in Human Chondrosarcoma Cells and 3D Organoids. Int J Mol Sci 2021; 22:ijms22115590. [PMID: 34070455 PMCID: PMC8197525 DOI: 10.3390/ijms22115590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/07/2023] Open
Abstract
Chondrosarcomas are malignant bone tumors. Their abundant cartilage-like extracellular matrix and their hypoxic microenvironment contribute to their resistance to chemotherapy and radiotherapy, and no effective therapy is currently available. MicroRNAs (miRNAs) may be an interesting alternative in the development of therapeutic options. Here, for the first time in chondrosarcoma cells, we carried out high-throughput functional screening using impedancemetry, and identified five miRNAs with potential antiproliferative or chemosensitive effects on SW1353 chondrosarcoma cells. The cytotoxic effects of miR-342-5p and miR-491-5p were confirmed on three chondrosarcoma cell lines, using functional validation under normoxia and hypoxia. Both miRNAs induced apoptosis and miR-342-5p also induced autophagy. Western blots and luciferase reporter assays identified for the first time Bcl-2 as a direct target of miR-342-5p, and also Bcl-xL as a direct target of both miR-342-5p and miR-491-5p in chondrosarcoma cells. MiR-491-5p also inhibited EGFR expression. Finally, only miR-342-5p induced cell death on a relevant 3D chondrosarcoma organoid model under hypoxia that mimics the in vivo microenvironment. Altogether, our results revealed the tumor suppressive activity of miR-342-5p, and to a lesser extent of miR-491-5p, on chondrosarcoma lines. Through this study, we also confirmed the potential of Bcl-2 family members as therapeutic targets in chondrosarcomas.
Collapse
Affiliation(s)
- Clément Veys
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Abderrahim Benmoussa
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
- Research Center of the UHC Sainte-Justine and Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C54, Canada
| | - Romain Contentin
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Amandine Duchemin
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Emilie Brotin
- Normandie Univ, UNICAEN, ImpedanCELL Platform, Federative Structure 4206 ICORE, 14000 Caen, France; (E.B.); (C.D.)
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), 14000 Caen, France;
- Unicancer, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - Jérôme E. Lafont
- CNRS UMR 5305, Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard Lyon 1, Univ Lyon, 69367 Lyon, France;
| | - Yannick Saintigny
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France;
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, UMR6252 CIMAP, 14000 Caen, France
| | - Laurent Poulain
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), 14000 Caen, France;
- Unicancer, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - Christophe Denoyelle
- Normandie Univ, UNICAEN, ImpedanCELL Platform, Federative Structure 4206 ICORE, 14000 Caen, France; (E.B.); (C.D.)
- Normandie Univ, UNICAEN, INSERM U1086 ANTICIPE, Biology and Innovative Therapeutics for Ovarian Cancer (BioTICLA), 14000 Caen, France;
- Unicancer, Comprehensive Cancer Center F. Baclesse, 14000 Caen, France
| | - Magali Demoor
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Florence Legendre
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
| | - Philippe Galéra
- Normandie Univ, UNICAEN, BIOTARGEN, 14000 Caen, France; (C.V.); (A.B.); (R.C.); (A.D.); (M.D.); (F.L.)
- Correspondence:
| |
Collapse
|
13
|
Deng XJ, Zheng HL, Ke XQ, Deng M, Ma ZZ, Zhu Y, Cui YY. Hsa-miR-34a-5p reverses multidrug resistance in gastric cancer cells by targeting the 3'-UTR of SIRT1 and inhibiting its expression. Cell Signal 2021; 84:110016. [PMID: 33894312 DOI: 10.1016/j.cellsig.2021.110016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Multidrug resistance (MDR) is a major obstacle to chemotherapy, which leads to ineffective chemotherapy, an important treatment strategy for gastric cancer (GC). The abnormality of microRNAs (miRNAs) is critical to the occurrence and progression of MDR in various tumors. In this study, hsa-miR-34a-5p was found to be decreased in multidrug resistant GC cells SGC-7901/5-Fluorouracil (SGC-7901/5-Fu) compared to the parental SGC-7901 cells. Overexpression of hsa-miR-34a-5p in SGC-7901/5-Fu cells promoted apoptosis and decreased migration and invasiveness after chemotherapy. In addition, overexpression of hsa-miR-34a-5p suppressed the growth of drug-resistant tumor in vivo. The mechanism of the effects of hsa-miR-34a-5p could include the regulation of the expression of Sirtuin 1 (SIRT1), P-glycoprotein (P-gp) or Multidrug resistance-related protein 1 (MRP1) through direct binding to the 3'-untranslated region (UTR) of SIRT1. Functional gain-and-loss experiments indicated that hsa-miR-34a-5p enhances the chemotherapy sensitivity of MDR GC cells by inhibiting SIRT1, P-gp and MRP1. In conclusion, hsa-miR-34a-5p can reverse the MDR of GC cells by inhibiting the expression of SIRT1, P-gp or MRP1.
Collapse
Affiliation(s)
- X J Deng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, China; Department of Gastroenterology, The First Affiliated Hospital of Jinan University, China.
| | - H L Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, China
| | - X Q Ke
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, China
| | - M Deng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, China
| | - Z Z Ma
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, China
| | - Y Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, China
| | - Y Y Cui
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, China
| |
Collapse
|
14
|
Ghafouri-Fard S, Abak A, Tondro Anamag F, Shoorei H, Fattahi F, Javadinia SA, Basiri A, Taheri M. 5-Fluorouracil: A Narrative Review on the Role of Regulatory Mechanisms in Driving Resistance to This Chemotherapeutic Agent. Front Oncol 2021; 11:658636. [PMID: 33954114 PMCID: PMC8092118 DOI: 10.3389/fonc.2021.658636] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
5-fluorouracil (5-FU) is among the mostly administrated chemotherapeutic agents for a wide variety of neoplasms. Non-coding RNAs have a central impact on the determination of the response of patients to 5-FU. These transcripts via modulation of cancer-related pathways, cell apoptosis, autophagy, epithelial-mesenchymal transition, and other aspects of cell behavior can affect cell response to 5-FU. Modulation of expression levels of microRNAs or long non-coding RNAs may be a suitable approach to sensitize tumor cells to 5-FU treatment via modulating multiple biological signaling pathways such as Hippo/YAP, Wnt/β-catenin, Hedgehog, NF-kB, and Notch cascades. Moreover, there is an increasing interest in targeting these transcripts in various kinds of cancers that are treated by 5-FU. In the present article, we provide a review of the function of non-coding transcripts in the modulation of response of neoplastic cells to 5-FU.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Dental Research Center, Research Institute for Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Faranak Fattahi
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
| | - Seyed Alireza Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Deng P, Sun M, Zhao WY, Hou B, Li K, Zhang T, Gu F. Circular RNA circVAPA promotes chemotherapy drug resistance in gastric cancer progression by regulating miR-125b-5p/STAT3 axis. World J Gastroenterol 2021; 27:487-500. [PMID: 33642823 PMCID: PMC7896438 DOI: 10.3748/wjg.v27.i6.487] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignancy, leading to a high incidence of cancer-associated death. Cisplatin (DDP)-based chemotherapy is the principal therapy for clinical GC treatment, but DDP resistance is a severe clinical challenge and the mechanism remains poorly understood. Circular RNAs (circRNAs) have been identified to play crucial roles in modulating the chemoresistance of gastric cancer cells.
AIM To explore the effect of circVAPA on chemotherapy resistance during GC progression.
METHODS The effect of circVAPA on GC progression and chemotherapy resistance was analyzed by MTT assay, colony formation assay, Transwell assay, wound healing assay, and flow cytometry analysis in GC cells and DDP resistant GC cell lines, and tumorigenicity analysis in nude mice in vivo. The mechanism was investigated by luciferase reporter assay, quantitative real-time PCR, and Western blot analysis.
RESULTS CircVAPA expression was up-regulated in clinical GC tissues compared with normal samples. CircVAPA depletion inhibited proliferation, migration, and invasion and increased apoptosis of GC cells. The expression of circVAPA, STAT3, and STAT3 downstream genes was elevated in DDP resistant SGC7901/DDP cell lines. CircVAPA knockdown attenuated the DDP resistance of GC cells. Mechanically, circVAPA was able to sponge miR-125b-5p, and miR-125b-5p could target STAT3 in the GC cells. MiR-125b-5p inhibitor reversed circVAPA depletion-enhanced inhibitory effect of DDP on GC cells, and STAT3 knockdown blocked circVAPA overexpression-induced proliferation of DDP-treated SGC7901/DDP cells. The depletion of STAT3 and miR-125b-5p inhibitor reversed circVAPA depletion-induced GC cell apoptosis. Functionally, circVAPA contributed to the tumor growth of SGC7901/DDP cells in vivo.
CONCLUSION CircVAPA promotes chemotherapy resistance and malignant progression in GC by miR-125b-5p/STAT3 signaling. Our findings present novel insights into the mechanism by which circVAPA regulates chemotherapy resistance of GC cells. CircVAPA and miR-125b-5p may be considered as the potential targets for GC therapy.
Collapse
Affiliation(s)
- Peng Deng
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Wen-Yan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Bin Hou
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang 110122, Liaoning Province, China
| | - Feng Gu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
16
|
Shi X, Valizadeh A, Mir SM, Asemi Z, Karimian A, Majidina M, Safa A, Yosefi B. miRNA-29a reverses P-glycoprotein-mediated drug resistance and inhibits proliferation via up-regulation of PTEN in colon cancer cells. Eur J Pharmacol 2020; 880:173138. [DOI: 10.1016/j.ejphar.2020.173138] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022]
|
17
|
Qian Y, Wu X, Wang H, Hou G, Han X, Song W. MicroRNA-4290 suppresses PDK1-mediated glycolysis to enhance the sensitivity of gastric cancer cell to cisplatin. ACTA ACUST UNITED AC 2020; 53:e9330. [PMID: 32321153 PMCID: PMC7184963 DOI: 10.1590/1414-431x20209330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
The development of chemotherapy resistance significantly impairs the efficiency of chemotherapy, but the underlying mechanisms of chemotherapy resistance in gastric cancer (GC) are complicated and still need to be further explored. Here, we aimed to reveal the effects of miR-4290/PDK1 (pyruvate dehydrogenase kinase 1) axis on chemotherapy resistance of GC in vitro. The expression patterns of miR-4290 in GC tissues and cell lines were determined by real-time quantitative PCR. Kaplan-Meier was used to assess the relationship between miR-4290 expression levels and patients' overall survival. CCK-8 and flow cytometry technologies were applied to detect cell proliferation and apoptosis. The luciferase gene reporter assay was used to evaluate the interaction between miR-4290 and PDK1. miR-4290 was lowly expressed in GC tissues and cell lines, which was closely associated with the shorter overall survival of GC patients. miR-4290 mimics significantly inhibited cell proliferation and induced cell apoptosis, as well as induced a significant reduction in the expression of PDK1. Moreover, miR-4290 significantly inhibited glycolysis and decreased the IC50 value to cisplatin in SGC7901 cells, whereas these effects were abolished and cell apoptosis was promoted when PDK1 was overexpressed. In conclusion, this study revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin.
Collapse
Affiliation(s)
- Yan Qian
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xu Wu
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Haixiao Wang
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Guowei Hou
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Xiao Han
- Department of Gastric Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wei Song
- Department of Gastroenterology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
18
|
HMGA Genes and Proteins in Development and Evolution. Int J Mol Sci 2020; 21:ijms21020654. [PMID: 31963852 PMCID: PMC7013770 DOI: 10.3390/ijms21020654] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
HMGA (high mobility group A) (HMGA1 and HMGA2) are small non-histone proteins that can bind DNA and modify chromatin state, thus modulating the accessibility of regulatory factors to the DNA and contributing to the overall panorama of gene expression tuning. In general, they are abundantly expressed during embryogenesis, but are downregulated in the adult differentiated tissues. In the present review, we summarize some aspects of their role during development, also dealing with relevant studies that have shed light on their functioning in cell biology and with emerging possible involvement of HMGA1 and HMGA2 in evolutionary biology.
Collapse
|
19
|
Zhang M, Wang S, Yi A, Qiao Y. microRNA-665 is down-regulated in gastric cancer and inhibits proliferation, invasion, and EMT by targeting PPP2R2A. Cell Biochem Funct 2020; 38:409-418. [PMID: 31923339 DOI: 10.1002/cbf.3485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022]
Abstract
Recently, microRNA-665 (miR-665) has been reported to function as both tumour suppressor and oncogene in several cancer types, including gastric cancer, hepatocellular cancer, and lung cancer. However, the biological function of miR-665 and its precise mechanisms in gastric cancer (GC) have not been well clarified. The aim of this study was to study the roles of miR-665/PPP2R2A axis in GC. The levels of PPP2R2A and miR-665 were detected by quantitative PCR assay in GC tissues and cell lines. Moreover, the biological roles of miR-665 and PPP2R2A in GC cells were assessed by cell proliferation, invasion, and epithelial-mesenchymal transition (EMT). The mRNA and protein levels of PPP2R2A were determined by using quantitative PCR and Western blotting assays. Luciferase assays were used to confirm that PPP2R2A was one target of miR-665. In this study, the miR-665 level was dramatically reduced in GC tissues and cell lines, and the PPP2R2A expression was significantly enhanced. What is more, the PPP2R2A expression was negatively related to the miR-665 level in GC tissues. Furthermore, up-regulation of miR-665 obviously restrained GC cells proliferation, invasion, and EMT. We confirmed that miR-665 could directly target PPP2R2A by luciferase reporter assay. Besides, knockdown of PPP2R2A also could markedly inhibit the proliferation, invasion and EMT of GC cells. Finally, overexpression of miR-665 in GC cells partially reversed the promoted effects of PPP2R2A up-regulation. Overexpression of miR-665 restrained GC cells proliferation, invasion and EMT via regulation of PPP2R2A. SIGNIFICANCE OF THE STUDY: miR-665 has been reported to function as oncogene or tumour suppressor in different cancers. However, the precise roles of miR-665 in GC have not been elucidated. Our study for the first time demonstrated that miR-665 level was significantly down-regulated in GC. Additionally, miR-665 overexpression inhibited cell growth, invasion, and EMT of GC. Moreover, our data suggested a significant negative correlation between miR-665 and PPP2R2A expression in GC. MiR-665 suppressed GC cell proliferation, invasion, and EMT by directly targeting PPP2R2A, which suggested important roles for miR-665/PPP2R2A axis in the GC pathogenesis and its potential application in cancer therapy.
Collapse
Affiliation(s)
- Mingjuan Zhang
- Department of Gastroenterology, Dongming People's Hospital, Shandong, China
| | - Su Wang
- School of Medicine, Yangzhou University, Jiangsu, China
| | - Aiwen Yi
- Department of Gastroenterology, Dongming People's Hospital, Shandong, China
| | - Yongsheng Qiao
- Endoscope Room, Dongming People's Hospital, Shandong, China
| |
Collapse
|