1
|
Pacheco MP, Gerard D, Mangan RJ, Chapman AR, Hecker D, Kellis M, Schulz MH, Sinkkonen L, Sauter T. Epigenetic control of metabolic identity across cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604914. [PMID: 39091778 PMCID: PMC11291179 DOI: 10.1101/2024.07.24.604914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Constraint-based network modeling is a powerful genomic-scale approach for analyzing cellular metabolism, capturing metabolic variations across tissues and cell types, and defining the metabolic identity essential for identifying disease-associated transcriptional states. Results Using RNA-seq and epigenomic data from the EpiATLAS resource of the International Human Epigenome Consortium (IHEC), we reconstructed metabolic networks for 1,555 samples spanning 58 tissues and cell types. Analysis of these networks revealed the distribution of metabolic functionalities across human cell types and provides a compendium of human metabolic activity. This integrative approach allowed us to define, across tissues and cell types, i) reactions that fulfil the basic metabolic processes (core metabolism), and ii) cell type-specific functions (unique metabolism), that shape the metabolic identity of a cell or a tissue. Integration with EpiATLAS-derived cell-type-specific gene-level chromatin states and enhancer-gene interactions identified enhancers, transcription factors, and key nodes controlling core and unique metabolism. Transport and first reactions of pathways were enriched for high expression, active chromatin state, and Polycomb-mediated repression in cell types where pathways are inactive, suggesting that key nodes are targets of repression. Discussion This integrative analysis forms the basis for identifying regulation points that control metabolic identity in human cells.
Collapse
Affiliation(s)
- Maria Pires Pacheco
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Déborah Gerard
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Riley J. Mangan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
- Genetics Training Program, Harvard Medical School, Boston MA, 02115, USA
| | - Alec R. Chapman
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Dennis Hecker
- Institute for Computational Genomic Medicine and Institute of Cardiovascular Regeneration, Medical Faculty, Goethe University, 60590 Frankfurt am Main, German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Marcel H. Schulz
- Institute for Computational Genomic Medicine and Institute of Cardiovascular Regeneration, Medical Faculty, Goethe University, 60590 Frankfurt am Main, German Center for Cardiovascular Research, Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, 6, Avenue du Swing, L-4367 Belvaux, Luxembourg
| |
Collapse
|
2
|
Jiang H, Xue Z, Zhao L, Wang B, Wang C, Song H, Sun J. SPDEF drives pancreatic adenocarcinoma progression via transcriptional upregulation of S100A16 and activation of the PI3K/AKT signaling pathway. BIOMOLECULES & BIOMEDICINE 2024; 24:1231-1243. [PMID: 38520747 PMCID: PMC11379002 DOI: 10.17305/bb.2024.10346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a notably aggressive malignancy with limited treatment options and an unfavorable prognosis for patients. We aimed to investigate molecular mechanisms by which Sam's pointed domain-containing ETS transcription factor (SPDEF) exerts effects on PAAD progression. We analyzed differentially expressed genes (DEGs) and their integration with ETS family members using the The Cancer Genome Atlas (TCGA) database, hence identifying SPDEF as a core gene in PAAD. Kaplan-Meier survival analysis confirmed SPDEF's prognostic potential. In vitro experiments validated the association with cell proliferation and apoptosis, affecting pancreatic cancer cell dynamics. We detected increased SPDEF expression in PAAD tumor samples. Our in vitro studies revealed that SPDEF regulates mRNA and protein expression levels, and significantly affects cell proliferation. Moreover, SPDEF was associated with reduced apoptosis and enhanced cell migration and invasion. In-depth analysis of SPDEF-targeted genes revealed four crucial genes for advanced prognostic model, among which S100A16 was significantly correlated with SPDEF. Mechanistic analysis showed that SPDEF enhances the transcription of S100A16, which in turn enhances PAAD cell migration, proliferation, and invasion by activating the PI3K/AKT signaling pathway. Our study revealed the critical role of SPDEF in promoting PAAD by upregulating S100A16 transcription and stimulating the PI3K/AKT signaling pathway. This knowledge deepened our understanding of pancreatic cancer's molecular progression and unveiled potential therapeutic strategies targeting SPDEF-driven pathways.
Collapse
Affiliation(s)
- Hang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhiqian Xue
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Liping Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Boyuan Wang
- Shanghai Qibao Dwight High School, Shanghai, China
| | - Chenfei Wang
- Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haihan Song
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Immunology, DICAT Biomedical Computation Centre, Vancouver, BC, Canada
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jianjun Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
3
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
4
|
Li S, Zhang N, Yang Y, Liu T. Transcriptionally activates CCL28 expression to inhibit M2 polarization of macrophages and prevent immune escape in colorectal cancer cells. Transl Oncol 2024; 40:101842. [PMID: 38035446 PMCID: PMC10698578 DOI: 10.1016/j.tranon.2023.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the potential molecular mechanism of SPDEF in immune evasion of colorectal cancer (CRC) and examine its impact on macrophage M2 polarization using the TCGA and GEO databases. METHODS By combining TCGA and GEO databases, differential gene expression between CRC samples and standard tissue samples was analyzed to screen for immune-related genes (IRGs) associated with the prognosis of CRC patients. A predictive risk model was constructed based on 18 key IRGs, which were then validated using the GEO dataset. The relationship between transcription factors and IRGs was further explored to investigate their regulatory network in CRC. In vivo and in vitro experiments were carried out to validate these regulatory relationships and explore the function of SPDEF and CCL28 in CRC. RESULTS Twelve key IRGs associated with clinical and pathological characteristics of CRC patients were identified. Among them, CCL28 significantly impacted macrophage infiltration in CRC cells and may be a critical factor in immune evasion. In both in vitro and in vivo experiments, overexpression of SPDEF upregulated CCL28 expression, thereby suppressing M2 polarization of macrophages and inhibiting CRC cell proliferation and tumor growth. Notably, interference with CCL28 could reverse the effect of SPDEF overexpression. CONCLUSION SPDEF can suppress immune evasion of CRC cells by activating CCL28, which is achieved through the modulation of M2 polarization of macrophages. This provides a new research direction and potential therapeutic target for immunotherapy in CRC.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Nan Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Yongping Yang
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Tongjun Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
5
|
Ortiz JR, Lewis SM, Ciccone M, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-Cell Transcription Mapping of Murine and Human Mammary Organoids Responses to Female Hormones. J Mammary Gland Biol Neoplasia 2024; 29:3. [PMID: 38289401 PMCID: PMC10827859 DOI: 10.1007/s10911-023-09553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
Affiliation(s)
| | - Steven M Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michael Ciccone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | - Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Adam Siepel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | |
Collapse
|
6
|
Ortiz JR, Lewis SM, Ciccone MF, Chatterjee D, Henry S, Siepel A, Dos Santos CO. Single-cell transcription mapping of murine and human mammary organoids responses to female hormones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559971. [PMID: 37808747 PMCID: PMC10557705 DOI: 10.1101/2023.09.28.559971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During female adolescence and pregnancy, rising levels of hormones result in a cyclic source of signals that control the development of mammary tissue. While such alterations are well understood from a whole-gland perspective, the alterations that such hormones bring to organoid cultures derived from mammary glands have yet to be fully mapped. This is of special importance given that organoids are considered suitable systems to understand cross species breast development. Here we utilized single-cell transcriptional profiling to delineate responses of murine and human normal breast organoid systems to female hormones across evolutionary distinct species. Collectively, our study represents a molecular atlas of epithelial dynamics in response to estrogen and pregnancy hormones.
Collapse
|
7
|
Xu D, Forbes AN, Cohen S, Palladino A, Karadimitriou T, Khurana E. Recapitulation of patient-specific 3D chromatin conformation using machine learning. CELL REPORTS METHODS 2023; 3:100578. [PMID: 37673071 PMCID: PMC10545938 DOI: 10.1016/j.crmeth.2023.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 04/05/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Regulatory networks containing enhancer-gene edges define cellular states. Multiple efforts have revealed these networks for reference tissues and cell lines by integrating multi-omics data. However, the methods developed cannot be applied for large patient cohorts due to the infeasibility of chromatin immunoprecipitation sequencing (ChIP-seq) for limited biopsy material. We trained machine-learning models using chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) and high-throughput chromosome conformation capture combined with chromatin immunoprecipitation (HiChIP) data that can predict connections using only assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq data as input, which can be generated from biopsies. Our method overcomes limitations of correlation-based approaches that cannot distinguish between distinct target genes of given enhancers or between active vs. poised states in different samples, a hallmark of network rewiring in cancer. Application of our model on 371 samples across 22 cancer types revealed 1,780 enhancer-gene connections for 602 cancer genes. Using CRISPR interference (CRISPRi), we validated enhancers predicted to regulate ESR1 in estrogen receptor (ER)+ breast cancer and A1CF in liver hepatocellular carcinoma.
Collapse
Affiliation(s)
- Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andre Neil Forbes
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ann Palladino
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Piryaei Z, Salehi Z, Ebrahimie E, Ebrahimi M, Kavousi K. Meta-analysis of integrated ChIP-seq and transcriptome data revealed genomic regions affected by estrogen receptor alpha in breast cancer. BMC Med Genomics 2023; 16:219. [PMID: 37715225 PMCID: PMC10503144 DOI: 10.1186/s12920-023-01655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND The largest group of patients with breast cancer are estrogen receptor-positive (ER+) type. The estrogen receptor acts as a transcription factor and triggers cell proliferation and differentiation. Hence, investigating ER-DNA interaction genomic regions can help identify genes directly regulated by ER and understand the mechanism of ER action in cancer progression. METHODS In the present study, we employed a workflow to do a meta-analysis of ChIP-seq data of ER+ cell lines stimulated with 10 nM and 100 nM of E2. All publicly available data sets were re-analyzed with the same platform. Then, the known and unknown batch effects were removed. Finally, the meta-analysis was performed to obtain meta-differentially bound sites in estrogen-treated MCF7 cell lines compared to vehicles (as control). Also, the meta-analysis results were compared with the results of T47D cell lines for more precision. Enrichment analyses were also employed to find the functional importance of common meta-differentially bound sites and associated genes among both cell lines. RESULTS Remarkably, POU5F1B, ZNF662, ZNF442, KIN, ZNF410, and SGSM2 transcription factors were recognized in the meta-analysis but not in individual studies. Enrichment of the meta-differentially bound sites resulted in the candidacy of pathways not previously reported in breast cancer. PCGF2, HNF1B, and ZBED6 transcription factors were also predicted through the enrichment analysis of associated genes. In addition, comparing the meta-analysis results of both ChIP-seq and RNA-seq data showed that many transcription factors affected by ER were up-regulated. CONCLUSION The meta-analysis of ChIP-seq data of estrogen-treated MCF7 cell line leads to the identification of new binding sites of ER that have not been previously reported. Also, enrichment of the meta-differentially bound sites and their associated genes revealed new terms and pathways involved in the development of breast cancer which should be examined in future in vitro and in vivo studies.
Collapse
Affiliation(s)
- Zeynab Piryaei
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish, Iran
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Zahra Salehi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Mansour Ebrahimi
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Li J, Wan X, Xie D, Yuan H, Pei Q, Luo Y, Chen Y, Xian J, Ye T. SPDEF enhances cancer stem cell-like properties and tumorigenesis through directly promoting GALNT7 transcription in luminal breast cancer. Cell Death Dis 2023; 14:569. [PMID: 37633945 PMCID: PMC10460425 DOI: 10.1038/s41419-023-06098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Luminal breast cancer (BC) is the predominant subtype of breast cancer with a sustained risk of late recurrence and death. Understanding the molecular mechanisms for the oncogenesis of luminal BC would improve the prognosis for this large subset of patients. SPDEF was reported to be dysregulated in breast cancers. However, the biological functions and underlying molecular mechanism of SPDEF in luminal BC remains largely unknown. The aim of the present study was to elucidate the potential roles of SPDEF underlying subtype-specific functions in BC, especially in luminal subtypes. METHODS The expressions and clinicopathological characteristics of SPDEF in luminal BC patients were evaluated bioinformatically. In vitro and in vivo assays were performed to investigate the oncogenic function and stemness maintenance of SPDEF in luminal BC. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were conducted to determine the transcription regulation of GALNT7 by SPDEF. GALNT7 levels in serum from luminal BC patients were further detected by enzyme-linked immunosorbent assay (ELISA). RESULTS SPDEF is markedly upregulated in luminal BC and positively associated with tumor progression and poor prognosis. Furthermore, we confirmed that SPDEF enhanced the proliferation, migration, invasion and stemness of luminal BC cells in vitro as well the tumorigenicity in vivo. Mechanistically, we demonstrated the stimulative effect of SPDEF on the progression and stemness of luminal BC, which is mediated by its directly transcriptional target GALNT7. Clinically, we verified that the GALNT7 can be used as a noninvasive diagnostic marker. Noteworthy, the combined detection of serum GALNT7 and traditional tumor markers can enhance diagnostic accuracy thus is of vital importance in the early diagnosis of luminal BC. CONCLUSIONS Our study reveals a novel mechanism by which SPDEF transcriptionally activates GALNT7 via directly binding to its promoter to promote cell proliferation, motility and stemness, and led to luminal BC tumorigenesis and poor prognosis.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, P. R. China
| | - Xue Wan
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, P. R. China
| | - Dan Xie
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, P. R. China
| | - Hui Yuan
- Department of Pathophysiology, Mudanjiang Medical University, Heilongjiang, 157011, P. R. China
| | - Qin Pei
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, P. R. China
| | - Yanan Luo
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, P. R. China
| | - Yiyu Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, P. R. China
| | - Jiawen Xian
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, P. R. China
| | - Ting Ye
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan, 646000, P. R. China.
| |
Collapse
|
10
|
Tuano NK, Beesley J, Manning M, Shi W, Perlaza-Jimenez L, Malaver-Ortega LF, Paynter JM, Black D, Civitarese A, McCue K, Hatzipantelis A, Hillman K, Kaufmann S, Sivakumaran H, Polo JM, Reddel RR, Band V, French JD, Edwards SL, Powell DR, Chenevix-Trench G, Rosenbluh J. CRISPR screens identify gene targets at breast cancer risk loci. Genome Biol 2023; 24:59. [PMID: 36991492 PMCID: PMC10053147 DOI: 10.1186/s13059-023-02898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified > 200 loci associated with breast cancer risk. The majority of candidate causal variants are in non-coding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association, and identifying the phenotype it mediates, is a major challenge in the interpretation and translation of GWAS. RESULTS Here, we show that pooled CRISPR screens are highly effective at identifying GWAS target genes and defining the cancer phenotypes they mediate. Following CRISPR mediated gene activation or suppression, we measure proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We perform 60 CRISPR screens and identify 20 genes predicted with high confidence to be GWAS targets that promote cancer by driving proliferation or modulating the DNA damage response in breast cells. We validate the regulation of a subset of these genes by breast cancer risk variants. CONCLUSIONS We demonstrate that phenotypic CRISPR screens can accurately pinpoint the gene target of a risk locus. In addition to defining gene targets of risk loci associated with increased breast cancer risk, we provide a platform for identifying gene targets and phenotypes mediated by risk variants.
Collapse
Affiliation(s)
- Natasha K Tuano
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jonathan Beesley
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Murray Manning
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Functional Genomics Platform, Monash University, Clayton, VIC, Australia
| | - Wei Shi
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Laura Perlaza-Jimenez
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | | | - Jacob M Paynter
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Debra Black
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew Civitarese
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karen McCue
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Aaron Hatzipantelis
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kristine Hillman
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanne Kaufmann
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Haran Sivakumaran
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juliet D French
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stacey L Edwards
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - David R Powell
- Bioinformatics Platform, Monash University, Clayton, VIC, Australia
| | | | - Joseph Rosenbluh
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Functional Genomics Platform, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
11
|
Garcia G, Bar‐Ziv R, Averbukh M, Dasgupta N, Dutta N, Zhang H, Fan W, Moaddeli D, Tsui CK, Castro Torres T, Alcala A, Moehle EA, Hoang S, Shalem O, Adams PD, Thorwald MA, Higuchi‐Sanabria R. Large-scale genetic screens identify BET-1 as a cytoskeleton regulator promoting actin function and life span. Aging Cell 2023; 22:e13742. [PMID: 36404134 PMCID: PMC9835578 DOI: 10.1111/acel.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022] Open
Abstract
The actin cytoskeleton is a three-dimensional scaffold of proteins that is a regulatory, energyconsuming network with dynamic properties to shape the structure and function of the cell. Proper actin function is required for many cellular pathways, including cell division, autophagy, chaperone function, endocytosis, and exocytosis. Deterioration of these processes manifests during aging and exposure to stress, which is in part due to the breakdown of the actin cytoskeleton. However, the regulatory mechanisms involved in preservation of cytoskeletal form and function are not well-understood. Here, we performed a multipronged, cross-organismal screen combining a whole-genome CRISPR-Cas9 screen in human fibroblasts with in vivo Caenorhabditis elegans synthetic lethality screening. We identified the bromodomain protein, BET-1, as a key regulator of actin function and longevity. Overexpression of bet-1 preserves actin function at late age and promotes life span and healthspan in C. elegans. These beneficial effects are mediated through actin preservation by the transcriptional regulator function of BET-1. Together, our discovery assigns a key role for BET-1 in cytoskeletal health, highlighting regulatory cellular networks promoting cytoskeletal homeostasis.
Collapse
Affiliation(s)
- Gilberto Garcia
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Raz Bar‐Ziv
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Maxim Averbukh
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Nirmalya Dasgupta
- Aging, Cancer and Immuno‐oncology ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Naibedya Dutta
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hanlin Zhang
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Wudi Fan
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Darius Moaddeli
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - C. Kimberly Tsui
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Toni Castro Torres
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Athena Alcala
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Erica A. Moehle
- Department of Molecular & Cellular Biology, Howard Hughes Medical InstituteThe University of California, BerkeleyBerkeleyCaliforniaUSA
| | - Sally Hoang
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ophir Shalem
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Peter D. Adams
- Aging, Cancer and Immuno‐oncology ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Max A. Thorwald
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Ryo Higuchi‐Sanabria
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
Lee S, Osmanbeyoglu HU. Chromatin accessibility landscape and active transcription factors in primary human invasive lobular and ductal breast carcinomas. BREAST CANCER RESEARCH : BCR 2022; 24:54. [PMID: 35906698 PMCID: PMC9338552 DOI: 10.1186/s13058-022-01550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Invasive lobular breast carcinoma (ILC), the second most prevalent histological subtype of breast cancer, exhibits unique molecular features compared with the more common invasive ductal carcinoma (IDC). While genomic and transcriptomic features of ILC and IDC have been characterized, genome-wide chromatin accessibility pattern differences between ILC and IDC remain largely unexplored. METHODS Here, we characterized tumor-intrinsic chromatin accessibility differences between ILC and IDC using primary tumors from The Cancer Genome Atlas (TCGA) breast cancer assay for transposase-accessible chromatin with sequencing (ATAC-seq) dataset. RESULTS We identified distinct patterns of genome-wide chromatin accessibility in ILC and IDC. Inferred patient-specific transcription factor (TF) motif activities revealed regulatory differences between and within ILC and IDC tumors. EGR1, RUNX3, TP63, STAT6, SOX family, and TEAD family TFs were higher in ILC, while ATF4, PBX3, SPDEF, PITX family, and FOX family TFs were higher in IDC. CONCLUSIONS This study reveals the distinct epigenomic features of ILC and IDC and the active TFs driving cancer progression that may provide valuable information on patient prognosis.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA
| | - Hatice Ulku Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, USA. .,Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, USA. .,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA. .,Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
13
|
Zhou Y, Che Y, Fu Z, Zhang H, Wu H. Triple-Negative Breast Cancer Analysis Based on Metabolic Gene Classification and Immunotherapy. Front Public Health 2022; 10:902378. [PMID: 35875026 PMCID: PMC9296841 DOI: 10.3389/fpubh.2022.902378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) has negative expression of ER, PR and HER-2. TNBC shows high histological grade and positive rate of lymph node metastasis, easy recurrence and distant metastasis. Molecular typing based on metabolic genes can reflect deeper characteristics of breast cancer and provide support for prognostic evaluation and individualized treatment. Metabolic subtypes of TNBC samples based on metabolic genes were determined by consensus clustering. CIBERSORT method was applied to evaluate the score distribution and differential expression of 22 immune cells in the TNBC samples. Linear discriminant analysis (LDA) established a subtype classification feature index. Kaplan-Meier (KM) and receiver operating characteristic (ROC) curves were generated to validate the performance of prognostic metabolic subtypes in different datasets. Finally, we used weighted correlation network analysis (WGCNA) to cluster the TCGA expression profile dataset and screen the co-expression modules of metabolic genes. Consensus clustering of the TCGA cohort/dataset obtained three metabolic subtypes (MC1, MC2, and MC3). The ROC analysis showed a high prognostic performance of the three clusters in different datasets. Specifically, MC1 had the optimal prognosis, MC3 had a poor prognosis, and the three metabolic subtypes had different prognosis. Consistently, the immune characteristic index established based on metabolic subtypes demonstrated that compared with the other two subtypes, MC1 had a higher IFNγ score, T cell lytic activity and lower angiogenesis score, T cell dysfunction and rejection score. TIDE analysis showed that MC1 patients were more likely to benefit from immunotherapy. MC1 patients were more sensitive to immune checkpoint inhibitors and traditional chemotherapy drugs Cisplatin, Paclitaxel, Embelin, and Sorafenib. Multiclass AUC based on RNASeq and GSE datasets were 0.85 and 0.85, respectively. Finally, based on co-expression network analysis, we screened 7 potential gene markers related to metabolic characteristic index, of which CLCA2, REEP6, SPDEF, and CRAT can be used to indicate breast cancer prognosis. Molecular classification related to TNBC metabolism was of great significance for comprehensive understanding of the molecular pathological characteristics of TNBC, contributing to the exploration of reliable markers for early diagnosis of TNBC and predicting metastasis and recurrence, improvement of the TNBC staging system, guiding individualized treatment.
Collapse
Affiliation(s)
- Yu Zhou
- Oncology Department, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Yingqi Che
- Hematology-Oncology Department, Long Nan Hospital, Daqing, China
| | - Zhongze Fu
- Gastroenterology Department, The First Hospital of Qiqihar, Qiqihar, China
| | - Henan Zhang
- Oncology Department, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Huiyu Wu
- Third Department of Oncology, People's Hospital of Daqing, Daqing, China
- *Correspondence: Huiyu Wu
| |
Collapse
|
14
|
Nadolny C, Zhang X, Chen Q, Hashmi SF, Ali W, Hemme C, Ahsan N, Chen Y, Deng R. Dysregulation and activities of ubiquitin specific peptidase 2b in the pathogenesis of hepatocellular carcinoma. Am J Cancer Res 2021; 11:4746-4767. [PMID: 34765291 PMCID: PMC8569343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023] Open
Abstract
Ubiquitin specific peptidase-2 (USP2) plays important roles in a myriad of cellular activities through deubiquitinating target proteins and its implications in various diseases, especially cancers, are starting to emerge. Our current understanding on USP2 expression in subjects with hepatocellular carcinoma (HCC) and its roles in the pathogenesis of HCC is limited. In this study, we found that USP2 protein and mRNA levels were significantly dysregulated in HCC tumor (HCC-T) when compared to adjacent non-tumor (HCC-NT) or normal liver tissues from both human and mouse HCC model. Among the USP2 isoforms, USP2b was the predominant isoform in the normal liver and markedly down-regulated in HCC-T tissues in both human and mice. Data from overexpression, chemical inhibition and knockout studies consistently demonstrated that USP2b promoted cell proliferation, colony formation and wound healing in HepG2 and Huh 7 cells. On the other hand, USP2b exhibited proapoptotic and pronecrtotic activities through enhancing bile acid-induced apoptosis and necrosis in both HepG2 and Huh 7 cells. Unbiased proteomic analysis of USP2-knockout (KO) and parental HepG2 cells resulted in identification of USP2-regulated downstream target proteins involved in cell proliferation, apoptosis, and tumorigenesis, including serine/threonine kinase 4 (STK4), epidermal growth factor receptor (EGFR), dipeptidyl peptidase 4 (DPP4) and fatty acid binding protein 1 (FABP1). In conclusion, USP2b expression was dysregulated in subjects with HCC and contributed to the pathogenesis of HCC by promoting cell proliferation and exerting proapoptotic and pronecrotic activities. The findings provide the molecular basis for developing therapies for HCC through modulating USP2b expression or activities.
Collapse
Affiliation(s)
- Christina Nadolny
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island7 Greenhouse Road, Kingston, RI 02881, USA
| | - Xinmu Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island7 Greenhouse Road, Kingston, RI 02881, USA
| | - Qiwen Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island7 Greenhouse Road, Kingston, RI 02881, USA
| | - Syed F Hashmi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island7 Greenhouse Road, Kingston, RI 02881, USA
| | - Winifer Ali
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island7 Greenhouse Road, Kingston, RI 02881, USA
| | - Christopher Hemme
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island7 Greenhouse Road, Kingston, RI 02881, USA
| | - Nagib Ahsan
- COBRE Center for Cancer Research Development, Proteomics Core Facility, Rhode Island HospitalProvidence, RI 02903, USA
- Division of Biology and Medicine, Brown UniversityProvidence, RI 02903, USA
- Department of Chemistry and Biochemistry, University of Oklahoma101 Stephenson Parkway, Norman, OK 73019, USA
| | - Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island7 Greenhouse Road, Kingston, RI 02881, USA
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island7 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
15
|
Ye T, Li J, Feng J, Guo J, Wan X, Xie D, Liu J. The subtype-specific molecular function of SPDEF in breast cancer and insights into prognostic significance. J Cell Mol Med 2021; 25:7307-7320. [PMID: 34191390 PMCID: PMC8335683 DOI: 10.1111/jcmm.16760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is a molecular diverse disease which becomes the most common malignancy among women worldwide. There are four BC subtypes (Luminal A, Luminal B, HER2‐enriched and Basal‐like) robustly established following gene expression pattern‐based characterization, behave significant differences in terms of their incidence, risk factors, prognosis and therapeutic sensitivity. Thus, there is an urgent need to provide mechanism research, treatment strategies and/or prognosis evaluation based on the patient stratification of BC subtypes. The prostate‐derived ETS factor SPDEF was first identified as an activator of prostate specific antigen, and then, the involvements in many aspects of BC have been proposed. However, the subtype‐specific molecular function of SPDEF in BC and insights into prognostic significance have not been clearly elucidated. This study demonstrated for the first time that SPDEF may play a diversity role in the expression levels, clinicopathologic importance, biological function and prognostic evaluation in BC via bioinformatics and experimental evidence, which mainly depends on different BC subtyping. In summary, our findings would help to better understand the possible mechanisms of various BC subtypes and to find possible candidate genes for prognostic and therapeutic usage.
Collapse
Affiliation(s)
- Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jinglan Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|