1
|
Hauptman N, Pižem J, Jevšinek Skok D. AmiCa: Atlas of miRNA-gene correlations in cancer. Comput Struct Biotechnol J 2024; 23:2277-2288. [PMID: 38840833 PMCID: PMC11152612 DOI: 10.1016/j.csbj.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The increasing availability of RNA sequencing data has opened up numerous opportunities to analyze various RNA interactions, including microRNA-target interactions (MTIs). In response to the necessity for a specialized tool to study MTIs in cancer and normal tissues, we developed AmiCa (https://amica.omics.si/), a web server designed for comprehensive analysis of mature microRNA (miRNA) and gene expression in 32 cancer types. Data from 9498 tumor samples and 626 normal samples from The Cancer Genome Atlas were obtained through the Genomic Data Commons and used to calculate differential expression and miRNA-target gene (MTI) correlations. AmiCa provides data on differential expression of miRNAs/genes for cancers for which normal tissue samples were available. In addition, the server calculates and presents correlations separately for tumor and normal samples for cancers for which normal samples are available. Furthermore, it enables the exploration of miRNA/gene expression in all cancer types with different miRNA/gene expression. In addition, AmiCa includes a ranking system for genes and miRNAs that can be used to identify those that are particularly highly expressed in certain cancers compared to other cancers, facilitating targeted and cancer-specific research. Finally, the functionality of AmiCa is illustrated by two case studies.
Collapse
Affiliation(s)
- Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Jože Pižem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Slovenia
| | | |
Collapse
|
2
|
Tang Z, Shu L, Cao Z, Xu Y, Li C. Osteoarthritis rat serum-derived extracellular vesicles aggravate osteoarthritis development by inducing NLRP3-mediated pyroptotic cell death and cellular inflammation. Hum Cell 2024; 37:1624-1637. [PMID: 39141224 DOI: 10.1007/s13577-024-01119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Osteoarthritis (OA), degenerative joint disease, is the most prevalent form of arthritis worldwide. Besides its substantial burden on society, the high OA morbidity greatly diminishes patients' quality of life. According to recent research, patients-derived serum extracellular vesicles (EVs) are critically involved in sustaining the corresponding disease progression. However, limited research has fully explored the specific functions and molecular mechanisms of OA serum-derived EVs in disease progression. Consequently, we aimed to investigate the underlying mechanism of OA rats-derived serum EVs in regulating OA progression. Before constructing the exosome-cell co-culture system, EVs were extracted from OA and control rat serum and co-cultured with bone marrow mesenchymal stem cells (BM-MSCs). Western blotting (WB), RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) results revealed that OA rat serum-derived EVs upregulated cell pyroptosis-related markers, including nod-Like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin D (GSDMD), and cleaved caspase-1. The OA rat-EVs also induced the release of LDH and inflammatory cytokines, including interleukin (IL)-1β, IL-18, IL-6, and TNF-α. Additional experiments revealed that OA rat-EVs delivered miR-133a-3p to BM-MSCs and upregulated miR-133a-3p to degrade sirtuin 1 (SIRT1), and activating the downstream NF-κB signaling pathway. Furthermore, the rescuing experiments confirmed that silencing SIRT1 abrogated the miR-133a-3p-induced protective effects in OA-EVs-treated BM-MSCs. In conclusion, OA rats-derived miR-133a-3p-containing EVs modulated the downstream SIRT1/NF-κB pathway-mediated pyroptotic cell death and inflammation in OA. In other words, this study confirmed the role and underlying mechanisms by which OA-associated serum EVs regulate pyroptosis and inflammation response in OA development.
Collapse
Affiliation(s)
- Zhifang Tang
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China
| | - Longjun Shu
- The First People's Hospital of Dali City, Dali, 671000, China
| | - Zijian Cao
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Yongqing Xu
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China.
| | - Chuan Li
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
3
|
Lu N, Guo Y, Ren L, Zhao H, Yan L, Han H, Zhang S. CORO1C Regulates the Malignant Biological Behavior of Ovarian Cancer Cells and Modulates the mRNA Expression Profile through the PI3K/AKT Signaling Pathway. Cell Biochem Biophys 2024:10.1007/s12013-024-01591-4. [PMID: 39433598 DOI: 10.1007/s12013-024-01591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.
Collapse
Affiliation(s)
- Na Lu
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongfeng Guo
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lixin Ren
- General surgery department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Hongwei Zhao
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lijun Yan
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Haiqiong Han
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Sanyuan Zhang
- Department of gynecology and obstetrics, The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
4
|
Nie H, Wang X, Dong X, Wei Y, Wei J, Yip KC, Zhang Q, Li R. Down-regulation of CORO1C mediated by lncMALAT1/miR-133a-3p axis contributes to trophoblast dysfunction and preeclampsia. Placenta 2024; 156:67-76. [PMID: 39278098 DOI: 10.1016/j.placenta.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION Placental trophoblast dysfunction has been proved to be closely related to the pathogenesis of preeclampsia. Coronaryxin-like actin-binding protein 1C (CORO1C) plays an important role in cell proliferation, apoptosis, invasion, and signal transduction, but its involvement in trophoblast dysfunction and preeclampsia remains uncertain. METHODS The expression of CORO1C in placental tissues of preeclampsia (PE) pregnant women and pregnant mice PE model were detected by real-time quantitative polymerase chain reaction (RT-qPCR), western blotting (WB) and immunohistochemical (IHC) staining. Next, the proliferation, invasion, migration and apoptosis were performed to explore the functions of CORO1C in HTR8/SVneo cell. Furthermore, the expression of CORO1C were detected in lncMALAT1 knockdown and overexpression HTR-8/SVneo cell. And then we investigated the possible regulatory mechanism of lncMALAT1 on CORO1C through bioinformatics analysis, FISH assays, RIP assays, RNA pull down and dual luciferase reporter assays. Finally, we further validated that lncMALAT1 regulate the function of placental trophoblast cells through CORO1C. RESULTS The expression of CORO1C was significantly decreased in the placenta of PE patients and mice model, and positively associated with neonatal birth weight. And we found that CORO1C inhibited trophoblast proliferation, migration and invasion. Furthermore, reduced expression of lncMALAT1 impaired CORO1C level, thereby resulting in trophoblast dysfunction. Mechanistically, the dysregulation of lncMALAT1 promoted the expression of miR-133a-3p, strongly enhancing its binding to the 3'UTR region of CORO1C mRNA for degradation. DISCUSSION This study demonstrated that the dysregulation of CORO1C via lncMALAT1/miR-133a-3p axis impairs trophoblast function and contributes to preeclampsia pathogenesis, providing novel insights in PE therapy through modulating CORO1C level.
Collapse
Affiliation(s)
- Hanhui Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiufang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiaohui Dong
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yiling Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jiachun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ka Cheuk Yip
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qiao Zhang
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Wang L, Hong Z. Circular RNA circ-SLC7A5 Functions as a Competing Endogenous RNA to Impact Cell Biological Behaviors in Esophageal Squamous Cell Carcinoma (ESCC). Cell Biochem Biophys 2024; 82:139-151. [PMID: 37814151 DOI: 10.1007/s12013-023-01183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have profound effects on establishment and pathogenesis of esophageal squamous cell carcinoma (ESCC). Here, we defined whether circRNA solute carrier family 7 member 5 (circ-SLC7A5, also called hsa_circ_0040796) is causally involved in the pathogenesis of ESCC. METHODS Circ-SLC7A5, microRNA (miR)-874-3p and coronin-1C (CORO1C) expression levels were gauged by qRT-PCR or immunoblotting. Cell functional phenotypes were tested by colony formation, EdU, flow cytometry, transwell and wound-healing assays. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were applied to ascertained circ-SLC7A5/miR-874-3p and miR-874-3p/CORO1C relationships. RESULTS Circ-SLC7A5 was highly expressed in human ESCC. Circ-SLC7A5 depletion impaired cell growth, migration, invasiveness, and promoted apoptosis. Circ-SLC7A5 knockdown diminished ESCC cell tumorigenicity. Mechanistically, circ-SLC7A5 contained a binding site for miR-874-3p. Also, miR-874-3p was responsible for circ-SLC7A5's function in ESCC cells. CORO1C was a direct miR-874-3p target. Circ-SLC7A5 functioned as a competing endogenous RNA (ceRNA) to control CORO1C by competing for shared miR-874-3p. Furthermore, CORO1C knockdown phenocopied miR-874-3p overexpression in impacting the biological behaviors of ESCC cells. CONCLUSION These findings identify circ-SLC7A5 as a crucial modulator of ESCC cells and establish a novel circ-SLC7A5/miR-874-3p/CORO1C ceRNA network in ESCC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiothoracic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Zhipeng Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China.
| |
Collapse
|
6
|
Jiang L, Shi X, Liu Y, Chen H. LncRNA LINC00847 Accelerates Melanoma Progression by Regulating MiR-133a-3p/TGFBR1 Axis. Comb Chem High Throughput Screen 2024; 27:1231-1241. [PMID: 37587809 DOI: 10.2174/1386207326666230816113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023]
Abstract
AIMS Growing evidence has suggested that lncRNAs play a regulatory role in tumorigenesis. Dysregulation of a newly identified lncRNA (LINC00847) has been involved in several tumors. Nevertheless, the expression and roles of lncRNAs in skin melanoma remain unclear. Therefore, we attempted to investigate the expressions and roles of lncRNAs in this study. MATERIALS AND METHODS Expression levels of LINC00847 were quantified in tissue samples from the TCGA database and clinically recruited participants. LINC00847 was inhibited in cells by transfecting with si-LINC00847 or si-NC. Expressions of LINC00847 and miR-133a-3p were determined using RT-qPCR, and the TGFBR1 level was determined using Western blotting. Targeting sites of LINC00847 with miR-133a-3p and miR-133a-3p with TGFBR1 were predicted by bioinformatic tools and proved by dual-luciferase reporter system and RNA immunoprecipitation. Cell proliferation, invasion, and migration abilities were assessed using CCK8, cell colony formation, cell wound scratch, and transwell assay, respectively. RESULTS In both TCGA and clinical cohorts, the expression of LINC00847 was abnormally upregulated in skin melanoma tissues than that of benign nevus. Besides, LINC00847 expression increased more markedly in A375 and SK-MEL-28 cells than in normal epidermal melanocytes (HEMa-LP cells). LINC00847 knockdown remarkably restrained skin melanoma cell proliferation, metastasis, and wound healing rate. Furthermore, miR-133a-3p/TGFBR1 was the downstream target for LINC00847. LINC00847 negatively regulated miR-133a-3p expression in skin melanoma cells. Both miR-133a-3p inhibitors and TGFBR1 vector transfection reversed the effect of LINC00847 silence in skin melanoma cells. CONCLUSION LINC00847 was highly expressed in skin melanoma, and its overexpression accelerated the malignant tumor behavior of skin melanoma cells. The miR-133a-3p /TGFBR1 axis was involved in the roles of LINC00847 in skin melanoma.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Aesthetic, Plastic and Burn Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Xiufang Shi
- Department of Aesthetic, Plastic and Burn Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Yanxin Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Huaxia Chen
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| |
Collapse
|
7
|
Lin Y, Ma L, Dan H, Chen G, Dai J, Xu L, Liu Y. MiR-107-3p Knockdown Alleviates Endothelial Injury in Sepsis via Kallikrein-Related Peptidase 5. J Surg Res 2023; 292:264-274. [PMID: 37666089 DOI: 10.1016/j.jss.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Endothelial injury is a major characteristic of sepsis and contributes to sepsis-induced multiple-organ dysfunction. In this study, we investigated the role of miR-107-3p in sepsis-induced endothelial injury. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to 20 μg/mL of lipopolysaccharide (LPS) for 6-48 h. The levels of miR-107-3p and kallikrein-related peptidase 5 (KLK5) were examined. HUVECs were treated with LPS for 12 h and subsequently transfected with miR-107-3p inhibitor, KLK5 siRNA, or cotransfected with KLK5 siRNA and miR-107-3p inhibitor/negative control inhibitor. Cell survival, apoptosis, invasion, cell permeability, inflammatory response, and the Toll-like receptor 4/nuclear factor κB signaling were evaluated. In addition, the relationship between miR-107-3p and KLK5 expression was predicted and verified. RESULTS LPS significantly elevated miR-107-3p levels, which peaked at 12 h. Conversely, the KLK5 level was lower in the LPS group than in the control group and was lowest at 12 h. MiR-107-3p knockdown significantly attenuated reductions in cell survival and invasion, apoptosis promotion, hyperpermeability and inflammation induction, and activation of the NF-κB signaling caused by LPS. KLK5 knockdown had the opposite effect. Additionally, KLK5 was demonstrated as a target of miR-107-3p. MiR-107-3p knockdown partially reversed the effects of KLK5 depletion in LPS-activated HUVECs. CONCLUSIONS Our findings indicate that miR-107-3p knockdown may protect against sepsis-induced endothelial cell injury by targeting KLK5. This study identified a novel therapeutic target for sepsis-induced endothelial injury.
Collapse
Affiliation(s)
- Yongbo Lin
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Li Ma
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Hanliang Dan
- Department of Cardiology, People's Hospital of Dongxihu District, Wuhan, China
| | - Gang Chen
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Jian Dai
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China
| | - Liang Xu
- Department of ICU, Wuhan Wuchang Hospital, Wuhan, China.
| | - Yuqi Liu
- Department of Respiratory and Critical Care Medicine, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
8
|
Fukuda K, Seki N, Yasudome R, Mitsueda R, Asai S, Kato M, Idichi T, Kurahara H, Ohtsuka T. Coronin 1C, Regulated by Multiple microRNAs, Facilitates Cancer Cell Aggressiveness in Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2023; 14:genes14050995. [PMID: 37239355 DOI: 10.3390/genes14050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Coronin proteins are actin-related proteins containing WD repeat domains encoded by seven genes (CORO1A, CORO1B, CORO1C, CORO2A, CORO2B, CORO6, and CORO7) in the human genome. Analysis of large cohort data from The Cancer Genome Atlas revealed that expression of CORO1A, CORO1B, CORO1C, CORO2A, and CORO7 was significantly upregulated in pancreatic ductal adenocarcinoma (PDAC) tissues (p < 0.05). Moreover, high expression of CORO1C and CORO2A significantly predicted the 5 year survival rate of patients with PDAC (p = 0.0071 and p = 0.0389, respectively). In this study, we focused on CORO1C and investigated its functional significance and epigenetic regulation in PDAC cells. Knockdown assays using siRNAs targeting CORO1C were performed in PDAC cells. Aggressive cancer cell phenotypes, especially cancer cell migration and invasion, were inhibited by CORO1C knockdown. The involvement of microRNAs (miRNAs) is a molecular mechanism underlying the aberrant expression of cancer-related genes in cancer cells. Our in silico analysis revealed that five miRNAs (miR-26a-5p, miR-29c-3p, miR-130b-5p, miR-148a-5p, and miR-217) are putative candidate miRNAs regulating CORO1C expression in PDAC cells. Importantly, all five miRNAs exhibited tumor-suppressive functions and four miRNAs except miR-130b-5p negatively regulated CORO1C expression in PDAC cells. CORO1C and its downstream signaling molecules are potential therapeutic targets in PDAC.
Collapse
Affiliation(s)
- Kosuke Fukuda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Reiko Mitsueda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
9
|
Mustafov D, Karteris E, Braoudaki M. Deciphering the Role of microRNA Mediated Regulation of Coronin 1C in Glioblastoma Development and Metastasis. Noncoding RNA 2023; 9:4. [PMID: 36649032 PMCID: PMC9844418 DOI: 10.3390/ncrna9010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly heterogenic and malignant brain tumour with a median survival of 15 months. The initial identification of primary glioblastomas is often challenging. Coronin 1C (CORO1C) is a key player in actin rearrangement and cofilin dynamics, as well as enhancing the processes of neurite overgrowth and migration of brain tumour cells. Different bioinformatic databases were accessed to measure CORO1C expression at the mRNA and protein level in normal and malignant brains. CORO1C expression was observed in brain regions which have retained high synaptic plasticity and myelination properties. CORO1C was also expressed mainly within the hippocampus formation, including the Cornu Ammonis (CA) fields: CA1-CA4. Higher expression was also noticed in paediatric GBM in comparison to their adult counterparts. Pediatric cell populations were observed to have an increased log2 expression of CORO1C. Furthermore, 62 miRNAs were found to target the CORO1C gene. Of these, hsa-miR-34a-5p, hsa-miR-512-3p, hsa-miR-136-5p, hsa-miR-206, hsa-miR-128-3p, and hsa-miR-21-5p have shown to act as tumour suppressors or oncomiRs in different neoplasms, including GBM. The elevated expression of CORO1C in high grade metastatic brain malignancies, including GBM, suggests that this protein could have a clinical utility as a biomarker linked to an unfavorable outcome.
Collapse
Affiliation(s)
- Denis Mustafov
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Maria Braoudaki
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
10
|
He L, Xu K, Niu L, Lin L. Astragalus polysaccharide (APS) attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis in HCC. PHARMACEUTICAL BIOLOGY 2022; 60:1710-1720. [PMID: 36086826 PMCID: PMC9467620 DOI: 10.1080/13880209.2022.2112963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CONTEXT Astragalus polysaccharide (APS) is a new tumour therapeutic drug, that has an inhibitory effect on a variety of solid tumours. Tumour cell immunosuppression is related to the up-regulation of programmed death ligand 1 (PD-L1). However, whether APS exerts its antitumor effect by regulating PD-L1 remains unclear. OBJECTIVE To explore whether APS exerts its antineoplastic effect via regulating PD-L1-mediated immunosuppression in hepatocellular carcinoma (HCC). MATERIALS AND METHODS SMMC-7721 cells were subcutaneous injected into BALB/C mice for HCC model establishment. Mice were intraperitoneally injected with 100, 200 and 400 mg/kg APS for 12 days. Immunohistochemistry (IHC) was performed to assess CD8+ T cells' rate and PD-L1 level in HCC tissues. HCC cells were pre-treated with 0.1, 0.5 and 1 mg/mL APS for 4 h, then were treated with 10 ng/mL IFN-γ 24 h. PD-L1 level and cell apoptosis was detected by flow cytometry. PD-L1 and Moesin (MSN) proteins were measured by western blot. MiR-133a-3p and MSN mRNA levels were assessed by qRT-PCR. The targets of miR-133a-3p were predicted by starBase, and which was verified by dual-luciferase reporter assay. RESULTS Our findings illustrated that APS dose-dependently inhibited HCC growth tested with IC50 values of 4.2 mg/mL, and IFN-γ-induced PD-L1 expression and attenuated PD-L1-mediated immunosuppression in HCC cells. APS attenuated PD-L1-mediated immunosuppression via miR-133a-3p in HCC cells. Besides, miR-133a-3p targeted to MSN, and MSN inhibited the antitumor effect of APS by maintaining the stability of PD-L1. Moreover, APS attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis. CONCLUSIONS APS attenuated PD-L1-mediated immunosuppression via miR-133a-3p/MSN axis to develop an antitumor effect. APS may be an effective drug for HCC treatment.
Collapse
Affiliation(s)
- Lihua He
- Department of Oncology, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Kecheng Xu
- Department of Oncology, Fuda Cancer Hospital, Guangzhou, China
| | - Lizhi Niu
- Department of Oncology, Fuda Cancer Hospital, Guangzhou, China
| | - Lizhu Lin
- Division of Oncology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- CONTACT Lizhu Lin Division of Oncology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, No.16, JichangRoad, Guangzhou510504, Guangdong Province, P.R. China
| |
Collapse
|
11
|
Ye R, Lu X, Liu J, Duan Q, Xiao J, Duan X, Yue Z, Liu F. CircSOD2 Contributes to Tumor Progression, Immune Evasion and Anti-PD-1 Resistance in Hepatocellular Carcinoma by Targeting miR-497-5p/ANXA11 Axis. Biochem Genet 2022; 61:597-614. [PMID: 36008700 DOI: 10.1007/s10528-022-10273-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Circular RNAs (circRNAs) can function as functional molecules in hepatocellular carcinoma (HCC). Herein, circRNA superoxide dismutase 2 (circSOD2) was researched in HCC progression and immune system. The real-time polymerase chain reaction (qRT-PCR) was used for quantification of circSOD2, microRNA-497-5p (miR-497-5p) and Annexin A11 (ANXA11). Cell assays were performed by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) and colony formation assays for proliferation, flow cytometry for apoptosis and cell cycle, wound healing assay for migration and transwell assay for migration/invasion. ANXA11 and metastatic protein levels were measured by western blot. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to analyze target binding. CD8+ T cell immunity was assessed by Immunohistochemistry (IHC) assay, and the effect of circSOD2 on programmed cell death 1 (PD-1) immune checkpoint inhibitors (anti-PD-1) therapy was evaluated by mice xenograft assay. CircSOD2 was upregulated in HCC tissues and cells. Knockdown of circSOD2 resulted in HCC cell growth inhibition, apoptosis promotion, cell cycle arrest and metastasis suppression. Mechanically, circSOD2 promoted HCC development by acting as a miR-497-5p sponge and miR-497-5p played a tumor-inhibitory role in HCC cells by targeting ANXA11. Moreover, circSOD2 induced upregulation of ANXA11 expression by interacting with miR-497-5p. Also, the promoting effects of circSOD2 on immune evasion and anti-PD-1 resistance were related to miR-497-5p/ANXA11 axis. This study elucidated the pivotal function of circSOD2 in HCC progression and immunosuppression by mediating miR-497-6p/ANXA11 axis. CircSOD2/miR-497-5p/ANXA11 axis was a novel view of circRNA research in HCC.
Collapse
Affiliation(s)
- Rong Ye
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Xingyu Lu
- Outpatient department, Ganzhou City Third People's Hospital, Ganzhou, 341001, China
| | - Jianping Liu
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Qing Duan
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Junqi Xiao
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Xunhong Duan
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Zhibiao Yue
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China.
| | - Fengen Liu
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China.
| |
Collapse
|
12
|
Yu B, Pang J, You J. Effects and mechanism of miR-133a on invasion and migration of lung cancer cells. Am J Transl Res 2022; 14:728-739. [PMID: 35273681 PMCID: PMC8902573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES To study the role of miR-133a expression in the invasion, proliferation, migration, and apoptosis of lung cancer cells and its mechanism. METHODS miR-133a expression levels in human normal lung epithelial cells (BEAS-2B), H441 cell lines and NSCLC tissues were detected by qPCR. The influence of miR-133a mimics on the migration, proliferation and invasion of H441 cells was examined by CCK-8 assay, transwell migration assay, and invasion assay, respectively. Expression of MMP-9 and LASP1 in H441 cellstreated by miR-133a mimics was determined by western blot. Pearson's test was conducted to study the association of miR-133a expression with clinical characteristics of NSCLC patients. The targeted regulation of miR-133a on LASP1 gene expression was detected by the luciferase reporter gene assay. RESULTS miR-133a expression was decreased in H441 cells in contrast to that in BEAS-2B cells (P<0.05). Compared with para-carcinoma tissues, miR-133a levels were markedly down-regulated in NSCLC tissues. miR-133a overexpression inhibited the invasion, proliferation, and migration ability of H441 cells and promoted cell apoptosis (all P<0.05). MMP-9 expression levels were also reduced in the miR-133a mimic group. Moreover, miR-133a expression levels were correlated with tumor size and TNM stage. miR-133a overexpression decreased the expression of LASP1, which is the targeted gene of miR-133a. CONCLUSIONS miR-133a overexpression can reduce the invasion, proliferation, migration, and matrix metalloproteinase expression of NSCLC cells and promote cell apoptosis. This may be correlated to targeted down-regulation of LASP1 expression.
Collapse
Affiliation(s)
- Bing Yu
- Department of Thoracic Surgery, Ningbo Fenghua District People's Hospital Ningbo 315500, Zhejiang Province, China
| | - Jinghua Pang
- Department of Thoracic Surgery, Ningbo Fenghua District People's Hospital Ningbo 315500, Zhejiang Province, China
| | - Jiawen You
- Department of Thoracic Surgery, Ningbo Fenghua District People's Hospital Ningbo 315500, Zhejiang Province, China
| |
Collapse
|
13
|
Wang L, Zeng C, Chen Z, Qi J, Huang S, Liang H, Huang S, Ou Z. Circ_0025039 acts an oncogenic role in the progression of non-small cell lung cancer through miR-636-dependent regulation of CORO1C. Mol Cell Biochem 2022; 477:743-757. [PMID: 35034254 DOI: 10.1007/s11010-021-04320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022]
Abstract
Non-small cell lung cancer remains the leading cause of cancer-related death worldwide. Circular RNA plays vital roles in NSCLC progression. This study is designed to reveal the role of circ_0025039 in NSCLC cell malignancy. The RNA expression of circ_0025039, microRNA-636 (miR-636), and coronin 1C was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot analysis or immunohistochemistry assay. Cell proliferation, migration, invasion, tube formation ability, sphere formation capacity, and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine, transwell assay, tube formation assay, sphere formation assay, and flow cytometry analysis, respectively. Mouse model assay was conducted to reveal the effect of circ_0025039 silencing on tumor formation in vivo. The interaction between miR-636 and circ_0025039 or CORO1C was identified through dual-luciferase reporter and RNA pull-down assays. The expression of circ_0025039 and CORO1C was significantly increased, while miR-636 was decreased in NSCLC tissues and cells compared with controls. Circ_0025039 depletion repressed NSCLC cell proliferation, migration, invasion, tube-forming capacity, and sphere formation ability, but induced cell apoptosis. The neoplasm formation was repressed after circ_0025039 silencing. Additionally, circ_0025039 acted as a sponge for miR-636, which was found to target CORO1C. Importantly, the contribution of circ_0025039 to NSCLC progression was mediated by miR-636/CORO1C axis. Circ_0025039 silencing repressed NSCLC malignant progression by reducing CORO1C expression through miR-636, showing the possibility of circ_0025039 as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Cimei Zeng
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Zhongren Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Jianxu Qi
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Sini Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Haimei Liang
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Shiren Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Zongxing Ou
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China.
| |
Collapse
|
14
|
Zheng T, Zhang X, Wang Y, Wang A. SPOCD1 regulated by miR-133a-3p promotes hepatocellular carcinoma invasion and metastasis. J Int Med Res 2022. [PMCID: PMC8733378 DOI: 10.1177/03000605211053717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the tumorigenic role of spen paralogue and orthologue C-terminal domain-containing 1 (SPOCD1) in hepatocellular carcinoma (HCC) and identify the upstream regulatory mechanism. Methods We analyzed SPOCD1 and miR-133-3p expression in normal and HCC tissues from the Cancer Genome Atlas and UALCAN databases, and in normal hepatocytes and HCC cell lines by real-time quantitative polymerase chain reaction and western blot. We identified the miR-133a-3p-binding site on the SPOCD1 3ʹ-untranslated region using TargetScan. Hierarchical regulation was confirmed by luciferase assay and miR-133a-3p overexpression/silencing. Cell proliferation, migration, invasion, and colony formation were assessed by MTT, scratch, transwell, and clonogenic assays, respectively. Results SPOCD1 was highly expressed in HCC tissues and cell lines, while miR-133a-3p expression was significantly downregulated. Kaplan–Meier analysis indicated that high SPOCD1 expression was significantly associated with poor survival. TargetScan and luciferase reporter assay revealed that SPOCD1 was the downstream target of miR-133a-3p. Overexpression of miR-133a-3p significantly inhibited the expression of SPOCD1, while miR-133a-3p knockdown significantly increased SPOCD1 expression. Conclusion SPOCD1, regulated by miR-133a-3p, promotes HCC cell proliferation, migration, invasion, and colony formation. This study provides the first evidence for the role of the miR-133a-3p/SPOCD1 axis in HCC tumorigenesis.
Collapse
Affiliation(s)
- Tianying Zheng
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yonggang Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Aijun Wang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Kase-Kato I, Asai S, Minemura C, Tsuneizumi K, Oshima S, Koma A, Kasamatsu A, Hanazawa T, Uzawa K, Seki N. Molecular Pathogenesis of the Coronin Family: CORO2A Facilitates Migration and Invasion Abilities in Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:12684. [PMID: 34884487 PMCID: PMC8657730 DOI: 10.3390/ijms222312684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
In humans, the coronin family is composed of seven proteins containing WD-repeat domains that regulate actin-based cellular processes. Some members of the coronin family are closely associated with cancer cell migration and invasion. The Cancer Genome Atlas (TCGA) analysis revealed that CORO1C, CORO2A, and CORO7 were significantly upregulated in oral squamous cell carcinoma (OSCC) tissues (p < 0.05). Moreover, the high expression of CORO2A was significantly predictive of the 5-year survival rate of patients with OSCC (p = 0.0203). Overexpression of CORO2A was detected in OSCC clinical specimens by immunostaining. siRNA-mediated knockdown of CORO2A suppressed cancer cell migration and invasion abilities. Furthermore, we investigated the involvement of microRNAs (miRNAs) in the molecular mechanism underlying CORO2A overexpression in OSCC cells. TCGA analysis confirmed that tumor-suppressive miR-125b-5p and miR-140-5p were significantly downregulated in OSCC tissues. Notably, these miRNAs bound directly to the 3'-UTR of CORO2A and controlled CORO2A expression in OSCC cells. In summary, we found that aberrant expression of CORO2A facilitates the malignant transformation of OSCC cells, and that downregulation of tumor-suppressive miRNAs is involved in CORO2A overexpression. Elucidation of the interaction between genes and miRNAs will help reveal the molecular pathogenesis of OSCC.
Collapse
Affiliation(s)
- Ikuko Kase-Kato
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Kenta Tsuneizumi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Ayaka Koma
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
16
|
Zhong C, Wu K, Wang S, Long Z, Yang T, Zhong W, Tan X, Wang Z, Li C, Lu J, Mao X. Autophagy-related circRNA evaluation reveals hsa_circ_0001747 as a potential favorable prognostic factor for biochemical recurrence in patients with prostate cancer. Cell Death Dis 2021; 12:726. [PMID: 34294687 PMCID: PMC8298711 DOI: 10.1038/s41419-021-04015-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023]
Abstract
Prostate cancer (PCa) is a common high-incidence malignancy in men, some of whom develop biochemical recurrence (BCR) in the advanced stage. However, there are currently no accurate prognostic indicators of BCR in PCa. The aim of our study was to identify an autophagy-related circular RNA prognostic factor of BCR for patients with PCa. In this study, immunochemistry revealed that the classic autophagy marker MAP1LC3B was positively correlated with Gleason score. Least absolute shrinkage and selector operator regression were conducted to develop a novel prognostic model with tenfold cross-validation and an L1 penalty. Five autophagy-related circRNA signatures were included in the prognostic model. Patients with PCa were ultimately divided into high- and low-risk groups, based on the median risk score. Patients with PCa, who had a high risk score, were more likely to develop BCR in a shorter period of time. Univariate and multivariate Cox regression analyses demonstrated that the risk score was an independent variable for predicting BCR in PCa. In addition, a prognostic nomogram integrated with the risk score and numerous clinicopathological parameters was developed to accurately predict 3- and 5-year BCR of patients with PCa. Finally, the hsa_circ_0001747 signature was selected for further experimental verification in vitro and in vivo, which showed that downregulated hsa_circ_0001747 might facilitate PCa via augmenting autophagy. Our findings indicate that the autophagy-related circRNA signature hsa_circ_0001747 may serve as a promising indicator for BCR prediction in patients with PCa.
Collapse
Affiliation(s)
- Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuo Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zining Long
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weibo Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Tan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Chuanyin Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jianming Lu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Wang Z, Jia L, sun Y, Li C, Zhang L, Wang X, Chen H. CORO1C is Associated With Poor Prognosis and Promotes Metastasis Through PI3K/AKT Pathway in Colorectal Cancer. Front Mol Biosci 2021; 8:682594. [PMID: 34179087 PMCID: PMC8223509 DOI: 10.3389/fmolb.2021.682594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Trophoblast cell surface protein 2 (Trop2) is one of the cancer-related proteins that plays a vital role in biological aggressiveness and poor prognosis of colorectal cancer (CRC). The study of the Trop2 related network is helpful for us to understand the mechanism of tumorigenesis. However, the effects of the related proteins interacting with Trop2 in CRC remain unclear. Here, we found that coronin-like actin-binding protein 1C (CORO1C) could interact with Trop2 and the expression of CORO1C in CRC tissues was higher than that in paracarcinoma tissues. The expression of CORO1C was associated with histological type, lymph node metastasis, distant metastasis, AJCC stage, venous invasion, and perineural invasion. The correlation between CORO1C expression and clinical characteristics was analyzed demonstrating that high CORO1C expression in CRC patients were associated with poor prognosis. Furthermore, CORO1C knockdown could decrease the cell proliferation, colony formation, migration and invasion in vitro and tumor growth in vivo. The underlying mechanisms were predicted by bioinformatics analysis and verified by Western blotting. We found that PI3K/AKT signaling pathway was significantly inhibited by CORO1C knockdown and the tuomr-promoting role of CORO1C was leastwise partly mediated by PI3K/AKT signaling pathway. Thus, CORO1C may be a valuable prognostic biomarker and drug target in CRC patients.
Collapse
Affiliation(s)
- Zongxia Wang
- Cancer Center, Bayannur Hospital, Bayannur, China
| | - Lizhou Jia
- Cancer Center, Bayannur Hospital, Bayannur, China
- Department of Pathology, Wannan Medical College, Wuhu, China
| | - Yushu sun
- Department of Oncology, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, China
| | - Chunli Li
- Cancer Center, Bayannur Hospital, Bayannur, China
| | - Lingli Zhang
- Department of Ophthalmology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Xiangcheng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Inner Mongolia Autonomous Region Molecular Imaging, Inner Mongolia Medical University, Hohhot, China
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu, China
- Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Li Q, Wang Y, He J. MiR-133a-3p attenuates resistance of non-small cell lung cancer cells to gefitinib by targeting SPAG5. J Clin Lab Anal 2021; 35:e23853. [PMID: 34057242 PMCID: PMC8274984 DOI: 10.1002/jcla.23853] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Gefitinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR‐TKI), clinically used to treat patients with non‐small cell lung cancer driven by EGFR mutations. Unfortunately, EGFR‐TKI resistance has become a clinical problem for the effective treatment of NSCLC patients. The purpose of this study was to explore the effect and mechanism of miR‐133a‐3p on the gefitinib sensitivity of NSCLC cells. Methods The gefitinib‐resistant PC9 (PC9/GR) cells were established through repeated long‐term exposure to gefitinib for half a year. Then, PC9/GR cells were transfected with miR‐133a‐3p mimics and PC9 cells were transfected with miR‐133a‐3p inhibitors to increase or decrease the expression of miR‐133a‐3p. CCK‐8 assay, colony formation assay, and caspase‐3 activity assay were employed to detect cell resistance to gefitinib. Quantitative real‐time PCR and Western blotting were used to evaluate the levels of miR‐133a‐3p, SPAG5, and other related genes. Starbase database was used to predict the target gene of miR‐133a‐3p and the prognosis of NSCLC patients. Target gene of miR‐133a‐3p was verified through dual‐luciferase reporter gene assay. Results MiR‐133a‐3p was significantly downregulated in gefitinib‐resistant cell line PC9/GR vs. gefitinib‐sensitive cell line PC9. Overexpression of miR‐133a‐3p increased the sensitivity of NSCLC cells to gefitinib and vice versa. Furthermore, SPAG5 is an important target gene of miR‐133a‐3p, and SPAG5 can reverse miR‐133a‐3p‐mediated gefitinib sensitivity of NSCLC cells. Conclusions These findings indicated that miR‐133a‐3p/SPAG5 axis played a vital role in acquired resistance to gefitinib in NSCLC cells, and miR‐133a‐3p may represent a potential therapeutic strategy for the treatment of human NSCLC.
Collapse
Affiliation(s)
- Qing Li
- Clinical Laboratory of Tianjin Chest Hospital, Tianjin, China
| | - Yueming Wang
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jingdong He
- Clinical Laboratory of Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|