1
|
Wu K, Li Y, Nie B, Guo C, Ma X, Li L, Cheng S, Li Y, Luo S, Zeng Y, Yu J, Shi M. MEF2A is a transcription factor for circPVT1 and contributes to the malignancy of acute myeloid leukemia. Int J Oncol 2024; 65:111. [PMID: 39329212 PMCID: PMC11436260 DOI: 10.3892/ijo.2024.5699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with a high relapse rate and a poor survival rate. The circular RNA circPVT1 and myocyte enhancer factor 2A (MEF2A) have unique functions in the progression of AML; however, the underlying mechanisms and clinical significance remain to be clarified. Bioinformatics and database analyses were used to assess the transcription factors and target genes of circPVT1. Dual‑luciferase reporter gene and argonaute 2‑RNA immunoprecipitation assays were used to verify the targeted relationships. The expression levels of related genes and proteins were detected by reverse transcription‑quantitative PCR and western blotting. Cell viability and apoptosis were detected by Cell Counting Kit‑8 assay and flow cytometry, respectively. The results revealed that circPVT1 was highly expressed in AML samples and cell lines, and that MEF2A regulated the expression of circPVT1. MEF2A overexpression promoted cell viability and epithelial‑mesenchymal transition (EMT), and inhibited cell apoptosis. In addition, circPVT1 was revealed to target the regulation of microRNA (miR)‑455‑3p, and miR‑455‑3p targeted the regulation of MCL1 expression, thus indicating that circPVT1 promoted MCL1 expression through its interaction with miR‑455‑3p. Furthermore, cells were transfected with the small interfering RNA‑(si)‑circPVT1, miR‑455‑3p inhibitor or si‑MCL1, and si‑circPVT1 and si‑MCL1 inhibited the viability and EMT of NB4 and HL‑60 cells. However, the miR‑455‑3p inhibitor had the opposite effect on cells. In conclusion, MEF2A may act as a transcription factor of circPVT1 to promote the malignant process of AML, and knockdown of circPVT1 could inhibit the viability and EMT of AML cells through the miR‑455‑3p/MCL1 axis.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Humans
- Male
- Middle Aged
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Survival/genetics
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Leukemic
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- MEF2 Transcription Factors/genetics
- MEF2 Transcription Factors/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- RNA, Circular/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
Collapse
Affiliation(s)
- Kun Wu
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuntao Li
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Bo Nie
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chong Guo
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xiaobo Ma
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Linyan Li
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shenju Cheng
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yanhong Li
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shan Luo
- Yunnan Key Laboratory of Laboratory Medicine, Clinical Research Center for Laboratory Medicine, Kunming, Yunnan 650032, P.R. China
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yun Zeng
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jian Yu
- Interdisciplinary Institute for Cancer Diagnosis and Treatment, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, P.R. China
| | - Mingxia Shi
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
2
|
Valenti MT, Zerlotin R, Cominacini M, Bolognin S, Grano M, Dalle Carbonare L. Exploring the Role of Circular RNA in Bone Biology: A Comprehensive Review. Cells 2024; 13:999. [PMID: 38920630 PMCID: PMC11201515 DOI: 10.3390/cells13120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression with diverse roles in various biological processes. In recent years, research into circRNAs' involvement in bone biology has gained significant attention, unveiling their potential as novel regulators and biomarkers in bone-related disorders and diseases. CircRNAs, characterized by their closed-loop structure, exhibit stability and resistance to degradation, underscoring their functional significance. In bone tissue, circRNAs are involved in critical processes such as osteogenic differentiation, osteoclastogenesis, and bone remodeling through intricate molecular mechanisms including microRNA regulation. Dysregulated circRNAs are associated with various bone disorders, suggesting their potential as diagnostic and prognostic biomarkers. The therapeutic targeting of these circRNAs holds promise for addressing bone-related conditions, offering new perspectives for precision medicine. Thus, circRNAs constitute integral components of bone regulatory networks, impacting both physiological bone homeostasis and pathological conditions. This review provides a comprehensive overview of circRNAs in bone biology, emphasizing their regulatory mechanisms, functional implications, and therapeutic potential.
Collapse
Affiliation(s)
- Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (M.C.); (L.D.C.)
| | - Silvia Bolognin
- MERLN Institute, Maastricht University, Universiteitssingel 40, 6229 ET Maastricht, The Netherlands;
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (M.C.); (L.D.C.)
| |
Collapse
|
3
|
Mosca N, Alessio N, Di Paola A, Marrapodi MM, Galderisi U, Russo A, Rossi F, Potenza N. Osteosarcoma in a ceRNET perspective. J Biomed Sci 2024; 31:59. [PMID: 38835012 DOI: 10.1186/s12929-024-01049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
4
|
Zhou C, Balmer L, Song M, Mahara G, Wu K, Wang W, Wang H. Identification of circRNA biomarkers in osteosarcoma: An updated systematic review and meta-analysis. Noncoding RNA Res 2024; 9:341-349. [PMID: 38505307 PMCID: PMC10945140 DOI: 10.1016/j.ncrna.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/21/2024] Open
Abstract
Circular RNAs (circRNAs) play a crucial role in cancer development and progression. This study aimed to identify potential circRNA biomarkers for osteosarcoma. Articles published from January 2010 to September 2023 were searched across eight databases to compare circRNA expression profiles in osteosarcoma and control samples (human, animal and cell lines). Meta-analysis was conducted under a random effects model. Subgroup analysis of circRNAs in different samples and tissues was performed. Diagnostic value was evaluated using receiver operator characteristic curves. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis explored functions of circRNA host genes. A circRNA-miRNA-mRNA axis depicted the regulatory mechanism in osteosarcoma. Among 1356 circRNAs with differential expression were identified across 226 original studies, only 74 were reported in at least three published sub-studies. Meta-analysis identified 58 dysregulated circRNAs (52 upregulated and 6 downregulated). Eleven circRNAs consistently showed dysregulation in tissues and cell lines, with hsa_circ_0005721 showing potential as a circulating biomarker in osteosarcoma. Sensitivity analysis demonstrated 97 % consistency. The overall area under the curve was 0.87 (95 % CI, 0.83-0.89). GO and KEGG enrichment analyses revealed host gene involvement in cancer. The circRNA-miRNA-mRNA axis revealed the regulatory axis and interactions within osteosarcoma specifically. This study demonstrates circRNAs as potential diagnostic biomarkers for osteosarcoma. Consistently reported dysregulated circRNAs are potential biomarkers in osteosarcoma pathogenesis, with hsa_circ_0005721 as a potential circulating biomarker for diagnosis and treatment.
Collapse
Affiliation(s)
- Chunbin Zhou
- Center for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, WA, 6027, Australia
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Lois Balmer
- Center for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, WA, 6027, Australia
| | - Manshu Song
- Center for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, WA, 6027, Australia
| | - Gehendra Mahara
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Kezhou Wu
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Wei Wang
- Center for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, WA, 6027, Australia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Hu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
- Minimally Invasive Spine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
5
|
Zhang L, Zhang L, Zhang C, Shi S, Cao Z, Shao C, Li J, Yang Y, Zhang X, Wang J, Li X. circTADA2A inhibited SLC38A1 expression and suppresses melanoma progression through the prevention of CNBP trans-activation. PLoS One 2024; 19:e0301356. [PMID: 38635778 PMCID: PMC11025954 DOI: 10.1371/journal.pone.0301356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND CircTADA2A has been demonstrated to play critical roles in the occurrence and development of human cancer. However, the expression pattern and biological mechanisms of circTADA2A in melanoma remains largely unknown. METHODS CircTADA2A were detected by quantitative real-time RT-PCR (qRT-PCR) and validated by Sanger sequencing. Function of circTADA2A and its protein partner in melanoma cells was investigated using RNA interference and overexpression assays. Interaction of circTADA2A, CCHC-type zinc finger nucleic acid binding protein (CNBP) and solute carrier family 38 member 1 (SLC38A1) was confirmed by RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter assay. The expression of genes and proteins were detected by qRT-PCR and western blot assays. RESULTS Data from the investigation showed that a novel circRNA (circTADA2A, hsa_circ_0043278) was markedly downregulated in melanoma cells. Functionally, circTADA2A repressed cell proliferation, migration, invasion in melanoma cells. Mechanistically, circTADA2A interacted with CNBP, acting to suppress the binding of CNBP to the SLC38A1 promoter and subsequently restrained SLC38A1 transcription, which resulting in repression of melanoma progression. CONCLUSIONS CircTADA2A suppresses melanoma progression by regulating CNBP/SLC38A1 axis, indicating a potential therapeutic target in melanoma.
Collapse
Affiliation(s)
- Longjun Zhang
- Department of Plastic Surgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Le Zhang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Chi Zhang
- Department of Cataract, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Sunan Shi
- Department of Otolaryngology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Zhilei Cao
- Department of Operation and Anaesthesia, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Changliang Shao
- Department of Optometry, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Jie Li
- Department of Operation and Anaesthesia, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Yingshun Yang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Xi Zhang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Jian Wang
- Department of Oral Surgery, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Xiangyun Li
- Department of Plastic Surgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| |
Collapse
|
6
|
Zhou C, Balmer L, Song M, Wu K, Wang W, Wang H. CircPVT1 promotes migration and invasion by regulating miR-490-5p/HAVCR2 axis in osteosarcoma cells. J Cell Mol Med 2024; 28:e18269. [PMID: 38568056 PMCID: PMC10989635 DOI: 10.1111/jcmm.18269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Circular RNAs (circRNAs) play an important role in the progression of osteosarcoma. However, the precise function of circPVT1 in osteosarcoma remains elusive. This study aims to explore the molecular mechanism underlying the involvement of circPVT1 in osteosarcoma cells. We quantified circPVT1 expression using qRT-PCR in both control and osteosarcoma cell lines. To investigate the roles of circPVT1, miR-490-5p and HAVCR2 in vitro, we separately conducted overexpression and inhibition experiments for circPVT1, miR-490-5p and HAVCR2 in HOS and U2OS cells. Cell migration was assessed through wound healing and transwell migration assays, and invasion was measured via the Matrigel invasion assay. To elucidate the regulatory mechanism of circPVT1 in osteosarcoma, a comprehensive approach was employed, including fluorescence in situ hybridization, qRT-PCR, Western blot, bioinformatics, dual-luciferase reporter assay and rescue assay. CircPVT1 expression in osteosarcoma cell lines surpassed that in control cells. The depletion of circPVT1 resulted in a notable reduction in the in vitro migration and invasion of osteosarcoma cells. Mechanism experiments revealed that circPVT1 functioned as a miR-490-5p sequester, and directly targeted HAVCR2. Overexpression of miR-490-5p led to a significant attenuation of migration and invasion of osteosarcoma cells, whereas HAVCR2 overexpression had the opposite effect, promoting these abilities. Additionally, circPVT1 upregulated HAVCR2 expression via sequestering miR-490-5p, thereby orchestrating the migration and invasion in osteosarcoma cells. CircPVT1 orchestrates osteosarcoma migration and invasion by regulating the miR-490-5p/HAVCR2 axis, underscoring its potential as a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Chunbin Zhou
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Center for Precision Health, School of Medical and Health ScienceEdith Cowan UniversityPerthWestern AustraliaAustralia
| | - Lois Balmer
- Center for Precision Health, School of Medical and Health ScienceEdith Cowan UniversityPerthWestern AustraliaAustralia
| | - Manshu Song
- Center for Precision Health, School of Medical and Health ScienceEdith Cowan UniversityPerthWestern AustraliaAustralia
| | - Kezhou Wu
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Wei Wang
- Center for Precision Health, School of Medical and Health ScienceEdith Cowan UniversityPerthWestern AustraliaAustralia
- First Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Hu Wang
- Department of OrthopaedicsFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Minimally Invasive Spine CenterFirst Affiliated Hospital of Shantou University Medical CollegeShantouGuangdongChina
| |
Collapse
|
7
|
Zeng L, Liu L, Ni WJ, Xie F, Leng XM. Circular RNAs in osteosarcoma: An update of recent studies (Review). Int J Oncol 2023; 63:123. [PMID: 37681483 DOI: 10.3892/ijo.2023.5571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/20/2023] [Indexed: 09/09/2023] Open
Abstract
Osteosarcoma (OS) prevailing in children and adolescents mainly occurs at the metaphysis of long bones. As it is associated with a high invasive and metastatic ability, resistance to chemotherapy, and a low 5‑year survival rate, the diagnosis and treatment of OS post a global healthy issue. Over the past decades, RNA biology has shed new light onto the pathogenesis of OS. As a type of non‑coding RNAs, circular RNAs (circRNAs) have been found to play crucial roles in cellular activities. Recently, a large number of circRNAs have been identified in OS and some of them have been validated to be functional in OS. In the present review, abnormally expressed and different types of circRNAs in OS are summarized. Functional studies on circRNAs have revealed that circRNAs can regulate gene expression at different levels, such as gene transcription, precursor mRNA splicing, miRNA sponges and translation into proteins/peptides. Mechanistic analyses on circRNAs show that circRNAs can regulate JAK‑STAT3, NF‑κB, PI3K‑AKT, Wnt/β‑catenin signaling pathways during the occurrence and development of OS. Furthermore, the potential clinical applications of circRNAs are also emphasized. The present review focus on the current knowledge on the functions and mechanisms of circRNAs in the pathogenesis of OS, aiming to provide new insight into the OS diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Le Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Longzhou Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
8
|
Li H, Li L, Qiu X, Zhang J, Hua Z. The interaction of CFLAR with p130Cas promotes cell migration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119390. [PMID: 36400248 DOI: 10.1016/j.bbamcr.2022.119390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
CASP8 and FADD Like Apoptosis Regulator (CFLAR) is a key anti-apoptotic regulator for resistance to apoptosis mediated by Fas and TRAIL. In addition to its anti-apoptotic function, CFLAR is also an important mediator of tumor growth. High level of CFLAR expression correlates with a more aggressive tumor. However, the mechanism of CFLAR signaling in malignant progression is not clear. Here we report a novel CFLAR-associated protein p130Cas, which is a general regulator of cell growth and cell migration. CFLAR-p130Cas association is mediated by the DED domain of CFLAR and the SD domain of p130Cas. Immunofluorescence observation showed that CFLAR had the colocalization with p130Cas at the focal adhesion of cell membrane. CFLAR overexpression promoted p130Cas phosphorylation and the formation of focal adhesion complex. Moreover, the enhancement of cell migration induced by CFLAR overexpression was obviously inhibited by p130Cas siRNA. In silico analysis on human database suggests high expressions of CFLAR or/and p130Cas are associated with poor prognosis of patients with lung cancer. Together, our results suggest a new mechanism for CFLAR involved in tumor development via association with p130Cas.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Luqi Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xun Qiu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; School of Biopharmacy, China Pharmaceutical University, Nanjing, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China.
| |
Collapse
|
9
|
Li H, Xue S, Zhang X, Li F, Bei S, Feng L. CircRNA PVT1 modulated cell migration and invasion through Epithelial-Mesenchymal Transition (EMT) mediation in gastric cancer through miR-423-5p/Smad3 pathway. Regen Ther 2022; 21:25-33. [PMID: 35663842 PMCID: PMC9133701 DOI: 10.1016/j.reth.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/05/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) progression is related with gene regulations. Objectives This study explored underlying regulatory axis of circRNA PVT1 (circPVT1) in GC. Methods GC cell lines were detected for circPVT1 expression with the normal mucous epithelial cell GES-1 as control. After regulation of circPVT1, miR-423-5p and SMAD3 expression through transfection, CCK8 evaluated the cell viability, Transwell measured the migratory and invasive capability of cells. Luciferase verified the paired bindings between miR-423-5p and CircPVT1 or SMAD3. The functions of CircPVT1/miR-423-5p/SMAD3 were evaluated using RT-PCR, CCK8, Transwell assays. Western blot analyzed EMT-related proteins and phosphorylation of Smad3 in GC cells. Immunofluorescence method was used to evaluate the EMT-related proteins as well. Results CircPVT1 displayed higher expression in GC cells and knockdown led to decrease in cell growth, invasion and migration. CircPVT1 was targeted by miR-423-5p as a ceRNA of SMAD3. miR-423-5p upregulation suppressed both cicRNA PVT1 and SMAD3 in GC cells. Decrease in SMAD3 expression suppressed CircPVT1 by releasing miR-423-5p in cells, inhibiting cell growth, invasion and migration and suppressing the EMT process. Conclusion CircPVT1 modulated cell growth, invasion and migration through EMT mediation in gastric cancer through miR-423-5p/Smad3 pathway.
Collapse
|
10
|
Wu T, Ji Z, Lin H, Wei B, Xie G, Ji G, Fu S, Huang W, Liu H. Noncoding RNA PVT1 in osteosarcoma: The roles of lncRNA PVT1 and circPVT1. Cell Death Dis 2022; 8:456. [DOI: 10.1038/s41420-022-01192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
AbstractOsteosarcoma (OS) is the most common primary malignant bone tumor in children and teenagers and is characterized by high malignant potential, rapid disease progression and high disability and mortality rates. Recently, noncoding RNAs (ncRNAs) have attracted the attention of many scholars due to their major regulatory roles in gene expression. Among them, lncRNA PVT1 and circPVT1 encoded by the PVT1 gene have been the focus of many studies; they are upregulated in OS, and abundant evidence indicates that lncRNA PVT1 and circPVT1 play key roles in the occurrence and development of OS. This review summarizes the mechanisms of action of lncRNA PVT1 and circPVT1 in regulating apoptosis, proliferation, glycolysis, invasion, migration and epithelial–mesenchymal transition (EMT) in OS and discusses their clinical applications in diagnosis, prognosis determination and drug resistance treatment, with the aim of helping researchers better understand the regulatory roles of lncRNA PVT1 and circPVT1 in OS progression and providing a theoretical basis for the development of early screening and accurate targeted treatment strategies and prognostic biomarkers for OS based on lncRNA PVT1 and circPVT1.
Collapse
|
11
|
Hua T, Luo Y. Circular RNA PVT1 promotes progression of thyroid cancer by competitively binding miR‑384. Exp Ther Med 2022; 24:629. [PMID: 36185502 PMCID: PMC9520360 DOI: 10.3892/etm.2022.11566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
Plasmacytoma variant translocation 1 circular RNA (circPVT1) is involved in the initiation and development of several types of cancer. However, the underlying molecular role of circPVT1 in tumorigenesis of thyroid cancer remains to be elucidated. In the present study, relative expression of circPVT1 was markedly upregulated in thyroid cancer compared with adjacent normal tissue. circPVT1 expression was associated with clinical stage and lymph node metastasis. Furthermore, Cell Counting Kit-8, colony formation and Transwell chamber assays demonstrated that knockdown of circPVT1 decreased proliferation, migration and invasion of thyroid cancer cells in vitro. Moreover, circPVT1 directly interacted with microRNA (miR)-384, as shown by bioinformatics prediction and dual luciferase and RNA pull-down assay. miR-384 inhibition partially reversed the circPVT1 knockdown-mediated inhibitory effect on proliferation, migration and invasion of thyroid cancer cells. In summary, these findings demonstrated that circPVT1 may be a potential therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Tebo Hua
- Department of Thyroid Breast Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yong Luo
- Department of Thyroid Breast Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
12
|
Huang SX, Mei HB, Liu K, Tang J, Wu JY, Zhu GH, Ye WH. CircPVT1 promotes the tumorigenesis and metastasis of osteosarcoma via mediation of miR-26b-5p/CCNB1 axis. J Bone Miner Metab 2022; 40:581-593. [PMID: 35648221 DOI: 10.1007/s00774-022-01326-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Osteosarcoma (OS) is the most aggressive malignancy among the bone tumors in the world. Circular RNAs (circRNAs) have been reported to be participated in multiple cancers, including OS. Meanwhile, circPVT1 has been proved to be upregulated in OS. However, the mechanism by which circPVT1 mediates the tumorigenesis of OS remains to be further explored. MATERIALS AND METHODS Protein and gene expressions in OS cells were measured by western blot and RT-qPCR, respectively. Cell growth was assessed by flow cytometry and colony formation, respectively. In addition, cell migration was assessed by wound healing, and invasion was evaluated by Transwell assay. Meanwhile, the correlation among circPVT1, miR-26b-5p and CCNB1 was explored by RNA pull-down and dual luciferase assay. Finally, in vivo model was established to explore the role of circPVT1 in OS in vivo. RESULTS CircPVT1 and CCNB1 were significantly upregulated in OS cells, while miR-26b-5p was downregulated. Knockdown of circPVT1 notably inhibited proliferation and induced apoptosis of OS cells. CircPVT1 shRNA significantly suppressed the OS cell invasion and migration. Meanwhile, circPVT1 sponged miR-26b-5p and CCNB1 was found to be the direct target of miR-26b-5p. Furthermore, silencing of circPVT1 inhibited the growth and metastasis of OS in vivo. CONCLUSION Silencing of circPVT1 notably suppressed the tumorigenesis and metastasis of OS via miR-26b-5p/CCNB1 axis. Therefore, circPVT1 might be used as a target for OS treatment.
Collapse
Affiliation(s)
- Sheng-Xiang Huang
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Hai-Bo Mei
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Kun Liu
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Jin Tang
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Jiang-Yan Wu
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Guang-Hui Zhu
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China
| | - Wei-Hua Ye
- Department of Pediatric Orthopedics, Hunan Children's Hospital, No. 86, Ziyuan Road, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
13
|
Traversa D, Simonetti G, Tolomeo D, Visci G, Macchia G, Ghetti M, Martinelli G, Kristensen LS, Storlazzi CT. Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. Br J Cancer 2022; 126:835-850. [PMID: 34754096 PMCID: PMC8927338 DOI: 10.1038/s41416-021-01584-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
The plasmacytoma variant translocation 1 (PVT1) is a long non-coding RNA gene involved in human disease, mainly in cancer onset/progression. Although widely analysed, its biological roles need to be further clarified. Notably, functional studies on PVT1 are complicated by the occurrence of multiple transcript variants, linear and circular, which generate technical issues in the experimental procedures used to evaluate its impact on human disease. Among the many PVT1 transcripts, the linear PVT1 (lncPVT1) and the circular hsa_circ_0001821 (circPVT1) are frequently reported to perform similar pathologic and pro-tumorigenic functions when overexpressed. The stimulation of cell proliferation, invasion and drug resistance, cell metabolism regulation, and apoptosis inhibition is controlled through multiple targets, including MYC, p21, STAT3, vimentin, cadherins, the PI3K/AKT, HK2, BCL2, and CASP3. However, some of this evidence may originate from an incorrect evaluation of these transcripts as two separate molecules, as they share the lncPVT1 exon-2 sequence. We here summarise lncPVT1/circPVT1 functions by mainly focusing on shared pathways, pointing out the potential bias that may exist when the biological role of each transcript is analysed. These considerations may improve the knowledge about lncPVT1/circPVT1 and their specific targets, which deserve further studies due to their diagnostic, prognostic, and therapeutic potential.
Collapse
Affiliation(s)
- Debora Traversa
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Giorgia Simonetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Grazia Visci
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Gemma Macchia
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Martina Ghetti
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | | | | |
Collapse
|
14
|
Lift the curtain on long non-coding RNAs in hematological malignancies: Pathogenic elements and potential targets. Cancer Lett 2022; 536:215645. [DOI: 10.1016/j.canlet.2022.215645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022]
|
15
|
CircRNA PVT1 promotes proliferation and chemoresistance of osteosarcoma cells via the miR-24-3p/KLF8 axis. Int J Clin Oncol 2022; 27:811-822. [PMID: 35171359 DOI: 10.1007/s10147-022-02122-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate the regulatory effect and mechanism of circular RNA PVT1 (circPVT1) in proliferation and chemoresistance of osteosarcoma (OS) cells. METHODS The expression of circPVT1 in human OS and adjacent normal tissues was detected. The correlation between circPVT1 expression and clinical features of OS was analyzed. The expressions of circPVT1 and miR-24-3p in OS cells resistant to cisplatin, doxorubicin or methotrexate and parental OS cells were detected after cell transfection. CCK-8 and colony formation assay assessed the viability and proliferative ability of OS cells. qRT-PCR and Western blotting measured the expression of KLF8. Dual-luciferase reporter and RNA pull-down assays verified the targeting relationships of circPVT1/miR-24-3p and miR-24-3p/KLF8. RESULTS CircPVT1 was over-expressed in OS tissues and cells, and correlated with clinical features of OS. Over-expressed circPVT1 reduced the survival of OS patients. CircPVT1 was up-regulated in chemoresistant OS cells compared to their parental cells. CircPVT1 inhibition suppressed the proliferation and chemoresistance of OS cells. MiR-24-3p was under-expressed in OS cells and further down-regulated in chemoresistant cells. CircPVT1 could bind and down-regulate miR-24-3p. MiR-24-3p overexpression inhibited the proliferation and chemoresistance of OS cells. KLF8 was over-expressed in OS cells and further up-regulated in chemoresistant cells. MiR-24-3p negatively regulated the expression of KLF8. CONCLUSION CircPVT1 mediates proliferation and chemoresistance of OS cells via the miR-24-3p/KLF8 axis. The findings may provide guidance for clinical treatment of OS.
Collapse
|
16
|
CircPVT1: a pivotal circular node intersecting Long Non-Coding-PVT1 and c-MYC oncogenic signals. Mol Cancer 2022; 21:33. [PMID: 35090471 PMCID: PMC8796571 DOI: 10.1186/s12943-022-01514-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The role of circular RNAs in oncogenesis has begun to be widely studied in recent years, due to the significant impact that these molecules have in disease pathogenesis, as well as their potential for the future of innovative therapies. Moreover, due to their characteristically circular shape, circular RNAs are very resistant molecules to RNA degradation whose levels are easily assessed in body fluids. Accordingly, they represent an opportunity for the discovery of new diagnostic and prognostic markers in a wide range of diseases. Among circular RNAs, circPVT1 is a rather peculiar one that originates from the circularization of the exon 2 of the PVT1 gene that encodes a pro-tumorigenic long non-coding RNA named lncPVT1. There are a few examples of circular RNAs that derive from a locus producing another non-coding RNA. Despite their apparent transcriptional independence, which occurs using two different promoters, a possible synergistic effect in tumorigenesis cannot be excluded considering that both have been reported to correlate with the oncogenic phenotype. This complex mechanism of regulation appears to also be controlled by c-MYC. Indeed, the PVT1 locus is located only 53 Kb downstream c-MYC gene, a well-known oncogene that regulates the expression levels of about 15% of all genes. Here, we review circPVT1 origin and biogenesis highlighting the most important mechanisms through which it plays a fundamental role in oncogenesis, such as the well-known sponge activity on microRNAs, as well as its paradigmatic interactome link with lncPVT1 and c-MYC expression.
Collapse
|
17
|
Zhang W, Liang F, Li Q, Sun H, Li F, Jiao Z, Lei J. LncRNA MIR205HG accelerates cell proliferation, migration and invasion in hepatoblastoma through the activation of MAPK signaling pathway and PI3K/AKT signaling pathway. Biol Direct 2022; 17:2. [PMID: 34996511 PMCID: PMC8740508 DOI: 10.1186/s13062-021-00309-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hepatoblastoma (HB) is identified to be the most common liver malignancy which occurs in children. Long non-coding RNAs (lncRNAs) have been implicated in numerous biological processes and diseases, including HB. LncRNA MIR205 host gene (MIR205HG) has been investigated in multiple cancers, however, its role in HB remains to be elucidated. Methods MIR205HG expression was analyzed by RT-qPCR. EdU, colony formation and transwell assays were implemented to measure the biological function of MIR205HG on the progression of HB. Mechanism assays were carried out to probe into the underlying mechanism of MIR205HG in HB cells. Results MIR205HG was significantly overexpressed in HB. Moreover, MIR205HG inhibition suppressed the proliferative, migratory and invasive capacities of HB cells. Furthermore, MIR205HG competitively bound to microRNA-514a-5p (miR-514a-5p) and targeted mitogen-activated protein kinase 9 (MAPK9) to stimulate mitogen activated protein kinase (MAPK) signaling pathway. Besides, MIR205HG also served as a sponge for microRNA-205-5p (miR-205-5p) to activate the PI3K/AKT signaling pathway. Conclusion MIR205HG drives the progression of HB which might provide an efficient marker and new therapeutic target for HB. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-021-00309-3.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Feng Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Qingfeng Li
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Hong Sun
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Fei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhibo Jiao
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China
| | - Jie Lei
- Department of Pediatric Surgery, the First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Qiaoxi District, Zhangjiakou, 075000, Hebei, China.
| |
Collapse
|
18
|
Li T, Xing Y, Zhang G, Wang Y, Wei Y, Cui L, Zhang S, Wang Q. Circular RNA Plasmacytoma Variant Translocation 1 (CircPVT1) knockdown ameliorates hypoxia-induced bladder fibrosis by regulating the miR-203/Suppressor of Cytokine Signaling 3 (SOCS3) signaling axis. Bioengineered 2022; 13:1288-1303. [PMID: 35000524 PMCID: PMC8805914 DOI: 10.1080/21655979.2021.2001221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/29/2021] [Indexed: 11/02/2022] Open
Abstract
The effects of circular RNAs (circRNAs) on bladder outlet obstruction (BOO)-induced hypertrophy and fibrogenesis in rats and hypoxia-induced bladder smooth muscle cell (BSMC) fibrosis remain unclear. This study aimed to determine the regulatory role of circRNAs in the phenotypic changes in BSMCs in BOO-induced rats.circRNAmicroarray and real-time PCR were used to explore differentiated expressed circRNAs. Bioinformatics analyses and dual-luciferase reporter were performed to identify the targets for circRNA PVT1 (circPVT1). BOO was performed to establish a bladder fibrosis animal model. The circPVT1 and suppressor of cytokine signaling 3 (SOCS3) expression levels were upregulated (p = 0.0061 and 0.0328, respectively), whereas the microRNA-203a (miR-203) level was downregulated in rats with bladder remodeling (p=0.0085). Bioinformatics analyses and dual-luciferase reporter assay results confirmed that circPVT1 sponges miR-203 and that the latter targets the 3'-untranslated region of SOCS3. Additionally, circPVT1 knockdown alleviated BOO-induced bladder hypertrophy and fibrogenesis. Furthermore, hypoxia was induced in BSMCs to establish a cell model of bladder fibrosis. Hypoxia induction in BSMCs resulted in upregulated circPVT1 and SOCS3 levels (p = 0.0052) and downregulated miR-203 levels. Transfection with circPVT1 and SOCS3 shRNA ameliorated hypoxia-induced transforming growth factor-β (TGF-β1), TGFβR1, α-smooth muscle actin, fibrotic growth factor, extracellular matrix subtypes, BSMC proliferation, and apoptosis-associated cell injury, whereas co-transfection with miR-203 inhibitor counteracted the effect of circPVT1 shRNA on these phenotypes.These findings revealed a novel circRNA regulator of BOO-associated bladder wall remodeling and hypoxia-induced phenotypic changes in BMSCs by targeting the miR-203-SOCS3 signaling axis.
Collapse
Affiliation(s)
- Teng Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xing
- Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoxian Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinsheng Wei
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingang Cui
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaojin Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingwei Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Ivanisenko NV, Seyrek K, Hillert-Richter LK, König C, Espe J, Bose K, Lavrik IN. Regulation of extrinsic apoptotic signaling by c-FLIP: towards targeting cancer networks. Trends Cancer 2021; 8:190-209. [PMID: 34973957 DOI: 10.1016/j.trecan.2021.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
The extrinsic pathway is mediated by death receptors (DRs), including CD95 (APO-1/Fas) or TRAILR-1/2. Defects in apoptosis regulation lead to cancer and other malignancies. The master regulator of the DR networks is the cellular FLICE inhibitory protein (c-FLIP). In addition to its key role in apoptosis, c-FLIP may exert other cellular functions, including control of necroptosis, pyroptosis, nuclear factor κB (NF-κB) activation, and tumorigenesis. To gain further insight into the molecular mechanisms of c-FLIP action in cancer networks, we focus on the structure, isoforms, interactions, and post-translational modifications of c-FLIP. We also discuss various avenues to target c-FLIP in cancer cells for therapeutic benefit.
Collapse
Affiliation(s)
- Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Artificial Intelligence Research Institute, Moscow, Russia
| | - Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Laura K Hillert-Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Johannes Espe
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Kakoli Bose
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Inna N Lavrik
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.
| |
Collapse
|
20
|
Ghafouri-Fard S, Khoshbakht T, Taheri M, Jamali E. A Concise Review on the Role of CircPVT1 in Tumorigenesis, Drug Sensitivity, and Cancer Prognosis. Front Oncol 2021; 11:762960. [PMID: 34804965 PMCID: PMC8599443 DOI: 10.3389/fonc.2021.762960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
CircPVT1 (hsa_circ_0001821) is a cancer-related circular RNA (circRNA) that originated from a genomic locus on chromosome 8q24. This locus has been previously found to encode the oncogenic long non-coding RNA PVT1. Expression of this circRNA has been found to be upregulated in diverse neoplastic conditions. CircPVT1 acts as a sponge for miR-125a, miR-125b, miR-124-3p, miR-30a-5p, miR-205-5p, miR-423-5p, miR-526b, miR-137, miR-145-5p, miR-497, miR-30d/e, miR-455-5p, miR-29a-3p, miR-204-5p, miR-149, miR-106a-5p, miR-377, miR-3666, miR-203, and miR-199a-5p. Moreover, it can regulate the activities of PI3K/AKT, Wnt5a/Ror2, E2F2, and HIF-1α. Upregulation of circPVT1 has been correlated with decreased survival of patients with different cancer types. In the current review, we explain the oncogenic impact of circPVT1 in different tissues based on evidence from in vitro, in vivo, and clinical investigations.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Lin Z, Tang X, Wang L, Ling L. Prognostic and clinicopathological value of circPVT1 in human cancers: A meta-analysis. Cancer Rep (Hoboken) 2021; 4:e1385. [PMID: 33793089 PMCID: PMC8551984 DOI: 10.1002/cnr2.1385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circular RNA PVT1 (circPVT1) is significantly upregulated in various human cancers and is related to poor clinical outcome of cancer patients. However, the prognostic and clinicopathological value of circPVT1 in diverse human cancers remains controversial and inconclusive. AIM The objective of our study is to evaluate the prognostic and clinicopathological role of circPVT1 for cancer patients. METHODS AND RESULTS PubMed, Embase, Web of Science, and Cochrane Library were searched for eligible studies by October 1, 2020. The correlation between circPVT1 expression, and overall survival (OS) and clinical parameters was assessed by pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs). Subgroup analyses, heterogeneity, and publication bias were conducted to further enhance reliability. Twelve studies (1282 patients) were selected for this meta-analysis, including 11 on prognosis and 10 on clinicopathological parameters. Elevated expression of circPVT1 was associated with a worse OS in cancer patients (HR, 2.009; 95% CI, 1.667-2.408, 1.892; P < .001). For clinicopathological value, upregulation of circPVT1 was closely related to poor clinical parameters lymph node metastasis (OR = 2.019; 95% CI, 1.026-3.976; P = .042; I2 = 77.5%; PH = 0.000), late clinical stage (OR = 3.594; 95% CI, 1.828-7.065; P < .001; I2 = 71.7%; PH = 0.001), distant metastasis (OR = 4.598; 95% CI, 1.411-14.988; P = .011; I2 = 78.1%; PH = 0.001), and chemoresistant (OR = 6.400; 95% CI, 2.107-19.441; P = .001; I2 = 49.6%; PH = 0.159). CONCLUSION High expression of circPVT1 is correlated with unfavorable prognosis of cancer patients, indicating that circPVT1 can function as a potential prognostic biomarker in human cancer.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of OrthopedicsThe Second Xiangya Hospital Central South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Xianzhe Tang
- Department of OrthopedicsChenzhou No.1 people's HospitalChenzhouChina
| | - Lu Wang
- Department of OrthopedicsThe Second Xiangya Hospital Central South UniversityChangshaChina
| | - Lin Ling
- Department of OrthopedicsThe Second Xiangya Hospital Central South UniversityChangshaChina
| |
Collapse
|
22
|
Sun Q, Zhang X, Tan Z, Gu H, Ding S, Ji Y. Bone marrow mesenchymal stem cells-secreted exosomal microRNA-205-5p exerts inhibitory effect on the progression of liver cancer through regulating CDKL3. Pathol Res Pract 2021; 225:153549. [PMID: 34329837 DOI: 10.1016/j.prp.2021.153549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Bone marrow mesenchymal stem cells-derived exosomes (BMSCs-exo) carrying microRNA (miR) cargo have been emerged as a promising therapy for human cancers. Therein, we pivoted on the integral function of BMSCs-exo and miR-205-5p in liver cancer through mediation of cyclin-dependent kinase-like 3 (CDKL3). METHODS Patients with liver cancer were enrolled to collect the clinical tissue and determine miR-205-5p and CDKL3 expression. miR-205-5p expression in BMSCs was altered by transfection, and BMSCs-exo were extracted and co-cultured with LM3 cells. Meanwhile, LM3 cells were independently transfected with CDKL3 low or high expression vector. Since then, cell growth in vitro was observed, and the effect of exosomal miR-205-5p on tumor growth in vivo was further investigated. RESULTS miR-205-5p expression was low while CDKL3 was high in liver cancer. BMSCs-exo blocked cellular growth of liver cancer in vitro and in vivo. Overexpressing exosomal miR-205-5p decelerated the biological development of liver cancer cells while suppressing exosomal miR-205-5p had the contrary function in vitro and in vivo. Loss of CDKL3 impaired the malignant activities of liver cancer cells, and could even impair the pro-tumor effects of down-regulated exosomal miR-205-5p. CONCLUSION It is clearly concluded that BMSCs-secreted exosomal miR-205-5p exerts inhibitory effect on the progression of liver cancer through regulating CDKL3.
Collapse
Affiliation(s)
- Qin Sun
- Department of Infectious Diseases, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, PR China
| | - Xuesong Zhang
- Department of Infectious Diseases, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, PR China
| | - Zhengbing Tan
- Department of Infectious Diseases, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, PR China
| | - Hong Gu
- Department of Infectious Diseases, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, PR China
| | - Song Ding
- Department of Infectious Diseases, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, PR China
| | - Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, PR China.
| |
Collapse
|
23
|
Yun J, Ren J, Liu Y, Dai L, Song L, Ma X, Luo S, Song Y. Circ-ACTR2 aggravates the high glucose-induced cell dysfunction of human renal mesangial cells through mediating the miR-205-5p/HMGA2 axis in diabetic nephropathy. Diabetol Metab Syndr 2021; 13:72. [PMID: 34174955 PMCID: PMC8236153 DOI: 10.1186/s13098-021-00692-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. METHODS RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. CONCLUSION All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.
Collapse
Affiliation(s)
- Jie Yun
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinyu Ren
- Department of Encephalopathy, Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yufei Liu
- Department of Blood Purification, Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lijuan Dai
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liqun Song
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaopeng Ma
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shan Luo
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yexu Song
- Department of Science and Technology, Heilongjiang University of Chinese Medicine, No 26, Heping Road, Harbin, 150000, China.
| |
Collapse
|
24
|
Circular RNA circPVT1 Contributes to Doxorubicin (DXR) Resistance of Osteosarcoma Cells by Regulating TRIAP1 via miR-137. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7463867. [PMID: 33981772 PMCID: PMC8088374 DOI: 10.1155/2021/7463867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/25/2020] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
Background Chemoresistance is a major obstacle to the treatment of osteosarcoma patients. Circular RNA (circRNA) circPVT1 has been reported to be related to the doxorubicin (DXR) resistance in osteosarcoma. This study is designed to explore the role and mechanism of circPVT1 in the DXR resistance of osteosarcoma. Methods circPVT1, microRNA-137 (miR-137), and TP53-regulated inhibitor of apoptosis 1 (TRIAP1) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein levels of ATP-binding cassette, subfamily C, member 1 (ABCC1), multidrug resistance-associated protein 1 (MRP-1), cleaved- (c-) caspase-3, B-cell lymphoma-2 (Bcl-2), and TRIAP1 were examined by a western blot assay. Cell viability, proliferation, and apoptosis were detected by cell counting kit-8 (CCK-8), colony formation, and flow cytometry assays, severally. The binding relationship between miR-137 and circPVT1 or TRIAP1 was predicted by starbase 3.0 and then verified by dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The biological role of circPVT1 in osteosarcoma tumor growth and drug resistance was examined by the xenograft tumor model in vivo. Results. circPVT1 and TRIAP1 were highly expressed, and miR-137 was decreased in DXR-resistant osteosarcoma tissues and cells. Moreover, circPVT1 knockdown could boost DXR sensitivity by inhibiting DXR-caused proliferation and DXR-induced apoptosis in DXR-resistant osteosarcoma cells in vitro. The mechanical analysis discovered that circPVT1 acted as a sponge of miR-137 to regulate TRIAP1 expression. circPVT1 silencing increased the drug sensitivity of osteosarcoma in vivo. Conclusion. circPVT1 boosted DXR resistance of osteosarcoma cells partly by regulating the miR-137/TRIAP1 axis, hinting a promising therapeutic target for the osteosarcoma treatment.
Collapse
|
25
|
Ma X, Liu L. Knockdown of FAM225B inhibits the progression of the hypertrophic scar following glaucoma surgery by inhibiting autophagy. Mol Med Rep 2021; 23:204. [PMID: 33495826 PMCID: PMC7821338 DOI: 10.3892/mmr.2021.11843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
The formation of a hypertrophic scar (HS) may lead to failure of glaucoma surgery. Long non-coding RNAs (lncRNAs) are involved in the formation of HSs. Moreover, family with sequence similarity 225 member B (FAM225B) is upregulated in HS. However, the role of the lncRNA FAM225B in HS remains unknown. Thus, the present study aimed to investigate the function of FAM225B in HS. Scar fibroblasts were isolated from patients who had undergone glaucoma surgery. Western blotting was used to detect the expressions of Bax, Bcl-2, cleaved caspase 3, p62, ATG7 and Beclin 1, and reverse transcription-quantitative PCR (RT-qPCR) were conducted to determine the level of FAM225B in scar fibroblasts. Microtubule associated protein 1 light chain 3 α staining was performed to examine autophagosomes in scar fibroblasts. Furthermore, cell proliferation was evaluated via 5-ethynyl-2′-deoxyuridine staining. Flow cytometry was conducted to determine cell apoptosis and the levels of reactive oxygen species (ROS) in scar fibroblasts. The cell migratory ability was assessed using a Transwell assay. The results demonstrated that FAM225B knockdown significantly attenuated scar fibroblast proliferation and induced apoptosis. Additionally, transfection of scar fibroblasts with FAM225B small interfering RNA (siRNA) significantly increased the ROS levels and significantly decreased the migration of scar fibroblasts. The FAM225B overexpression-induced increase of scar fibroblast proliferation and migration was significantly reversed by 3-methyladenine administration. The results suggested that knockdown of FAM225B significantly inhibited the proliferation of scar fibroblasts by inhibiting autophagy. Therefore, knockdown of FAM225B could inhibit scar fibroblast proliferation after glaucoma surgery by inhibiting autophagy. These findings may provide a novel perspective of developing treatment strategy for the patients with HSs after glaucoma surgery.
Collapse
Affiliation(s)
- Xianpeng Ma
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132001, P.R. China
| | - Lili Liu
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132001, P.R. China
| |
Collapse
|
26
|
Liu J, Yang L, Fu Q, Liu S. Emerging Roles and Potential Biological Value of CircRNA in Osteosarcoma. Front Oncol 2020; 10:552236. [PMID: 33251132 PMCID: PMC7673402 DOI: 10.3389/fonc.2020.552236] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are endogenous noncoding RNAs that are widely found in eukaryotic cells. They have been found to play a vital biological role in the development of human diseases. At present, circRNAs have been involved in the pathogenesis, diagnosis, and targeted treatment of multiple tumors. This article reviews the research progress of circRNAs in osteosarcoma (OSA) in recent years. The potential connection between circRNAs and OSA cell proliferation, apoptosis, metastasis, and chemotherapy sensitivity or resistance, as well as clinical values, is described in this review. Their categories and functions are generally summarized to facilitate a better understanding of OSA pathogenesis, and findings suggest novel circRNA-based methods may be used to investigate OSA and provide an outlook for viable biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiamei Liu
- Department of Pathology, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyu Yang
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengye Liu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
27
|
Wu D, Xia A, Fan T, Li G. circRASGRF2 functions as an oncogenic gene in hepatocellular carcinoma by acting as a miR-1224 sponge. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:13-26. [PMID: 33312757 PMCID: PMC7711184 DOI: 10.1016/j.omtn.2020.10.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs broadly expressed in cells of various species. However, the contributions and molecular mechanisms of circRNAs to hepatocellular carcinoma (HCC) remain largely unknown. In the present study, we compared the expression of circRNAs between five paired HCC and adjacent noncancerous liver (ANL) tissues by using RNA-sequencing (RNA-seq). circRASGRF2 (a circRNA located on chromosome 5 and derived from RASGRF2, hsa_circ_0073181) was identified and validated by quantitative reverse transcriptase PCR. The role of circRASGRF2 in HCC progression was assessed both in vitro and in vivo. Mechanistically, RNA immunoprecipitation and luciferase reporter assays were performed to confirm the interaction between circRASGRF2 and miR-1224 in HCC. circRASGRF2 was found to be significantly upregulated in HCC tissues and HCC cell lines compared with paired ANL tissues and normal cells. Our in vivo and in vitro data indicated that knockdown of circRASGRF2 inhibits the proliferation and migration of HCC cells. Mechanistically, we found that circRASGRF2 could promote the expression of focal adhesion kinase (FAK) by sponging miR-1224. Our data showed that circRASGRF2 is a central component linking circRNAs to progression of HCC, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Di Wu
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, P.R. China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, P.R. China
| | - Tianlong Fan
- Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Guoqiang Li
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, P.R. China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, P.R. China
| |
Collapse
|
28
|
Li Z, Li X, Xu D, Chen X, Li S, Zhang L, Chan MTV, Wu WKK. An update on the roles of circular RNAs in osteosarcoma. Cell Prolif 2020; 54:e12936. [PMID: 33103338 PMCID: PMC7791175 DOI: 10.1111/cpr.12936] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 01/17/2023] Open
Abstract
Osteosarcoma is the most common primary bone malignancy and is a neoplasm thought to be derived from the bone‐forming mesenchymal stem cells. Aberrant activation of oncogenes and inactivation of tumour suppressor genes by somatic mutations and epigenetic mechanisms play a pivotal pathogenic role in osteosarcoma. Aside from alterations in these protein‐coding genes, it has now been realized that dysregulation of non‐coding RNAs (ncRNAs), including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs) and the recently discovered circular RNAs (circRNAs), is crucial to the initiation and progression of osteosarcoma. CircRNAs are single‐stranded RNAs that form covalently closed loops and function as an important regulatory element of the genome through multiple machineries. Recently, an increasing number of studies suggested that circRNAs also played critical roles in osteosarcoma. This review summarizes recent development and progression in circRNA transcriptome analysis and their functions in the modulation of osteosarcoma progression.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Derong Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| |
Collapse
|
29
|
Song K, Liu N. A Zn(II)-based coordination polymer: Fluorescence sensing property and treatment effect on Osteosarcoma by inducing autophagic programed cancer cell death. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Liu P, Liu W, Gao H, Zhang Y, Yan M, Wang X. Circ0085539 Promotes Osteosarcoma Progression by Suppressing miR-526b-5p and PHLDA1 Axis. Front Oncol 2020; 10:1250. [PMID: 32983961 PMCID: PMC7479240 DOI: 10.3389/fonc.2020.01250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background: We have previously found that circ0085539/miR-526b-5p axis participated in the progression of osteosarcoma (OS). We have been interested in expanding the networking involving circ0085539 and miR-526-5p. We identified another critical downstream target of this axis, pleckstrin homology-like domain family A member 1 (PHLDA1), thus intending to uncover the interaction between the axis and PHLDA1. Methods: Live imaging of mice tumor xenografts was conducted. Immunohistochemistry (IHC) and H&E staining were performed for our in vivo experiment, while the CCK-8 assay, flow cytometry, wound healing, Transwell invasion, and clone formation were employed to assess cellular biological functions. Results: Circ0085539 was first found to be upregulated in osteosarcoma tissues and cell lines, and circ0085539 knockdown obviously suppressed proliferation and induced apoptosis. Subsequently, miR-526b-5p functionally attenuated the tumor suppressive effects induced by circ0106714 silencing on OS cells. PHLDA1 silencing significantly led to proliferation suppression, apoptosis induction, as well as the inhibition of migration, invasion, and colony formation capabilities in OS cells, which also could be restored by the miR-526b-5p inhibitor. Conclusion: Taken together, circ0085539 effectively promoted progression of osteosarcoma through sponging miR-526b-5p to release PHLDA1, strongly suggesting that in vivo intervention of circ0085539–miR-526b-5p–PHLDA1 axis could function as a promising OS-targeted therapy.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Wei Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Yuanding Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Ming Yan
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun City, China
| | - Xu Wang
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun City, China
| |
Collapse
|
31
|
Tu C, He J, Qi L, Ren X, Zhang C, Duan Z, Yang K, Wang W, Lu Q, Li Z. Emerging landscape of circular RNAs as biomarkers and pivotal regulators in osteosarcoma. J Cell Physiol 2020; 235:9037-9058. [PMID: 32452026 DOI: 10.1002/jcp.29754] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Osteosarcoma represents the most prevailing primary bone tumor and the third most common cancer in children and adolescents worldwide. Among noncoding RNAs, circular RNAs (circRNAs) refer to a unique class in the shape of a covalently closed continuous loop with neither 5' caps nor 3'-polyadenylated tails, which are generated through back-splicing. Recently, with the development of whole-genome and transcriptome sequencing technologies, a growing number of circRNAs have been found aberrantly expressed in multiple diseases, including osteosarcoma. circRNA are capable of various biological functions including miRNA sponge, mediating alternatives, regulating genes at posttranscriptional levels, and interacting with proteins, indicating a pivotal role of circRNA in cancer initiation, progression, chemoresistance, and immune response. Moreover, circRNAs have been thrust into the spotlight as potential biomarkers and therapeutic targets in osteosarcoma. Herein, we briefly summarize the origin and biogenesis of circRNA with current knowledge of circRNA in tumorigenesis of osteosarcoma, aiming to elucidate the specific role and clinical implication of circRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenghao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixi Duan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kexin Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Cristóbal I, Luque M, Sanz-Alvarez M, Rojo F, García-Foncillas J. Clinical Impact and Regulation of the circCAMSAP1/ miR-328-5p/E2F1 Axis in Colorectal Cancer. Mol Ther 2020; 28:1387-1388. [PMID: 32413279 DOI: 10.1016/j.ymthe.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| | - Melani Luque
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | | | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Jesús García-Foncillas
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| |
Collapse
|