1
|
HajiEsmailpoor Z, Fayazi A, Teymouri M, Tabnak P. Role of long non-coding RNA ELFN1-AS1 in carcinogenesis. Discov Oncol 2024; 15:74. [PMID: 38478184 PMCID: PMC10937879 DOI: 10.1007/s12672-024-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
As one of the leading causes of death worldwide, cancer significantly burdens patients and the healthcare system. The role of long non-protein coding RNAs (lncRNAs) in carcinogenesis has been extensively studied. The lncRNA ELFN1-AS1 was discovered recently, and subsequent studies have revealed its aberrantly high expression in various cancer tissues. In vitro and in vivo experiments have consistently demonstrated the close association between increased ELFN1-AS1 expression and malignant tumor characteristics, particularly in gastrointestinal malignancies. Functional assays have further revealed the mechanistic role of ELFN1-AS1 as a competitive endogenous RNA for microRNAs, inducing tumor growth, invasive features, and drug resistance. Additionally, the investigation into the clinical implication of ELFN1-AS1 has demonstrated its potential as a diagnostic, therapeutic, and, notably, prognostic marker. This review provides a comprehensive summary of evidence regarding the involvement of ELFN1-AS1 in cancer initiation and development, highlighting its clinical significance.
Collapse
Affiliation(s)
| | - Alireza Fayazi
- Department of Metal Engineering, Cellular and Molecular Biology, Islamic Azad University Najafabad Branch, Isfahan, Iran
| | | | - Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Liang T, Zhu L, Yang J, Huang X, Lv M, Liu S, Wen Z, Su L, Zhou L. Identification of Key Genes Mediated by N6-Methyladenosine Methyltransferase METTL3 in Ischemic Stroke via Bioinformatics Analysis and Experiments. Mol Biotechnol 2023:10.1007/s12033-023-00991-w. [PMID: 38135832 DOI: 10.1007/s12033-023-00991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
The N6-methyladenosine (m6A) methyltransferase METTL3 has been demonstrated to function in mediating m6A modification, but its role in ischemic stroke (IS) has not been fully elucidated. This study aimed to explore the downstream mechanism of METTL3-mediated m6A modification in IS. GSE16561 and GSE22255 were downloaded from the Gene Expression Omnibus database for analysis of differentially expressed genes (DEGs), and it was found that METTL3 mRNA was downregulated in IS. Then quantitative real-time polymerase chain reaction was used to verify the downregulation of METTL3 mRNA in the peripheral blood of IS patients and the cortexes of transient middle cerebral artery occlusion mice. By combining DEGs with the m6A-downregulated genes in GSE142386 which performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) on METTL3-deficient and control endothelial cells, a total of 131 genes were identified as the METTL3-mediated m6A-modified genes in IS. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the genes were mainly involved in cytokine-cytokine receptor interaction, MAPK signaling pathway and NF-kappa B signaling pathway. CTSS and SBK1 were further screened as the key METTL3-mediated m6A-modified genes by random forest model and PCR validation. The ROC curve analysis showed that the combination with CTSS and SBK1 was of good diagnostic value for IS, with the AUC of 0.810, sensitivity of 0.780, and specificity of 0.773. Overall, we found that METTL3-mediated m6A modification may influence the occurrence and development of IS by participating in inflammation-related biological processes, and two key m6A-modified genes mediated by METTL3 (CTSS and SBK1) can be used as diagnostic biomarkers for IS.
Collapse
Affiliation(s)
- Tian Liang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Lulu Zhu
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jialei Yang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaolan Huang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Miao Lv
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shengying Liu
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zheng Wen
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Li Su
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Lifang Zhou
- Liuzhou Center for Disease Control and Prevention, Liuzhou, 545005, Guangxi, China.
| |
Collapse
|
3
|
Zou Q, Cao S. miR-4270 suppresses hepatocellular carcinoma progression by inhibiting DNMT3A-mediated methylation of HGFAC promoter. PeerJ 2023; 11:e16566. [PMID: 38077422 PMCID: PMC10704985 DOI: 10.7717/peerj.16566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Background miR-4270 is a regulatory factor has been linked with the progression of various cancers, such as nasopharyngeal carcinoma, hepatocellular carcinoma (HCC), and gastric cancer. However, the underlying mechanisms through which miR-4270 modulates HCC development are not fully understood. Methods miR-4270 expression levels were analyzed in various HCC cell lines and tissue samples. An online bioinformatics tool was then utilized to predict the miR-4270 target gene. The binding relationship between miR-4270 and its target gene DNMT3A was verified using dual-luciferase reporter and Ago2-RIP assays. Then, co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays were conducted to investigate the association between DNMT3A and the hepatocyte growth factor activator (HGFAC) promoter region. To assess the methylation level of the HGFAC promoter, methylation-specific PCR (MSP) was employed. Furthermore, rescue analyses were carried out to evaluate the functional relevance of miR-4270 and HGFAC in the modulation of the malignant properties of HCC cells. Finally, HepG2 cells overexpressing miR-4270 were subcutaneously injected into nude mice to estimate the impact of miR-4270 on the xenograft tumor growth of HCC. Results A substantial miR-4270 downregulation was revealed in HCC patient samples and cell lines. miR-4270 upregulation suppressed both cell proliferation and invasion while promoting apoptosis. At the molecular level, miR-4270 was found to bind to the 3'untranslated region (3'UTR) of DNMT3A, thereby inhibiting DNMT3A-mediated methylation of the HGFAC promoter. Functional assays indicated that inhibition of miR-4270 stimulated HCC cell growth, an effect counteracted by overexpression of HGFAC. In vivo assays further verified that miR-4270 effectively suppressed the progression of HCC xenograft tumors. Conclusions miR-4270 was found to mitigate the malignant characteristics of HCC by inhibiting DNMT3A-mediated methylation of the HGFAC promoter, suggesting a potential therapeutic avenue for the management of HCC.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Shasha Cao
- Department of Neonatology, Zibo Maternal and Child Health Hospital, Zibo, China
| |
Collapse
|
4
|
Zhang Y, Ru N, Xue Z, Gan W, Pan R, Wu Z, Chen Z, Wang H, Zheng X. The role of mitochondria-related lncRNAs in characterizing the immune landscape and supervising the prognosis of osteosarcoma. J Bone Oncol 2023; 43:100506. [PMID: 37868616 PMCID: PMC10585401 DOI: 10.1016/j.jbo.2023.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
Mitochondrial damage is related to the functional properties of immune cells as well as to tumorigenesis and progression. Nevertheless, there is an absence concerning the systematic evaluation of mitochondria-associated lncRNAs (MALs) in the immune profile and tumor microenvironment of osteosarcoma patients. Based on transcriptomic and clinicopathological data from the TARGET database, MAL-related patterns were ascertained by consistent clustering, and gene set variation analysis of the different patterns was completed. Next, a MAL-derived scoring system was created using Cox and LASSO regression analyses and validated by Kaplan-Meier and ROC curves. The GSEA, ESTIMATE, and CIBERSORT algorithms were utilized to characterize the immune status and underlying biological functions in the different MAL score groups. MAL-derived risk scores were well stabilized and outperformed traditional clinicopathological features to reliably predict 5-year survival in osteosarcoma cohorts. Moreover, patients with increased MAL scores were observed to suffer from poorer prognosis, higher tumor purity, and an immunosuppressive microenvironment. Based on estimated half-maximal inhibitory concentrations, the low-MAL score group benefited more from gemcitabine and docetaxel, and less from thapsigargin and sunitinib compared to the high-MAL score group. Pan-cancer analysis demonstrated that six hub MALs were strongly correlated with clinical outcomes, immune subtypes, and tumor stemness indices in various common cancers. Finally, we verified the expression patterns of hub MALs in osteosarcoma with qRT-PCR. In summary, we identified the crosstalk between prognostic MALs and tumor-infiltrating immune cells in osteosarcoma, providing a potential strategy to ameliorate clinical stratification management.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Nan Ru
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of the Chinese Ministry of Education, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and NewDrugs Research, Guangzhou, China
| | - Zhaowen Xue
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Wenyi Gan
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ruilin Pan
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zelin Wu
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Zihang Chen
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
- Department of psychology, Li Ka Shing Faculty of Medicine, State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Hang M, Tse MCL, Pang BPS, Bi X, Jin F, Lee CW, Wong AOL, Chan CB. Differential regulation of hepatic SH3 domain binding kinase 1 (SBK1) expression in mouse and goldfish. Gen Comp Endocrinol 2023; 344:114372. [PMID: 37652166 DOI: 10.1016/j.ygcen.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
SH3 domain binding kinase 1 (SBK1) is a serine/threonine kinase that belongs to the new kinase family (NFK) with limited information on its function. Previous studies reported that SBK1 plays a role in memory formation, lipid metabolism, and cancer cell progression. Nevertheless, the regulatory mechanism of Sbk1 expression in various tissues remains unknown. We report here that Sbk1 expression in mouse hepatocytes was downregulated by glucocorticoid, whereas saturated and unsaturated fatty acids were stimulators of Sbk1 expression. The regulatory role of glucocorticoid and fatty acid was further confirmed by the Sbk1 promoter assay, which aligned with the presence of several glucocorticoid-response elements (GRE) and peroxisome proliferator responsive elements (PPRE) in the mouse Sbk1 promoter. The inhibitory effect of glucocorticoids on hepatic Sbk1 expression and protein content could also be demonstrated in vivo after prednisolone injection. Moreover, the expression of SBK1 in goldfish (gfSBK1) was also sensitive to glucocorticoid suppression as their mouse orthologues. In contrast, insulin had a differential action on SBK1 expression that it promoted the expression of all SBK1 isoforms in the goldfish hepatocytes but inhibited Sbk1 expression in the mouse hepatocytes. Together, our findings indicate that SBK1 expression is hormone- and nutrient-sensitive with a species-specific response.
Collapse
Affiliation(s)
- Miaojia Hang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Margaret Chui Ling Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Brian Pak Shing Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Fanming Jin
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Anderson O L Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Li X, Wang Y, Zhang B, Mao R, Wang Z, Jiang T, Song H. Hsa_circ_0119412 Contributes to Development of Retinoblastoma by Targeting miR-186-5p/ELK4 Axis. Mol Biotechnol 2023; 65:1608-1618. [PMID: 36715861 DOI: 10.1007/s12033-023-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023]
Abstract
Increasing evidences indicate the crucial role of circRNAs in tumorigenesis, but little is understood about their molecular mechanism in retinoblastoma (RB). This paper was designed for exploring the circ_0119412 function in cases with RB and the potential mechanism. RT-qPCR was utilized to ascertain circ_0119412 and miR-186-5p levels in RB tissues and cells, and western blotting was used to quantify ELK4 in RB cells. In addition, CCK-8 and scratch assays were carried out for evaluation of cell proliferation and migration, respectively. Apoptosis-related proteins levels (Bax and Bcl-2) were measure by western blotting. Tumor growth in vivo was detected utilizing xenograft tumor experiment. The targeting relationship between circ_0119412, miR-186-5p, and ELK4 was validated using a dual-luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. In RB tissues and cells, Circ_0119412 and ELK4 expression were upregulated, while miR-186-5p expression was downregulated. In vitro assay revealed that downregulating circ_0119412 accelerated the cell apoptosis of RB cells and slowed down their migration and proliferation, and the in vivo assay indicated that circ_0119412 downregulation reduced the weight and volume of tumor in nude mice. In addition, miR-186-5p interference promoted the malignant behavior of RB cells, while ELK4 silencing showed an opposite trend. Mechanically, circ_0119412 can promote RB malignant phenotypes via miR-186-5p/ELK4 axis. Circ_0119412 was found to be upregulated in RB, and could accelerate the progression of RB via the miR-186-5p/ELK4 axis, indicating circ_0119412 may serve a promising clinical therapeutic target of RB.
Collapse
Affiliation(s)
- Xiaodong Li
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Ying Wang
- Ophthalmology Department, Changchun Bokangming Eye Hospital, Changchun, Jilin, 130000, China
| | - Baoying Zhang
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Rui Mao
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Zhongkui Wang
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Tingyu Jiang
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China
| | - Haibin Song
- Ophthalmology Department, Baicheng Central Hospital, No.111 Zhongxing West Road, Taobei District, Baicheng, Jilin, 137000, China.
| |
Collapse
|
7
|
Chen X, Sun Z, Zhou S, Jiang W, Li J, Song G, Zhu X. SH3 domain-binding kinase 1 promotes proliferation and inhibits apoptosis of cervical cancer via activating the Wnt/β-catenin and Raf/ERK1/2 signaling pathways. Mol Carcinog 2023; 62:1147-1162. [PMID: 37132991 DOI: 10.1002/mc.23552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
SH3 domain-binding kinase 1 (SBK1), is a member of the serine/threonine protein kinases family, and was confirmed to be upregulated in cervical cancer in our previous study. Nonetheless, the role of SBK1 in regulating cancer occurrence and development is unclear. In this study, the stable SBK1-knockdown and -overexpressed cell models were constructed by plasmid transfection technology. Cell viability and growth were assessed through CCK-8, colony formation, and BrdU methods. Cell cycle and apoptosis were analyzed by flow cytometry. The JC-1 staining assay was used to explore mitochondrial membrane potential. The scratch and Transwell assays were used to evaluate the cell metastatic ability. The nude mice models were utilized to explore the SBK1 expression affecting tumor growth in vivo. Our research indicated a high expression of SBK1 both in tissues and cells of cervical cancer. The proliferative, migratory, as well as invasive capacities of cervical cancer cells, were suppressed, and apoptosis was enhanced after SBK1 silence, whereas SBK1 upregulation led to opposite results. In addition, Wnt/β-catenin and Raf/ERK1/2 pathways were activated by SBK1 upregulation. Furthermore, downregulation of c-Raf or β-catenin, reversed the proliferation promotion and apoptosis inhibition effects in SBK1-overexpressed cells. The same results were observed with the use of the specific Raf inhibitor. SBK1 overexpression also contributed to tumor growth in vivo. Overall, SBK1 played a vital role in cervical tumorigenesis via activating the Wnt/β-catenin and Raf/ERK1/2 pathways.
Collapse
Affiliation(s)
- Xin Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengwei Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjie Zhou
- Department of Obstetrics and Gynecology, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jieyi Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gendi Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Obstetrics and Gynecology, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
8
|
Akrami H, Gholami H, Fattahi MR, Zeraatiannejad M. Effect of miR-4270 Suppression on Migration in Hepatocellular Carcinoma Cell Line (HepG2). IRANIAN BIOMEDICAL JOURNAL 2023; 27:167-72. [PMID: 37430248 PMCID: PMC10507290 DOI: 10.61186/ibj.3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/23/2023] [Indexed: 12/17/2023]
Abstract
Background Liver transplantation and surgical resection are two major strategies for treatment of hepatocellular carcinoma (HCC) patients. One approach to treating HCC is the suppression of metastasis to other tissues. Herein, we aimed to study the effect of miR-4270 inhibitor on migration of HepG2 cells as well as activity of matrix metalloproteinase (MMP) these cells in order to find a strategy to suppress metastasis in future. Methods HepG2 cells were treated with 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 nM of miR-4270 inhibitor, and then the cell viability was measured by trypan blue staining. Afterwards, cell migration and MMP activity of HepG2 cells were assessed by wound healing assay and zymography, respectively. The MMP gene expression was determined by real-time reverse transcription polymerase chain reaction. Results Results showed that miR-4270 inhibitor decreased the cell viability of HepG2 cells in a concentration-dependent manner. Also, inhibition of the miR-4270 reduced invasion, MMP activity, and expression of MMP genes in HepG2 cells, respectively. Conclusion Our findings suggest that miR-4270 inhibitor decreases in vitro migration, which could help find a new approach for HCC therapy patients.
Collapse
Affiliation(s)
- Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Gholami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
9
|
Akrami H, Gholami H, Fattahi MR, Zeraatiannejad M. Effect of miR-4270 Suppression on Migration in Hepatocellular Carcinoma Cell Line (HepG2). IRANIAN BIOMEDICAL JOURNAL 2023; 27:167-72. [PMID: 37430248 PMCID: PMC10507290 DOI: 10.52547/ibj.3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/23/2023] [Indexed: 07/12/2023]
Abstract
Background Liver transplantation and surgical resection are two major strategies for treatment of hepatocellular carcinoma (HCC) patients. One approach to treating HCC is the suppression of metastasis to other tissues. Herein, we aimed to study the effect of miR-4270 inhibitor on migration of HepG2 cells as well as activity of matrix metalloproteinase (MMP) these cells in order to find a strategy to suppress metastasis in future. Methods HepG2 cells were treated with 0, 10, 20, 30, 40, 50, 60, 70, 80, and 90 nM of miR-4270 inhibitor, and then the cell viability was measured by trypan blue staining. Afterwards, cell migration and MMP activity of HepG2 cells were assessed by wound healing assay and zymography, respectively. The MMP gene expression was determined by real-time reverse transcription polymerase chain reaction. Results Results showed that miR-4270 inhibitor decreased the cell viability of HepG2 cells in a concentration-dependent manner. Also, inhibition of the miR-4270 reduced invasion, MMP activity, and expression of MMP genes in HepG2 cells, respectively. Conclusion Our findings suggest that miR-4270 inhibitor decreases in vitro migration, which could help find a new approach for HCC therapy patients.
Collapse
Affiliation(s)
- Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hanieh Gholami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
10
|
lncRNA ELFN1-AS1 promotes proliferation, migration and invasion and suppresses apoptosis in colorectal cancer cells by enhancing G6PD activity. Acta Biochim Biophys Sin (Shanghai) 2023; 55:649-660. [PMID: 36786074 DOI: 10.3724/abbs.2023010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumour cells change their metabolic patterns to support high proliferation rates and cope with oxidative stress. The lncRNA ELFN1-AS1 is highly expressed in a wide range of cancers and is essential to the proliferation and apoptosis of tumour cells. Nevertheless, its function in the metabolic reprogramming of tumour cells is unclear. Here we show that ELFN1-AS1 promotes glucose consumption as well as lactate and NADPH production. Database searching, bioinformatics analysis, RNA immunoprecipitation (RIP) and RNA pull-down assays show that ELFN1-AS1 enhances glucose-6-phosphate dehydrogenase ( G6PD) expression and activates the pentose phosphate pathway (PPP) by promoting TP53 degradation. In addition, luciferase reporter assay and chromatin immunoprecipitation (ChIP) show that YY1 binds to the ELFN1-AS1 promoter to promote transcriptional activation of ELFN1-AS1. Consistent with the in vitro experiments, knockdown of ELFN1-AS1 impedes the growth of tumours transplanted into mice by inhibiting the expression of G6PD. In conclusion, this study reveals that ELFN1-AS1 activates the PPP, and validates the regulatory role of the YY1/ ELFN1-AS1/ TP53/ G6PD axis in colorectal cancer.
Collapse
|
11
|
Long non-coding RNAs involved in retinoblastoma. J Cancer Res Clin Oncol 2023; 149:401-421. [PMID: 36305946 DOI: 10.1007/s00432-022-04398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Retinoblastoma (RB) is the most common childhood tumor that can occur in the retina and develop in a sporadic or heritable form. Although various traditional treatment options have been used for patients with RB, identifying novel strategies for childhood cancers is necessary. MATERIAL AND METHODS Recently, molecular-based targeted therapies have opened a greater therapeutic window for RB. Long non-coding RNAs (lncRNAs) presented a potential role as a biomarker for the detection of RB in various stages. CONCLUSION LncRNAs by targeting several miRNA/transcription factors play critical roles in the stimulation or suppression of RB. In this review, we summarized recent progress on the functions of tumor suppressors or oncogenes lncRNAs in RB.
Collapse
|
12
|
Peng S, Luo Y, Chen L, Dai K, Wang Q. lncRNA ELFN1-AS1 enhances the progression of colon cancer by targeting miR-4270 to upregulate AURKB. Open Med (Wars) 2022; 17:1999-2012. [PMID: 36561847 PMCID: PMC9743200 DOI: 10.1515/med-2022-0582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022] Open
Abstract
The oncogenic role of lncRNA ELFN1-AS1 has been described in different cancers, including colon cancer (CC). However, how ELFN1-AS1 regulates CC malignancy remains unclear. In this study, ELFN1-AS1, AURKB, and miR-4270 expression levels in CC cells and tissues were determined using RT-qPCR and western blotting. CCK-8 and wound healing assays were also performed to analyze alterations in CC cell proliferation and migration. The expression of apoptosis-related proteins (Bax and Bcl-2) was determined via western blot analysis. RNA immunoprecipitation (RIP) assays coupled with luciferase reporter assays were employed to verify the relationship between miR-4270, ELFN1-AS1, and AURKB. An in vivo assay was performed using xenograft tumors in mice to detect the change of tumor growth. It was found that AURKB and ELFN1-AS1 expression was upregulated, whereas miR-4270 was downregulated in CC cells and tissues. ELFN1-AS1 silencing exhibited anti-proliferative, anti-migratory, and pro-apoptotic effects in CC cells. The tumor-suppressive effect of ELFN1-AS1 silencing was verified using in vivo assays. MiR-4270 was predicted to be a target of ELFN1-AS1 and AURKB as a target of miR-4270. Their interactions were further elucidated using luciferase reporter and RNA RIP assays. More importantly, treatment with a miR-4270 inhibitor not only rescued the tumor-suppressing effect of ELFN1-AS1 silencing but also abrogated the tumor suppressor functions of AURKB silencing in CC cells. Taken together, the ELFN1-AS1/miR-4270/AURKB axis facilitates CC tumorigenesis; therefore, targeting this axis might be a promising intervention in preventing CC progression.
Collapse
Affiliation(s)
- Shuangqin Peng
- Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China
| | - Yanjun Luo
- Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China
| | - Lijuan Chen
- Department of Pediatrics, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China
| | - Kang Dai
- R&D Department, Wensheng Biotechnology Co., Ltd., Wuhan 430000, Hubei, China
| | - Qin Wang
- Department of Pathology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, No. 745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, China
| |
Collapse
|
13
|
Manukonda R, Yenuganti VR, Nagar N, Dholaniya PS, Malpotra S, Attem J, Reddy MM, Jakati S, Mishra DK, Reddanna P, Poluri KM, Vemuganti GK, Kaliki S. Comprehensive Analysis of Serum Small Extracellular Vesicles-Derived Coding and Non-Coding RNAs from Retinoblastoma Patients for Identifying Regulatory Interactions. Cancers (Basel) 2022; 14:cancers14174179. [PMID: 36077715 PMCID: PMC9454787 DOI: 10.3390/cancers14174179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The present study employed nanoparticle tracking analysis, transmission electron microscopy, immunoblotting, RNA sequencing, and quantitative real-time PCR validation to characterize serum-derived small extracellular vesicles (sEVs) from RB patients and age-matched controls. Bioinformatics methods were used to analyze functions, and regulatory interactions between coding and non-coding (nc) sEVs RNAs. The results revealed that the isolated sEVs are round-shaped with a size < 150 nm, 5.3 × 1011 ± 8.1 particles/mL, and zeta potential of 11.1 to −15.8 mV, and expressed exosome markers CD9, CD81, and TSG101. A total of 6514 differentially expressed (DE) mRNAs, 123 DE miRNAs, and 3634 DE lncRNAs were detected. Both miRNA-mRNA and lncRNA-miRNA-mRNA network analysis revealed that the cell cycle-specific genes including CDKNI1A, CCND1, c-MYC, and HIF1A are regulated by hub ncRNAs MALAT1, AFAP1-AS1, miR145, 101, and 16-5p. Protein-protein interaction network analysis showed that eye-related DE mRNAs are involved in rod cell differentiation, cone cell development, and retinol metabolism. In conclusion, our study provides a comprehensive overview of the RB sEV RNAs and regulatory interactions between them.
Collapse
Affiliation(s)
- Radhika Manukonda
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
- Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Vengala Rao Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India or
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Shivani Malpotra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
- Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Jyothi Attem
- School of Medical Sciences, Science Complex, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Mamatha M. Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India or
| | - Saumya Jakati
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India or
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Geeta K. Vemuganti
- School of Medical Sciences, Science Complex, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
- Correspondence: ; Tel.: +91-40-68102502
| |
Collapse
|
14
|
Identification of Immune-Related lncRNAs for Predicting Prognosis and Immune Landscape Characteristics of Uveal Melanoma. JOURNAL OF ONCOLOGY 2022; 2022:7680657. [DOI: 10.1155/2022/7680657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022]
Abstract
Immune-related genes and long noncoding RNAs (lncRNAs) have a significant impact on the prognostic value and immunotherapeutic response of uveal melanoma (UM). Therefore, we tried to develop a prognostic model on the basis of irlncRNAs for predicting prognosis and response on immunotherapy of UM patients. We identified 1,664 immune-related genes and 2,216 immune-related lncRNAs (irlncRNAs) and structured a prognostic model with 3 prognostic irlncRNAs by co-expression analysis, univariable Cox, LASSO, and multivariate Cox regression analyses. The Kaplan–Meier analysis indicated that patients in the high-risk group had a shorter survival time than patients in the low-risk group. The ROC curves demonstrated the high sensitivity and specificity of the signature for survival prediction, and the one-, three-, and five-year AUC values, respectively, were 0.974, 0.929, and 0.941 in the entire set. Cox regression analysis, C-index, DCA, PCA analysis, and nomogram were also applied to assess the validity and accuracy of the risk model. The GO and KEGG enrichment analyses indicated that this signature is significantly related to immune-related pathways and molecules. Finally, we investigated the immunological characteristics and immunotherapy of the model and identified various novel potential compounds in the model for UM. In summary, we constructed a new model on the basis of irlncRNAs that can accurately predict prognosis and response on immunotherapy of UM patients, which may provide valuable clinical applications in antitumor immunotherapy.
Collapse
|
15
|
Hu ZW, Sun W, Wen YH, Ma RQ, Chen L, Chen WQ, Lei WB, Wen WP. CD69 and SBK1 as potential predictors of responses to PD-1/PD-L1 blockade cancer immunotherapy in lung cancer and melanoma. Front Immunol 2022; 13:952059. [PMID: 36045683 PMCID: PMC9421049 DOI: 10.3389/fimmu.2022.952059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPD-1/PD-L1 blockade is a promising immunotherapeutic strategy with the potential to improve the outcomes of various cancers. However, there is a critically unmet need for effective biomarkers of response to PD-1/PD-L1 blockade.Materials and methodsPotential biomarkers of response to PD-1/PD-L1 blockade were obtained from the Cancer Treatment Response gene signature Database (CTR-DB). A comprehensive pan-cancer analysis was done on The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. Correlations between gene expression and infiltration by immune cells were assessed using TIMER, EPIC, MCPcounter, xCell, CIBERSORT, and quanTIseq. Immunophenoscore (IPS) was used to assess the potential application of the biomarkers to all TCGA tumors.ResultsAnalysis of CTR-DB data identified CD69 and SBK1 as potential biomarkers of response to PD-1/PD-L1 blockade. Correlation analysis revealed that in various TCGA cancer datasets, CD69 expression level correlated positively with most immune checkpoints and tumor-infiltrating immune cells, while SBK1 expression level correlated negatively with infiltrating immune cells. IPS analysis demonstrated the ability of CD69 and SBK1 to predict PD-1/PD-L1 blockade responses in various cancers.ConclusionCD69 and SBK1 are potential predictors of response to cancer immunotherapy using PD-1/PD-L1 blockade. These biomarkers may guide treatment decisions, leading to precise treatment and minimizing the waste of medical resources.
Collapse
Affiliation(s)
- Zhang-Wei Hu
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Wei Sun
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Yi-Hui Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Ren-Qiang Ma
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Lin Chen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Wen-Qing Chen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Wen-Bin Lei
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei-Ping Wen, ; Wen-Bin Lei,
| | - Wei-Ping Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
- Department of Otolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wei-Ping Wen, ; Wen-Bin Lei,
| |
Collapse
|
16
|
Ma G, Li G, Gou A, Xiao Z, Xu Y, Song S, Guo K, Liu Z. Long non-coding RNA ELFN1-AS1 in the pathogenesis of pancreatic cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:877. [PMID: 34164511 PMCID: PMC8184490 DOI: 10.21037/atm-21-2376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Long non-coding ribonucleic acid (lncRNA) ELFN1 antisense RNA 1 (ELFN1-AS1) is involved in the pathogenesis of many different cancers. But the current research on the relationship between lncRNA ELFN1-AS1 and pancreatic cancer is still blank. Methods We investigated the role of lncRNA ELFN1-AS1 in the pathogenesis of pancreatic cancer using bioinformatics, in vitro and in vivo experiments in pancreatic cancer cell lines, and surgically removed clinical samples. Results Through bio-information analysis and in vitro and in vivo experiments, we found that LncRNA ELFN1-AS1 was highly enriched in pancreatic cancer data sets and highly expressed in pancreatic cancer cell lines and tissues. The knocking down of lncRNA ELFN1-AS1 significantly increased cancer cell death and growth arrest. Xenografts in nude mice showed that the growth of SW1990 cells in the mice group with a stable knock down of lncRNA ELFN1-AS1 was significantly slower than that in the control group. Conclusions The experimental results show that the expression of LncRNA ELFN1-AS1 is related to the growth and invasion ability of pancreatic cancer cells. By further studying the function of LncRNA ELFN1-AS1 in pancreatic cancer, LncRNA ELFN1-AS1 was found to be involved in the epithelial–mesenchymal transition process in pancreatic cancer.
Collapse
Affiliation(s)
- Gang Ma
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Guichen Li
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Anjiang Gou
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Zhihuan Xiao
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yuanhong Xu
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shaowei Song
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Kejian Guo
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Hao W, Zhu Y, Wang H, Guo Y. miR-4270 Modulates the Irradiation-Sensitivity of Nasopharyngeal Carcinoma Cells through Modulation of p53 in Vivo. TOHOKU J EXP MED 2021; 254:63-70. [PMID: 34078755 DOI: 10.1620/tjem.254.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The lowered sensitivity to irradiation considerably impacted on the prognosis of nasopharyngeal carcinoma treatments. This study aimed to explore the functions of miR-4270 in nasopharyngeal carcinoma. Bioinformatic analysis was performed online accessing GSE139164 dataset to screen the top 30 differential microRNAs in nasopharyngeal carcinoma patients with radio-sensitivity. Cancer cell lines, 6-10B and 5-8F, were cultured and measured for expression of miR-4270 and TP53 (the gene of the tumor suppressor protein p53) with the normal nasopharyngeal epithelial cells as a control. The miR-4270 expression was regulated in cells via the introduction of miR-4270 inhibitor or mimic in different concentrations (25, 50, 100 nmol/L). Targetscan predicted the target of miR-4270 and the bindings while luciferase was used to confirm this. CCK8 methods were used to evaluate the irradiation sensitivity of the cells after exposure to increasing X-Ray irradiation. RT-PCR detected the RNA expression and Western blot examined the protein expression of p53. Flow cytometry detected the cell apoptosis rates respectively. miR-4270 is among the top differential microRNAs between the radio-sensitive and -resistant patients. In vivo, miR-4270 expression was lower in cancer cell lines. The inhibition of miR-4270 raised the cell sensitivity to irradiation. miR-4270 negatively mediated TP53 and targeted TP53. Additionally, p53 increased cell sensitivity to irradiation and modulated by miR-4270 in nasopharyngeal carcinoma cells. In conclusion, this study first reports that miR-4270 is lower in the radio-sensitive patients and modulated the irradiation-sensitivity of nasopharyngeal carcinoma cells through modulation of p53 in vivo.
Collapse
Affiliation(s)
- Wenwei Hao
- Department of Otolaryngology, Tianjin Medical University General Hospital
| | | | - Haowei Wang
- Department of Otolaryngology, Tianjin Medical University General Hospital
| | - Ying Guo
- Department of Otolaryngology, Tianjin Medical University General Hospital
| |
Collapse
|