1
|
Parsyan A, Bhat V, Athwal H, Goebel EA, Allan AL. Artemis and its role in cancer. Transl Oncol 2025; 51:102165. [PMID: 39520877 PMCID: PMC11584690 DOI: 10.1016/j.tranon.2024.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Artemis is a key nuclease involved in the non-homologous end joining repair pathway upon DNA double-stranded breaks and during V(D)J recombination. It participates in various cellular processes and cooperates with various proteins involved in tumorigenesis. Its hereditary mutations lead to several pathological conditions, such as severe combined immunodeficiency with radiation sensitivity. Recent studies suggest that Artemis deregulation plays an important role in cancer and is associated with poorer oncologic outcomes and resistance to treatment including radiotherapy, chemotherapy and targeted therapeutics. Artemis emerges as an attractive candidate for cancer prognosis and treatment. Its role in modulating sensitivity to ionizing radiation and DNA-damaging agents makes it an appealing target for drug development. Various existing drugs and novel compounds have been described to inhibit Artemis activity. This review synthesizes the up-to-date information regarding Artemis function, its role in different malignancies and its clinical utility as a potential biomarker and therapeutic target in Oncology.
Collapse
Affiliation(s)
- Armen Parsyan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada; Department of Surgery, St Joseph's Health Care and London Health Sciences Centre, Western University, London, ON, N6A 4V2, Canada.
| | - Vasudeva Bhat
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Harjot Athwal
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada
| | - Emily A Goebel
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre and Western University, London, ON, N6A 5A5, Canada
| | - Alison L Allan
- Department of Anatomy and Cell Biology, Western University, London, ON, N6A 3K7, Canada; Verspeeten Family Cancer Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada; Department of Oncology, Western University, London, ON, N6A 3K7, Canada
| |
Collapse
|
2
|
Yu L, Qin J, Zhang M, Gao Y, Zhao Y. Research Progress on the Anti-Liver Cancer Mechanism and Toxicity of Rhubarb Anthraquinone. Drug Des Devel Ther 2024; 18:6089-6113. [PMID: 39717199 PMCID: PMC11664478 DOI: 10.2147/dddt.s489377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/05/2024] [Indexed: 12/25/2024] Open
Abstract
Ethnopharmacological Relevance Rhubarb has the effect of breaking blood stasis and abnormal mass, and was often used to treat various tumor diseases including liver cancer in ancient China. Recipes containing rhubarb have anti-liver cancer properties and are still used today. However, the main components and mechanism of action of rhubarb against liver cancer are still unclear. Aim of the Review To conduct a review of the anti-liver cancer effects and toxicity of rhubarb anthraquinones (AQs). Materials and Methods This article reviewed the effects of rhubarb AQs in the treatment of liver cancer and the signaling pathways involved, and discussed the toxicity and pharmacokinetics of rhubarb AQs by searching the Web of Science, PubMed and CNKI databases. Results Rhubarb (Rhei Radix et Rhizoma) is a traditional Chinese medicine that has been existed for thousands of years and is used as an anti-cancer drug. Modern pharmacological research shows that rhubarb AQs, as the main component of rhubarb, contains emodin, rhein, chrysophanol, physcione and aloe-emodin, which has anti-liver cancer effects and can be considered as a potential therapeutic drug for liver cancer. However, many modern studies have shown that rhubarb AQs have certain toxicity, which hinders in-depth research on rhubarb AQs. Conclusion Rhubarb AQs can be used as a potential anti-liver cancer drug, but its research still has many limitations. Strengthening research on related experiments and finding a balance between toxicity and efficacy are all directions worth studying in the future.
Collapse
Affiliation(s)
- Linyuan Yu
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Jinxing Qin
- Department of Pharmacy, Sichuan Second Hospital of T.C.M, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Mei Zhang
- Department of Neurosurgery, Guiqian International General Hospital, Guiyang, Guizhou, 550000, People’s Republic of China
| | - Yawen Gao
- Department of Anesthesia, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yongli Zhao
- Department of Pharmacy, Chengdu Integrative TCM & Western Medicine Hospital, Chengdu, Sichuan, 610095, People’s Republic of China
| |
Collapse
|
3
|
Sun M, Feng Q, Yan Q, Zhao H, Wang H, Zhang S, Shan C, Liu S, Wang J, Zhai H. Malate, a natural inhibitor of 6PGD, improves the efficacy of chemotherapy in lung cancer. Lung Cancer 2024; 190:107541. [PMID: 38531154 DOI: 10.1016/j.lungcan.2024.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE Metabolic reprogramming is an important coordinator of tumor development and resistance to therapy, such as the tendency of tumor cells to utilize glycolytic energy rather than oxidative phosphorylation, even under conditions of sufficient oxygen. Therefore, targeting metabolic enzymes is an effective strategy to overcome therapeutic resistance. MATERIALS AND METHODS We explored the differential expression and growth-promoting function of MDH2 by immunohistochemistry and immunoblotting experiments in lung cancer patients and lung cancer cells. Pentose phosphate pathway-related phenotypes (including ROS levels, NADPH levels, and DNA synthesis) were detected intracellularly, and the interaction of malate and proteinase 6PGD was detected in vitro. In vivo experiments using implanted xenograft mouse models to explore the growth inhibitory effect and pro-chemotherapeutic function of dimethyl malate (DMM) on lung cancer. RESULTS We found that the expression of malate dehydrogenase (MDH2) in the tricarboxylic acid cycle (TCA cycle) was increased in lung cancer. Biological function enrichment analysis revealed that MDH2 not only promoted oxidative phosphorylation, but also promoted the pentose phosphate pathway (PPP pathway). Mechanistically, it was found that malate, the substrate of MDH2, can bind to the PPP pathway metabolic enzyme 6PGD, inhibit its activity, reduce the generation of NADPH, and block DNA synthesis. More importantly, DMM can improve the sensitivity of lung cancer to the clinical drug cisplatin. CONCLUSION We have identified malate as a natural inhibitor of 6PGD, which will provide new leads for the development of 6PGD inhibitors. In addition, the metabolic enzyme MDH2 and the metabolite malate may provide a backup option for cells to inhibit their own carcinogenesis, as the accumulated malate targets 6PGD to block the PPP pathway and inhibit cell cycle progression.
Collapse
Affiliation(s)
- Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qi Feng
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Qi Yan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Huifang Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyan Wang
- Department of Physical Examination, Characteristic Medical Center of the Chinese People's Armed Police Force, 220 Chenglin Road, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuangping Liu
- Department of Pathology, Medical School, Dalian University, Dalian, Liaoning, China.
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.
| | - Hongyan Zhai
- Department of Ultrasound, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China.
| |
Collapse
|
4
|
Liao K, Cui Z, Wang Z, Peng Y, Tang S, Chen J. Hyperosmolar Potassium Inhibits Corneal Myofibroblast Transformation and Prevent Corneal Scar. Curr Eye Res 2023; 48:238-250. [PMID: 36149345 DOI: 10.1080/02713683.2022.2129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Corneal myofibroblasts play a crucial role in the process of corneal scarring. Potassium has been documented to reduce skin scar tissue formation. Herein, we investigated the ability of potassium to prevent corneal fibrosis in cell culture and in vivo. METHODS Corneal fibroblasts (CFs) were isolated from the corneal limbus and treated with TGF-β1 to transform into corneal myofibroblasts. Corneal myofibroblast markers were detected by quantitative real-time PCR, Western blot, and immunofluorescence. The contractive functions of corneal myofibroblast were evaluated by the scratch assay and the collagen gel contraction assay. RNA sequencing in corneal fibroblasts was performed to explore the mechanisms underlying hyperosmolar potassium treatment. GO and KEGG analysis were performed to explore the underlying mechanism by hyperosmolar potassium treatment. The ATP detection assay assessed the level of cell metabolism. KCl eye drops four times per day were administered to mice models of corneal injury to evaluate the ability to prevent corneal scar formation. Corneal opacity area was evaluated by Image J software. RESULTS Treatment with hyperosmolar potassium could suppress corneal myofibroblast transformation and collagen I synthesis induced by TGF-β1 in cell culture. Hyperosmolar potassium could inhibit wound healing and gel contraction in CFs. RNA sequencing results suggested that genes involved in the metabolic pathway were downregulated after KCl treatment. ATP levels were significantly decreased in the KCl group compared with the control group. Hyperosmolar potassium could prevent corneal myofibroblast transformation after corneal injury and corneal scar formation in mice. CONCLUSION Potassium can suppress corneal myofibroblast transformation and collagen I protein synthesis. Moreover, given that KCl eye drops can prevent corneal scar formation, it has been suggested to have huge prospects as a novel treatment approach during clinical practice.
Collapse
Affiliation(s)
- Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zekai Cui
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Yu Peng
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, China
- Aier Eye Institute, Changsha, Hunan Province, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Macegoniuk K, Tabor W, Mazzei L, Cianci M, Giurg M, Olech K, Burda-Grabowska M, Kaleta R, Grabowiecka A, Mucha A, Ciurli S, Berlicki Ł. Optimized Ebselen-Based Inhibitors of Bacterial Ureases with Nontypical Mode of Action. J Med Chem 2023; 66:2054-2063. [PMID: 36661843 PMCID: PMC9923736 DOI: 10.1021/acs.jmedchem.2c01799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Screening of 25 analogs of Ebselen, diversified at the N-aromatic residue, led to the identification of the most potent inhibitors of Sporosarcina pasteurii urease reported to date. The presence of a dihalogenated phenyl ring caused exceptional activity of these 1,2-benzisoselenazol-3(2H)-ones, with Ki value in a low picomolar range (<20 pM). The affinity was attributed to the increased π-π and π-cation interactions of the dihalogenated phenyl ring with αHis323 and αArg339 during the initial step of binding. Complementary biological studies with selected compounds on the inhibition of ureolysis in whole Proteus mirabilis cells showed a very good potency (IC50 < 25 nM in phosphate-buffered saline (PBS) buffer and IC90 < 50 nM in a urine model) for monosubstituted N-phenyl derivatives. The crystal structure of S. pasteurii urease inhibited by one of the most active analogs revealed the recurrent selenation of the Cys322 thiolate, yielding an unprecedented Cys322-S-Se-Se chemical moiety.
Collapse
Affiliation(s)
- Katarzyna Macegoniuk
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Luca Mazzei
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Michele Cianci
- Department
of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Mirosław Giurg
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kamila Olech
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Małgorzata Burda-Grabowska
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Kaleta
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stefano Ciurli
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland,. Phone: +48 71 320
3344. Fax: +48 71 320 2427
| |
Collapse
|
6
|
Xie H, Qiang P, Wang Y, Xia F, Liu P, Li M. Discovery and mechanism studies of a novel ATG4B inhibitor Ebselen by drug repurposing and its anti-colorectal cancer effects in mice. Cell Biosci 2022; 12:206. [PMID: 36539845 PMCID: PMC9767854 DOI: 10.1186/s13578-022-00944-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cysteine protease ATG4B, a key autophagy protein, is an attractive target for colorectal cancer therapy. However, ATG4B inhibitors with higher efficiency, safety, and clear mechanism are still limited. In this study, we discovered ATG4B inhibitors based on the FDA-approved drug library through FRET-based high-throughput screening and gel-based analysis. Among the nine hits, compound Ebselen showed the most potent ATG4B inhibitory activity (IC50 = 189 nM) and exhibited controllable selectivity and structural optimizable possibility against ATG4A and caspases. We then performed mass spectrometry assay and cysteine mutations to confirm that Ebselen could covalently bind to ATG4B at Cys74. Moreover, Cys292 and Cys361 instead of Cys74 are responsible for the redox-oligomerization and efficient activity inhibition of ATG4B. Ultimately through cell culture and mouse xenograft tumor models, we established the impact of Ebselen on autophagy and tumor suppression via ATG4B inhibition other than apoptosis. These results suggest that old drug Ebselen as an ATG4B inhibitor through oxidative modification may be repurposed as a promising anti-colorectal cancer drug.
Collapse
Affiliation(s)
- Huazhong Xie
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Pengfei Qiang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Yao Wang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Fan Xia
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Peiqing Liu
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Min Li
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| |
Collapse
|
7
|
Kamińska K, Wojaczyńska E. Synthesis of new chiral N-heterocyclic diselenides and their application in the alkoxyselenylation reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj01434c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel chiral diselenides based on a cyclic or bicyclic backbone were applied in the highly diastereoselective methoxyselenylation of styrene.
Collapse
Affiliation(s)
- Karolina Kamińska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland
| |
Collapse
|
8
|
Meskers CJW, Franczak M, Smolenski RT, Giovannetti E, Peters GJ. Are we still on the right path(way)?: the altered expression of the pentose phosphate pathway in solid tumors and the potential of its inhibition in combination therapy. Expert Opin Drug Metab Toxicol 2022; 18:61-83. [PMID: 35238253 DOI: 10.1080/17425255.2022.2049234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The pentose phosphate pathway (PPP) branches from glycolysis and is crucial for cell growth, since it provides necessary compounds for anabolic reactions, nucleotide synthesis, and detoxification of reactive-oxygen-species (ROS). Overexpression of PPP enzymes has been reported in multiple cancer types and linked to therapy resistance, making their inhibition interesting targets for anti-cancer therapies. AREAS COVERED This review summarizes the extent of PPP upregulation across different cancer types, and the non-metabolic functions that PPP-enzymes might contribute to cancer initiation and maintenance. The effects of PPP-inhibition and their combinations with chemotherapeutics are summarized. We searched the databases provided by the University of Amsterdam to characterize the altered expression of the PPP across different cancer types, and to identify the effects of PPP-inhibition. EXPERT OPINION It can be concluded that there are synergistic and additive effects of PPP-inhibition and various classes of chemotherapeutics. These effects may be attributed to the increased susceptibility to ROS. However, the toxicity, low efficacy, and off-target effects of PPP-inhibitors make application in clinical practice challenging. Novel inhibitors are currently being developed, which could make PPP-inhibition a potential therapeutic strategy in the future, especially in combination with conventional chemotherapeutics and the inhibition of other metabolic pathways.
Collapse
Affiliation(s)
- Caroline J W Meskers
- Amsterdam University College, Amsterdam, The Netherlands.,Laboratory Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam location VUMC, Cancer Center Amsterdam, The Netherlands
| | - Marika Franczak
- Department of Biochemistry, Medical University of Gdansk, Poland
| | | | - Elisa Giovannetti
- Laboratory Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam location VUMC, Cancer Center Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam location VUMC, Cancer Center Amsterdam, The Netherlands.,Department of Biochemistry, Medical University of Gdansk, Poland
| |
Collapse
|
9
|
Santi C, Scimmi C, Sancineto L. Ebselen and Analogues: Pharmacological Properties and Synthetic Strategies for Their Preparation. Molecules 2021; 26:4230. [PMID: 34299505 PMCID: PMC8306772 DOI: 10.3390/molecules26144230] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.
Collapse
Affiliation(s)
| | | | - Luca Sancineto
- Group of Catalysis and Green Organic Chemistry, Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1, 06122 Perugia, Italy; (C.S.); (C.S.)
| |
Collapse
|
10
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
11
|
Polat IH, Tarrado-Castellarnau M, Bharat R, Perarnau J, Benito A, Cortés R, Sabatier P, Cascante M. Oxidative Pentose Phosphate Pathway Enzyme 6-Phosphogluconate Dehydrogenase Plays a Key Role in Breast Cancer Metabolism. BIOLOGY 2021; 10:85. [PMID: 33498665 PMCID: PMC7911610 DOI: 10.3390/biology10020085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
The pentose phosphate pathway (PPP) plays an essential role in the metabolism of breast cancer cells for the management of oxidative stress and the synthesis of nucleotides. 6-phosphogluconate dehydrogenase (6PGD) is one of the key enzymes of the oxidative branch of PPP and is involved in nucleotide biosynthesis and redox maintenance status. Here, we aimed to analyze the functional importance of 6PGD in a breast cancer cell model. Inhibition of 6PGD in MCF7 reduced cell proliferation and showed a significant decrease in glucose consumption and an increase in glutamine consumption, resulting in an important alteration in the metabolism of these cells. No difference in reactive oxygen species (ROS) production levels was observed after 6PGD inhibition, indicating that 6PGD, in contrast to glucose 6-phosphate dehydrogenase, is not involved in redox balance. We found that 6PGD inhibition also altered the stem cell characteristics and mammosphere formation capabilities of MCF7 cells, opening new avenues to prevent cancer recurrance after surgery or chemotherapy. Moreover, inhibition of 6PGD via chemical inhibitor S3 resulted in an induction of senescence, which, together with the cell cycle arrest and apoptosis induction, might be orchestrated by p53 activation. Therefore, we postulate 6PGD as a novel therapeutic target to treat breast cancer.
Collapse
Affiliation(s)
- Ibrahim H. Polat
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, 38700 CEDEX La Tronche, France;
- Department of Medicine, Hematology/Oncology, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Míriam Tarrado-Castellarnau
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28001 Madrid, Spain
| | - Rohit Bharat
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
| | - Jordi Perarnau
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
| | - Adrian Benito
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Roldán Cortés
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
| | - Philippe Sabatier
- Equipe Environnement et Prédiction de la Santé des Populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, 38700 CEDEX La Tronche, France;
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona, Spain; (I.H.P.); (M.T.-C.); (R.B.); (J.P.); (A.B.); (R.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28001 Madrid, Spain
| |
Collapse
|