1
|
Dian W, Zhang W, Yang L, Li J, Fu S, Ghorbanzadeh S. Linc00265 in human disease: A comprehensive analysis of its implications in human disease pathobiology and therapeutic prospect. Pathol Res Pract 2024; 260:155409. [PMID: 38917707 DOI: 10.1016/j.prp.2024.155409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Linc00265, a long intergenic non-coding RNA, has garnered significant research attention due to its involvement in various human diseases, particularly cancer. It exhibits tissue-specific and dysregulated expression across multiple cancer types, including blood malignancies, colorectal, gastric, bladder, osteosarcoma, and hepatocellular carcinoma. This dysregulation is often associated with tumor aggressiveness, metastasis, and poor prognosis. Moreover, aberrant expression of Linc00265 has been reported in inflammation-related diseases such as osteoarthritis and sepsis. Mechanistically, Linc00265 acts as a competing endogenous RNA (CeRNA), sequestering specific microRNAs and thereby modulating their downstream targets. Additionally, it influences critical signaling pathways by mediating the key effectors within these pathways. Importantly, the dysregulation of Linc00265 shows promising potential as a diagnostic and prognostic biomarker in several human diseases. This review aims to comprehensively analyze the expression patterns, regulatory mechanisms, and potential biomarker roles of Linc00265 in human diseases, with a particular focus on cancer. By elucidating the functional implications of Linc00265, we can deepen our understanding of its roles in human diseases, potentially paving the way for novel therapeutic interventions in disease management.
Collapse
Affiliation(s)
- Wankang Dian
- Department of Emergency, Third Hospital of Wuhan, Wuchang District, Wuhan, Hubei 430000, China
| | - Wenkai Zhang
- Department of Emergency, Third Hospital of Wuhan, Wuchang District, Wuhan, Hubei 430000, China
| | - Luyu Yang
- Department of Intensive Care, Third Hospital of Wuhan, Wuchang District, Wuhan, Hubei 430000, China.
| | - Jiaying Li
- School of Economics & Management, Hubei University of Science and Technology, Xianning 437100, China.
| | - Shouzhi Fu
- Department of Intensive Care, Third Hospital of Wuhan, Wuchang District, Wuhan, Hubei 430000, China
| | - Shadi Ghorbanzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
2
|
HUANG XIAOBI, CHEN CHUNYUAN, CHEN YONGYANG, ZHOU HONGLIAN, CHEN YONGHUA, HUANG ZHONG, XIE YULIU, LIU BAIYANG, GUO YUDONG, YANG ZHIXIONG, CHEN GUANGHUA, SU WENMEI. Silencing of the long non-coding RNA LINC00265 triggers autophagy and apoptosis in lung cancer by reducing protein stability of SIN3A oncogene. Oncol Res 2024; 32:1185-1195. [PMID: 38948024 PMCID: PMC11211643 DOI: 10.32604/or.2023.030771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/22/2023] [Indexed: 07/02/2024] Open
Abstract
Background Long non-coding RNAs are important regulators in cancer biology and function either as tumor suppressors or as oncogenes. Their dysregulation has been closely associated with tumorigenesis. LINC00265 is upregulated in lung adenocarcinoma and is a prognostic biomarker of this cancer. However, the mechanism underlying its function in cancer progression remains poorly understood. Methods Here, the regulatory role of LINC00265 in lung adenocarcinoma was examined using lung cancer cell lines, clinical samples, and xenografts. Results We found that high levels of LINC00265 expression were associated with shorter overall survival rate of patients, whereas knockdown of LINC00265 inhibited proliferation of cancer cell lines and tumor growth in xenografts. Western blot and flow cytometry analyses indicated that silencing of LINC00265 induced autophagy and apoptosis. Moreover, we showed that LINC00265 interacted with and stabilized the transcriptional co-repressor Switch-independent 3a (SIN3A), which is a scaffold protein functioning either as a tumor repressor or as an oncogene in a context-dependent manner. Silencing of SIN3A also reduced proliferation of lung cancer cells, which was correlated with the induction of autophagy. These observations raise the possibility that LINC00265 functions to promote the oncogenic activity of SIN3A in lung adenocarcinoma. Conclusions Our findings thus identify SIN3A as a LINC00265-associated protein and should help to understand the mechanism underlying LINC00265-mediated oncogenesis.
Collapse
Affiliation(s)
- XIAOBI HUANG
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - CHUNYUAN CHEN
- Department of Thoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - YONGYANG CHEN
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - HONGLIAN ZHOU
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - YONGHUA CHEN
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - ZHONG HUANG
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - YULIU XIE
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - BAIYANG LIU
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - YUDONG GUO
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - ZHIXIONG YANG
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - GUANGHUA CHEN
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - WENMEI SU
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| |
Collapse
|
3
|
Cui Y, Jiang N, Liu X, Huang J, Chen W. LINC00265 can Serve as a Potential Biomarker for Predicting Increased Disease Risk, Systemic Inflammation, Disease Severity and Poor Prognosis in Sepsis. Immunol Invest 2024; 53:640-651. [PMID: 38589355 DOI: 10.1080/08820139.2024.2332791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
BACKGROUND Identifying effective therapeutic targets is of great significance for improving early diagnosis and prognosis of sepsis. This study aims to explore the role of LINC00265 in sepsis. METHODS This is a retrospective study based on data collected from sepsis patients in 2017-2018. The basic clinical information of all subjects were collected and the survival of the sepsis patients within 28 days was monitored. The expression of LINC00265 was detected by qPCR. Receiver operating characteristics and Cox regression analysis were used to evaluate the diagnostic and prognostic value of LINC00265 in patients with sepsiss. RESULTS Compared with the healthy population, the expression of LINC00265 was significantly upregulated in patients with sepsis distinguishing them from healthy individuals. This expression was patients with sepsis positively correlated with the APACHEII score, tumor necrosis factor α, interleukin-6 (IL-6), IL-8, and IL-17, and negatively correlated with IL-10. LINC00265 expression was upregulated in the sepsis death group, predicting a lower rate in patients with patients with sepsis. The higher expression of LINC00265 was correlated with lower cumulative patient sursvival. CONCLUSION LINC00265 is upregulated in patients with sepsis, and its high expression predicts increased disease severity, heightened inflammation, and a poorer prognosis.
Collapse
Affiliation(s)
- Yiming Cui
- Department of Critical Care Medicine, Nanjing LuHe People's Hospital, Nanjing, China
| | - Nan Jiang
- Emergency Department, Daqing Oilfield General Hospital, Daqing, China
| | - Xin Liu
- Department of Infectious Diseases, The First People's Hospital of Neijiang, Neijiang, China
| | - Jianyuan Huang
- Department of General Surgery (Thyroid Gland/Blood Vessel), The First People's Hospital of Neijiang, Neijiang, China
| | - Wei Chen
- Department of Respiratory and Critical Care Medicine, Youyang Tujia and Miao Autonomous County People's Hospital, Chongqing, China
| |
Collapse
|
4
|
Entezari M, Tayari A, Paskeh MDA, Kheirabad SK, Naeemi S, Taheriazam A, Dehghani H, Salimimoghadam S, Hashemi M, Mirzaei S, Samarghandian S. Curcumin in treatment of hematological cancers: Promises and challenges. J Tradit Complement Med 2024; 14:121-134. [PMID: 38481552 PMCID: PMC10927384 DOI: 10.1016/j.jtcme.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2024] Open
Abstract
Hematological cancers include leukemia, myeloma and lymphoma and up to 178.000 new cases are diagnosed with these tumors each year. Different kinds of treatment including radiotherapy, chemotherapy, immunotherapy and stem cell transplantation have been employed in the therapy of hematological cancers. However, they are still causing death among patients. On the other hand, curcumin as an anti-cancer agent for the suppression of human cancers has been introduced. The treatment of hematological cancers using curcumin has been followed. Curcumin diminishes viability and survival rate of leukemia, myeloma and lymphoma cells. Curcumin stimulates apoptosis and G2/M arrest to impair progression of tumor. Curcumin decreases levels of matrix metalloproteinases in suppressing cancer metastasis. A number of downstream targets including VEGF, Akt and STAT3 undergo suppression by curcumin in suppressing progression of hematological cancers. Curcumin stimulates DNA damage and reduces resistance of cancer cells to irradiation. Furthermore, curcumin causes drug sensitivity of hematological tumors, especially myeloma. For targeted delivery of curcumin and improving its pharmacokinetic and anti-cancer features, nanostructures containing curcumin and other anti-cancer agents have been developed.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Armita Tayari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Medical Laboratory Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
5
|
Liu S, Li W, Liang L, Zhou Y, Li Y. The regulatory relationship between transcription factor STAT3 and noncoding RNA. Cell Mol Biol Lett 2024; 29:4. [PMID: 38172648 PMCID: PMC10763091 DOI: 10.1186/s11658-023-00521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3), as a key node in numerous carcinogenic signaling pathways, is activated in various tumor tissues and plays important roles in tumor formation, metastasis, and drug resistance. STAT3 is considered a potential subtarget for tumor therapy. Noncoding RNA (ncRNA) is a special type of RNA transcript. Transforming from "junk" transcripts into key molecules involved in cell apoptosis, growth, and functional regulation, ncRNA has been proven to be closely related to various epithelial-mesenchymal transition and drug resistance processes in tumor cells over the past few decades. Research on the relationship between transcription factor STAT3 and ncRNAs has attracted increased attention. To date, existing reviews have mainly focused on the regulation by ncRNAs on the transcription factor STAT3; there has been no review of the regulation by STAT3 on ncRNAs. However, understanding the regulation of ncRNAs by STAT3 and its mechanism is important to comprehensively understand the mutual regulatory relationship between STAT3 and ncRNAs. Therefore, in this review, we summarize the regulation by transcription factor STAT3 on long noncoding RNA, microRNA, and circular RNA and its possible mechanisms. In addition, we provide an update on research progress on the regulation of STAT3 by ncRNAs. This will provide a new perspective to comprehensively understand the regulatory relationship between transcription factor STAT3 and ncRNAs, as well as targeting STAT3 or ncRNAs to treat diseases such as tumors.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Lin Liang
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
6
|
Maimaitiyiming Y, Ye L, Yang T, Yu W, Naranmandura H. Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment. Int J Mol Sci 2022; 23:ijms23084442. [PMID: 35457264 PMCID: PMC9033105 DOI: 10.3390/ijms23084442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The coding regions account for only a small part of the human genome, and the remaining vast majority of the regions generate large amounts of non-coding RNAs. Although non-coding RNAs do not code for any protein, they are suggested to work as either tumor suppressers or oncogenes through modulating the expression of genes and functions of proteins at transcriptional, posttranscriptional and post-translational levels. Acute Lymphoblastic Leukemia (ALL) originates from malignant transformed B/T-precursor-stage lymphoid progenitors in the bone marrow (BM). The pathogenesis of ALL is closely associated with aberrant genetic alterations that block lymphoid differentiation and drive abnormal cell proliferation as well as survival. While treatment of pediatric ALL represents a major success story in chemotherapy-based elimination of a malignancy, adult ALL remains a devastating disease with relatively poor prognosis. Thus, novel aspects in the pathogenesis and progression of ALL, especially in the adult population, need to be further explored. Accumulating evidence indicated that genetic changes alone are rarely sufficient for development of ALL. Recent advances in cytogenic and sequencing technologies revealed epigenetic alterations including that of non-coding RNAs as cooperating events in ALL etiology and progression. While the role of micro RNAs in ALL has been extensively reviewed, less attention, relatively, has been paid to other non-coding RNAs. Herein, we review the involvement of linear and circular long non-coding RNAs in the etiology, maintenance, and progression of ALL, highlighting the contribution of these non-coding RNAs in ALL classification and diagnosis, risk stratification as well as treatment.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linyan Ye
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (W.Y.); (H.N.)
| | - Hua Naranmandura
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Correspondence: (W.Y.); (H.N.)
| |
Collapse
|