1
|
Gasparri R, Papale M, Sabalic A, Catalano V, Deleonardis A, De Luca F, Ranieri E, Spaggiari L. Circulating RKIP and pRKIP in Early-Stage Lung Cancer: Results from a Pilot Study. J Clin Med 2024; 13:5830. [PMID: 39407890 PMCID: PMC11476948 DOI: 10.3390/jcm13195830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Lung cancer (LC) is the leading cause of cancer-related deaths. Although low-dose computed tomography (LD-CT) reduces mortality, its clinical use is limited by cost, radiation, and false positives. Therefore, there is an urgent need for non-invasive and cost-effective biomarkers. The Raf Kinase Inhibitor Protein (RKIP) plays a crucial role in cancer development and progression and may also contribute to regulating the tumor-immune system axis. This protein has recently been described in biological fluids. Therefore, we conducted a pilot case-control study to assess RKIP and phosphorylated RKIP (pRKIP) levels in the urine and blood of LC patients. Methods: A novel enzyme linked immunosorbent assay (ELISA) assay was used to measure RKIP and pRKIP levels in urine and blood samples of two cohorts of LC patients and healthy controls (HSs). Furthermore, the biomarkers levels were correlated with tumor characteristics. Results: Serum, but not urine, levels of RKIP were significantly elevated in LC patients, distinguishing them from low- and high-risk healthy subjects with 93% and 74% accuracy, respectively. The RKIP/pRKIP ratio (RpR score) showed an accuracy of 90% and 79% in distinguishing LC patients from HS and HR-HS, respectively. Additionally, the RpR score correlated better with dimension, stage, and lymph node involvement in the tumor group. Conclusions: The serum RKIP and pRKIP profile may be a promising novel biomarker for early-stage LC.
Collapse
Affiliation(s)
- Roberto Gasparri
- Department of Thoracic Surgery, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy; (R.G.); (L.S.)
| | - Massimo Papale
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Foggia”, 71122 Foggia, Italy
| | - Angela Sabalic
- Department of Thoracic Surgery, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy; (R.G.); (L.S.)
| | - Valeria Catalano
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (V.C.); (F.D.L.); (E.R.)
| | - Annamaria Deleonardis
- Nephrology, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70121 Bari, Italy;
- R&D Unit, Fluidia s.r.l., 71122 Foggia, Italy
| | - Federica De Luca
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (V.C.); (F.D.L.); (E.R.)
| | - Elena Ranieri
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, Viale Luigi Pinto, 71122 Foggia, Italy; (V.C.); (F.D.L.); (E.R.)
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy; (R.G.); (L.S.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| |
Collapse
|
2
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Fuloria S, Sekar M, Abida. Non-coding RNAs: Emerging biomarkers and therapeutic targets in ulcerative colitis. Pathol Res Pract 2024; 253:155037. [PMID: 38160482 DOI: 10.1016/j.prp.2023.155037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, Bedong 08100, Kedah, Malaysia
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
4
|
Braga EA, Fridman MV, Burdennyy AM, Loginov VI, Dmitriev AA, Pronina IV, Morozov SG. Various LncRNA Mechanisms in Gene Regulation Involving miRNAs or RNA-Binding Proteins in Non-Small-Cell Lung Cancer: Main Signaling Pathways and Networks. Int J Mol Sci 2023; 24:13617. [PMID: 37686426 PMCID: PMC10487663 DOI: 10.3390/ijms241713617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial players in the pathogenesis of non-small-cell lung cancer (NSCLC). A competing binding of lncRNAs and mRNAs with microRNAs (miRNAs) is one of the most common mechanisms of gene regulation by lncRNAs in NSCLC, which has been extensively researched in the last two decades. However, alternative mechanisms that do not depend on miRNAs have also been reported. Among them, the most intriguing mechanism is mediated by RNA-binding proteins (RBPs) such as IGF2BP1/2/3, YTHDF1, HuR, and FBL, which increase the stability of target mRNAs. IGF2BP2 and YTHDF1 may also be involved in m6A modification of lncRNAs or target mRNAs. Some lncRNAs, such as DLGAP1-AS2, MALAT1, MNX1-AS1, and SNHG12, are involved in several mechanisms depending on the target: lncRNA/miRNA/mRNA interactome and through RBP. The target protein sets selected here were then analyzed using the DAVID database to identify the pathways overrepresented by KEGG, Wikipathways, and the Reactome pathway. Using the STRING website, we assessed interactions between the target proteins and built networks. Our analysis revealed that the JAK-STAT and Hippo signaling pathways, cytokine pathways, the VEGFA-VEGFR2 pathway, mechanisms of cell cycle regulation, and neovascularization are the most relevant to the effect of lncRNA on NSCLC.
Collapse
Affiliation(s)
- Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (A.M.B.); (V.I.L.); (I.V.P.); (S.G.M.)
| |
Collapse
|
5
|
Yang R, Han J, Zhao S. LINC01082 Inhibits Non-Small Cell Lung Cancer by Targeting the miR-543/TNRC6A Axis. Biochem Genet 2023; 61:1585-1605. [PMID: 36719626 DOI: 10.1007/s10528-022-10313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/09/2022] [Indexed: 02/01/2023]
Abstract
Non-small cell lung cancer (NSCLC) accounts for over 80% of lung cancer cases and have poor clinical outcomes. Increasing number of lncRNAs are reported to be implicated in the carcinogenesis of NSCLC. Previous lncRNA-seq results showed that LINC01082 was under-expressed in several cancer types. In the current study, we focused on the role of LINC01082 in NSCLC development. An online bioinformatics tool was utilized to assess the expression profile of LINC01082, miR-543, and TNRC6A in NSCLC samples. RT-qPCR analysis was performed for evaluating LINC01082, TNRC6A and miR-543 expression in cells (NSCLC cells vs. normal lung cells). Impact of LINC01082 upregulation on cell proliferation in vitro was investigated by MTT and EdU experiments. Transwell assay was applied to analyze the migration and invasion of NSCLC cells. The cell apoptosis after plasmid transfection was detected by flow cytometry. The interactions among LINC01082, miR-543 and TNRC6A were measured by RNA pulldown and luciferase reporter assays. We showed that LINC01082 levels were downregulated in NSCLC samples and NSCLC cells. Overexpression of LINC01082 inhibited NSCLC cell proliferation, migration and invasion and strengthened cell apoptosis. LINC01082 directly bound to miR-543, and miR-543 targeted TNRC6A. TNRC6A was downregulated and miR-543 was overexpressed in NSCLC cells. miR-543 inhibition suppressed malignant cellular behaviors. TNRC6A knockdown reversed the effects of LINC01082 on the malignant character of NSCLC cells. In conclusion, LINC01082 exerts an antioncogenic role in NSCLC via interaction with miR-543 to regulate TNRC6A expression.
Collapse
Affiliation(s)
- Ran Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- Department of Thoracic Surgery, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, No. 1 Huanbin North Road, Anyang, 455003, Henan, China
| | - Jinli Han
- Department of Clinical Laboratory, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospita of Henan University of Science and Technology, No. 1 Huanbin North Road, Anyang, 455003, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Netrin-1 Stimulates Migration of Neogenin Expressing Aggressive Melanoma Cells. Int J Mol Sci 2022; 23:ijms232112751. [DOI: 10.3390/ijms232112751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Netrin-1 is a neural guidance factor that regulates migration and positioning of neural crest-derived cells during embryonic development. Depending on the type of Netrin-1 receptor expression, cells are either attracted or repulsed by Netrin-1. Postnatal expression of Netrin-1 is detected in brain, colon, liver, and kidney, which are common sites of cancer metastasis, including melanoma. Thus, understanding the dynamics between Netrin-1 and its receptors could explain the attraction of melanoma towards these Netrin-1-expressing tissues. Here, we investigate whether the Netrin-1-attractive receptor Neogenin can affect migration of melanoma cells towards a Netrin-1 source. Results from Western blot (WB) analysis show higher expression of Neogenin in aggressive compared to non-aggressive melanoma cells. Cell migration experiments show increased migration of Neogenin-expressing aggressive melanoma cells towards exogenous, soluble recombinant human Netrin-1 and towards a Netrin-1-expressing cell line. Furthermore, WB reveals ERK1/2 activation and increased N-cadherin expression in Neogenin-expressing aggressive melanoma cells treated with rhNetrin-1. Moreover, treatment with anti-Neogenin blocking antibody caused decreased migration towards Netrin-1-expressing cells and reduced ERK1/2 activity in Neogenin-expressing aggressive melanoma cells. These results suggest Neogenin may play a role during migration of melanoma cells towards Netrin-1 via ERK1/2 signaling.
Collapse
|
7
|
Papale M, Netti GS, Stallone G, Ranieri E. Understanding Mechanisms of RKIP Regulation to Improve the Development of New Diagnostic Tools. Cancers (Basel) 2022; 14:cancers14205070. [PMID: 36291854 PMCID: PMC9600137 DOI: 10.3390/cancers14205070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Raf Kinase Inhibitor protein is a protein that governs multiple intracellular signalling involved primarily in the progression of tumours and the development of metastases. In this review, we discussed the main mechanisms that regulate the expression and activity of RKIP with the aim of identifying the link between the transcriptional, post-transcriptional and post-translational events in different tumour settings. We also tried to analyse the studies that have measured the levels of RKIP in biological fluids in order to highlight the possible advantages and potential of RKIP assessment to obtain an accurate diagnosis and prognosis of various tumours. Abstract One of the most dangerous aspects of cancer cell biology is their ability to grow, spread and form metastases in the main vital organs. The identification of dysregulated markers that drive intracellular signalling involved in the malignant transformation of neoplastic cells and the understanding of the mechanisms that regulate these processes is undoubtedly a key objective for the development of new and more targeted therapies. RAF-kinase inhibitor protein (RKIP) is an endogenous tumour suppressor protein that affects tumour cell survival, proliferation, and metastasis. RKIP might serve as an early tumour biomarker since it exhibits significantly different expression levels in various cancer histologies and it is often lost during metastatic progression. In this review, we discuss the specific impact of transcriptional, post-transcriptional and post-translational regulation of expression and activation/inhibition of RKIP and focus on those tumours for which experimental data on all these factors are available. In this way, we could select how these processes cooperate with RKIP expression in (1) Lung cancer; (2) Colon cancer, (3) Breast cancer; (4) myeloid neoplasm and Multiple Myeloma, (5) Melanoma and (6) clear cell Renal Cell Carcinoma. Furthermore, since RKIP seems to be a key marker of the development of several tumours and it may be assessed easily in various biological fluids, here we discuss the potential role of RKIP dosing in more accessible biological matrices other than tissues. Moreover, this objective may intercept the still unmet need to identify new and more accurate markers for the early diagnosis and prognosis of many tumours.
Collapse
Affiliation(s)
- Massimo Papale
- Unit of Clinical Pathology, Department of Laboratory Diagnostics, University Hospital “Policlinico Foggia”, 71122 Foggia, Italy
- Correspondence:
| | - Giuseppe Stefano Netti
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Center for Molecular Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Unit of Nephology, Dialysis and Transplantation, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
8
|
Cessna H, Baritaki S, Zaravinos A, Bonavida B. The Role of RKIP in the Regulation of EMT in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14194596. [PMID: 36230521 PMCID: PMC9559516 DOI: 10.3390/cancers14194596] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Raf kinase inhibitor protein (RKIP) expression in cancer cells is significantly reduced and promoting cancer cells growth and invasiveness. Overexpresssion of RKIP has been reported to mediate pleiotropic anti-cancer activities including the inhibition of survival signaling pathways, sensitization to cell death by cytotoxic drugs, inhibition of invasion, EMT and metastasis. The molecular mechanism by which RKIP inhibits EMT is not clear. In this review, we have examined how RKIP inhibits the selected EMT gene products (Snail, vimentin, N-cadherin, laminin alpha) and found that it involves signaling cross-talks between RKIP and each of the EMT gene products. These findings were validated by bioinformatic analyses demonstrating in various human cancers a negative correlation between the expression of RKIP and the expression of the EMT gene products. These findings suggest that targeting RKIP induction in cancer cells will result in multiple hits by inhibiting tumor growth, metastasis and reversal of chemo-immuno resistance. Abstract The Raf Kinase Inhibitor Protein (RKIP) is a unique gene product that directly inhibits the Raf/Mek/Erk and NF-kB pathways in cancer cells and resulting in the inhibition of cell proliferation, viability, EMT, and metastasis. Additionally, RKIP is involved in the regulation of cancer cell resistance to both chemotherapy and immunotherapy. The low expression of RKIP expression in many cancer types is responsible, in part, for the pathogenesis of cancer and its multiple properties. The inhibition of EMT and metastasis by RKIP led to its classification as a tumor suppressor. However, the mechanism by which RKIP mediates its inhibitory effects on EMT and metastases was not clear. We have proposed that one mechanism involves the negative regulation by RKIP of the expression of various gene products that mediate the mesenchymal phenotype as well as the positive regulation of gene products that mediate the epithelial phenotype via signaling cross talks between RKIP and each gene product. We examined several EMT mesenchymal gene products such as Snail, vimentin, N-cadherin, laminin and EPCAM and epithelial gene products such as E-cadherin and laminin. We have found that indeed these negative and positive correlations were detected in the signaling cross-talks. In addition, we have also examined bioinformatic data sets on different human cancers and the findings corroborated, in large part, the findings observed in the signaling cross-talks with few exceptions in some cancer types. The overall findings support the underlying mechanism by which the tumor suppressor RKIP regulates the expression of gene products involved in EMT and metastasis. Hence, the development of agent that can selectively induce RKIP expression in cancers with low expressions should result in the activation of the pleiotropic anti-cancer activities of RKIP and resulting in multiple effects including inhibition of tumor cell proliferation, EMT, metastasis and sensitization of resistant tumor cells to respond to both chemotherapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Hannah Cessna
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Laboratory, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
9
|
Chen Q, Zhou H, Rong W. Circular RNA_0078767 upregulates Kruppel-like factor 9 expression by targeting microRNA-889, thereby inhibiting the progression of osteosarcoma. Bioengineered 2022; 13:14313-14328. [PMID: 35758280 PMCID: PMC9342251 DOI: 10.1080/21655979.2022.2084257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among kids and juveniles, osteosarcoma (OS) is a common bone malignancy. Circular RNAs (circs, circRNAs) play important roles in multiple malignancies including OS, yet circ_0078767ʹs biological functions in OS are far from well elucidated. This study is targeted at understanding circ_0078767ʹs biological functions in OS and its molecular mechanisms. This study confirmed that circ_0078767 expression was reduced in OS cell lines and tissues. Circ_0078767 overexpression remarkably inhibited OS cell growth, migration, invasion, epithelial-mesenchymal transition (EMT), and promoted apoptosis, whereas circ_0078767 knockdown resulted in the opposite effects. MicroRNA-889 (miR-889) was targeted and regulated by circ_0078767, and miR-889 could negatively modulate Kruppel-like factor 9 (KLF9) expression. Besides, circ_0078767 positively regulated KLF9 expression in OS cells via repressing miR-889. In conclusion, circ_0078767 enhances KLF9 expression by targeting miR-889 to inhibit OS progression.
Collapse
Affiliation(s)
- Qiu Chen
- Medical College, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Haishen Zhou
- Medical College, Yangzhou University, Yangzhou 225009, Jiangsu, China.,Department of Orthopedics, Lishui Hospital of Chinese Medicine Affiliated to Yangzhou University Medical College, Nanjing211299, Jiangsu, China
| | - Weihao Rong
- Department of Orthopedics, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing 211299, Jiangsu, China
| |
Collapse
|
10
|
Huang P, Zhu S, Liang X, Zhang Q, Liu C, Song L. Revisiting Lung Cancer Metastasis: Insight From the Functions of Long Non-coding RNAs. Technol Cancer Res Treat 2021; 20:15330338211038488. [PMID: 34431723 PMCID: PMC8392855 DOI: 10.1177/15330338211038488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Globally, lung cancer is the most common cause of cancer-related deaths. After
diagnosis at all stages, <7% of patients survive for 10 years. Thus,
diagnosis at later stages and the lack of effective and personalized drugs
reflect a significant need to better understand the mechanisms underpinning lung
cancer progression. Metastasis should be responsible for the high lethality and
recurrence rates seen in lung cancer. Metastasis depends on multiple crucial
steps, including epithelial–mesenchymal transition, vascular remodeling, and
colonization. Therefore, in-depth investigations of metastatic molecular
mechanisms can provide valuable insights for lung cancer treatment. Recently,
long noncoding RNAs (lncRNAs) have attracted considerable attention owing to
their complex roles in cancer progression. In lung cancer, multiple lncRNAs have
been reported to regulate metastasis. In this review, we highlight the major
molecular mechanisms underlying lncRNA-mediated regulation of lung cancer
metastasis, including (1) lncRNAs acting as competing endogenous RNAs, (2)
lncRNAs regulating the transduction of several signal pathways, and (3) lncRNA
coordination with enhancer of zeste homolog 2. Thus, lncRNAs appear to execute
their functions on lung cancer metastasis by regulating angiogenesis, autophagy,
aerobic glycolysis, and immune escape. However, more comprehensive studies are
required to characterize these lncRNA regulatory networks in lung cancer
metastasis, which can provide promising and innovative novel therapeutic
strategies to combat this disease.
Collapse
Affiliation(s)
- Peng Huang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Shaomi Zhu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Xin Liang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Qinxiu Zhang
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Chi Liu
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Linjiang Song
- Reproductive & Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| |
Collapse
|
11
|
Kang H, Ma D, Zhang J, Zhao J, Yang M. Long non-coding RNA GATA6-AS1 upregulates GATA6 to regulate the biological behaviors of lung adenocarcinoma cells. BMC Pulm Med 2021; 21:166. [PMID: 33992085 PMCID: PMC8126172 DOI: 10.1186/s12890-021-01521-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is known to be one of the leading causes of cancer-related deaths globally. In recent decades, long non-coding RNAs (lncRNAs) have been indicated to exert pivotal regulating functions in multiple biological behaviors in the initiation and development of LUAD. However, the functional mechanism of lncRNA GATA binding protein 6 antisense RNA 1 (GATA6-AS1) in LUAD has not been explored. Methods In the current study, GATA6-AS1 expression in LUAD tissues was revealed. Meanwhile, GATA6-AS1 expression in LUAD cells was investigated via RT-qPCR analysis. After A549 and H1975 cells were transfected with GATA6-AS1 overexpression plasmids, EdU and colony formation assays, TUNEL assays and flow cytometry analyses, as well as wound healing and Transwell assays were conducted to detect cell proliferation, apoptosis, migration and invasion. Afterwards, bioinformatic tools, western blot analyses, dual-luciferase reporter assays, and RNA immunoprecipitation (RIP) assays were performed to investigate the correlation of microRNA-4530 (miR-4530), GATA6-AS1 and GATA6. Results We found that GATA6-AS1 expression was low-expressed in LUAD tissues and cells. Furthermore, the upregulation of GATA6-AS1 suppressed the proliferative, migration and invasion abilities, as well as promoted apoptotic rate of A549 and H1975 cells. Moreover, the mechanistic investigations revealed that GATA6-AS1 upregulated the expression of its cognate sense gene GATA6 by binding with miR-4530, thereby modulating the malignant progression of LUAD cells. Conclusions GATA6-AS1 repressed LUAD cell proliferation, migration and invasion, and promoted cell apoptosis via regulation of the miR-4530/GATA6 axis, indicating GATA6-AS1 as a new prognostic biomarker for LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01521-7.
Collapse
Affiliation(s)
- Honggang Kang
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Dan Ma
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Jing Zhang
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China.
| | - Jun Zhao
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| | - Mengxiang Yang
- Department of Oncology, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, Shandong, China
| |
Collapse
|
12
|
Wang Q, Gu M, Zhuang Y, Chen J. The Long Noncoding RNA MAGI1-IT1 Regulates the miR-302d-3p/IGF1 Axis to Control Gastric Cancer Cell Proliferation. Cancer Manag Res 2021; 13:2959-2967. [PMID: 33833579 PMCID: PMC8021259 DOI: 10.2147/cmar.s305108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Background MAGI1-IT1 is a long non-coding RNA (lncRNA) previously reported to regulate several cancer types, but its functional role in gastric cancer (GC) remains to be defined. This study therefore explored the mechanistic role played by MAGI1-IT1 in the regulation of GC cell proliferation. Methods 120 pairs of GC patient tumor, paracancerous tissues, human GES-1 control cells and human AGS, MKN-74, MKN-45, and MGC-803 GC cell lines were used to detected MAGI1-IT1, miR-302d-3p, and IGF1 expression by a qPCR approach. An shRNA approach was used to knock down MGI1-IT1 in order to examine the effect of such treatment on GC cell proliferation, and rescue experiments were subsequently conducted. In addition, the functional role of MAGI1-IT1 in GC in vivo was evaluated with a xenograft model system. P < 0.05 was the significance threshold. Results Elevated MAGI1-IT1 expression was detected in GC cell lines and tissues, and was linked to poorer patient overall survival. Knocking down this lncRNA disrupted GC cell proliferation in vitro and in vivo, and miR-302d-3p was identified as a MAGI1-IT1 target. Notably, miR-302d-3p inhibition partially reversed the impact of MAGI1-IT1 knockdown on GC cell proliferation. IGF1 was subsequently identified as a miR-302d-3p target gene that was upregulated by MAGI1-IT1 through miR-302d-3p. Conclusion Overall, these results indicated that MAGI1-IT1 controlled GC cell proliferation by modulating the miR-302d-3p/IGF1 axis, suggesting that this may be a viable treatment target in those with GC.
Collapse
Affiliation(s)
- Qinge Wang
- Department of Digestive Disease, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Min Gu
- Department of Pediatrics, Changzhou Children's Hospital, Changzhou, Jiangsu, People's Republic of China
| | - Yun Zhuang
- Department of Digestive Disease, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| | - Jianping Chen
- Department of Digestive Disease, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, People's Republic of China
| |
Collapse
|