1
|
Xu K, Zhang C, WeiGao, Shi Y, Pu S, Huang N, Dou W. The involvement of circRNAs in molecular processes and their potential use in therapy and diagnostics for glioblastoma. Gene 2025; 940:149214. [PMID: 39756549 DOI: 10.1016/j.gene.2025.149214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Glioblastoma, a type of brain tumor, is well-known for its aggressive nature and can affect individuals of all ages. Glioblastoma continues to be a difficult cancer to manage because of various resistance mechanisms. The blood-brain barrier restricts the delivery of drugs, and the heterogeneity of tumors, along with overlapping signaling pathways, complicates its effective treatment. Patients diagnosed with glioblastoma typically survive for no more than 2 years. Innovative therapies and early diagnostic tools for glioblastoma are essential. Circular RNAs have emerged as significant contributors to glioblastoma, and influence cancer mechanisms such as cell growth, death, invasion, and resistance to treatment. The circRNAs presence makes them essential candidates for treatment and practical diagnostic tools for glioblastoma. This review highlights the therapeutic approaches and diagnostic potential of circRNAs and explores their role in the molecular mechanisms underlying glioblastoma.
Collapse
Affiliation(s)
- Kanghong Xu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Chunlai Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China; The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - WeiGao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Yushan Shi
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Shuangshuang Pu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China
| | - Ning Huang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, PR China.
| | - Weitao Dou
- Department of Medical Intervention, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China.
| |
Collapse
|
2
|
Thamjamrassri P, Ariyachet C. Circular RNAs in Cell Cycle Regulation of Cancers. Int J Mol Sci 2024; 25:6094. [PMID: 38892280 PMCID: PMC11173060 DOI: 10.3390/ijms25116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer has been one of the most problematic health issues globally. Typically, all cancers share a common characteristic or cancer hallmark, such as sustaining cell proliferation, evading growth suppressors, and enabling replicative immortality. Indeed, cell cycle regulation in cancer is often found to be dysregulated, leading to an increase in aggressiveness. These dysregulations are partly due to the aberrant cellular signaling pathway. In recent years, circular RNAs (circRNAs) have been widely studied and classified as one of the regulators in various cancers. Numerous studies have reported that circRNAs antagonize or promote cancer progression through the modulation of cell cycle regulators or their associated signaling pathways, directly or indirectly. Mostly, circRNAs are known to act as microRNA (miRNA) sponges. However, they also hold additional mechanisms for regulating cellular activity, including protein binding, RNA-binding protein (RBP) recruitment, and protein translation. This review will discuss the current knowledge of how circRNAs regulate cell cycle-related proteins through the abovementioned mechanisms in different cancers.
Collapse
Affiliation(s)
- Pannathon Thamjamrassri
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Biochemistry Program, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaiyaboot Ariyachet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Zhou Q, Li T, Li X, Wei L, Luo J, Bai L, Duan WJ, Xie B, Sun B, Chen JX, Dai Z, Chen J. Dual miRNA-Triggered DNA Walker Assisted by APE1 for Specific Recognition of Tumor Cells. Anal Chem 2024; 96:6774-6783. [PMID: 38634427 DOI: 10.1021/acs.analchem.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The identification of a specific tumor cell is crucial for the early diagnosis and treatment of cancer. However, it remains a challenge due to the limited sensitivity and accuracy, long response time, and low contrast of the recent approaches. In this study, we develop a dual miRNA-triggered DNA walker (DMTDW) assisted by APE1 for the specific recognition of tumor cells. miR-10b and miR-155 were selected as the research models. Without miR-10b and miR-155 presence, the DNA walker remains inactive as its walking strand of W is locked by L1 and L2. After miR-10b and miR-155 are input, the DNA walker is triggered as miR-10b and miR-155 bind to L1 and L2 of W-L1-L2, respectively, unlocking W. The DNA walker is driven by endogenous APE1 that is highly catalytic and is highly expressed in the cytoplasm of tumor cells but barely expressed in normal cells, ensuring high contrast and reaction efficiency for specific recognition of tumor cells. Dual miRNA input is required to trigger the DNA walker, making this strategy with a high accuracy. The DMTDW strategy exhibited high sensitivity for miRNA analysis with a detection limit of 44.05 pM. Living cell-imaging experiments confirmed that the DMTDW could effectively respond to the fluctuation of miRNA and specifically identified MDA-MB-231 cells from different cell lines. The proposed DMTDW is sensitive, rapid, and accurate for specific tumor cell recognition. We believe that the DMTDW strategy can become a powerful diagnostic tool for the specific recognition of tumor cells.
Collapse
Affiliation(s)
- Qianying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Tong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xidong Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Lintao Wei
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jiaxin Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Lingling Bai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Jun Duan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Baoping Xie
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Bin Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
4
|
DeSouza NR, Nielsen KJ, Jarboe T, Carnazza M, Quaranto D, Kopec K, Suriano R, Islam HK, Tiwari RK, Geliebter J. Dysregulated Expression Patterns of Circular RNAs in Cancer: Uncovering Molecular Mechanisms and Biomarker Potential. Biomolecules 2024; 14:384. [PMID: 38672402 PMCID: PMC11048371 DOI: 10.3390/biom14040384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Circular RNAs (circRNAs) are stable, enclosed, non-coding RNA molecules with dynamic regulatory propensity. Their biogenesis involves a back-splicing process, forming a highly stable and operational RNA molecule. Dysregulated circRNA expression can drive carcinogenic and tumorigenic transformation through the orchestration of epigenetic modifications via extensive RNA and protein-binding domains. These multi-ranged functional capabilities have unveiled extensive identification of previously unknown molecular and cellular patterns of cancer cells. Reliable circRNA expression patterns can aid in early disease detection and provide criteria for genome-specific personalized medicine. Studies described in this review have revealed the novelty of circRNAs and their biological ss as prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Kate J. Nielsen
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Kaci Kopec
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Robert Suriano
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Division of Natural Sciences, University of Mount Saint Vincent, Bronx, NY 10471, USA
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (N.R.D.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
5
|
Li K, Li T, Yu Z, Yuan Q, Qing Y. Hsa_circ_0124554 may serve as a biomarker for the diagnosis of colorectal cancer: An observational study. Medicine (Baltimore) 2023; 102:e36353. [PMID: 38050241 PMCID: PMC10695620 DOI: 10.1097/md.0000000000036353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
Circular RNAs (circRNAs) play important roles in the occurrence and development of cancer, and have been shown with diagnostic values in various cancers. The latest research showed that hsa_circ_0124554 is closely related to liver metastasis and vascular invasion in colorectal cancer (CRC). This study aimed to investigate whether hsa_circ_0124554 can be used as a diagnostic marker for CRC. In this study, quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to detect hsa_circ_0124554 expression levels in 40 pairs of CRC tissues and adjacent non-tumor intestinal tissues derived from CRC patients and 32 paired plasma specimens. The relationship between the expression of hsa_circ_0124554 and the clinicopathological features of CRC patients was analyzed by t-test and chi-square test. Receiver operating characteristic (ROC) curve analysis was established to explore the diagnostic value of hsa_circ_0124554 in CRC. The results showed that hsa_circ_0124554 was substantially expressed in CRC tissues (P < .001) and that there were variations in pathological differentiation, perineural invasion and invasion. The expression of hsa_circ_0124554 in CRC patients was considerably higher than healthy controls (P < .001). The area under the receiver operating characteristic (ROC) curve (AUC) of tissue and plasma hsa_circ_0124554 was 0.703 and 0.742. The AUC of the expression combined hsa_circ_0124554, carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) had the best diagnostic performance (AUC = 0.899) in the CRC groups, and the sensitivity and specificity were 0.844 and 0.844. The expression of hsa_circ_0124554 was up-regulated in the tissues and plasma in CRC patients, which may be a new biomarker for the diagnosis of CRC. The combination hsa_circ_0124554, CEA and CA199 has the best diagnostic efficacy in CRC.
Collapse
Affiliation(s)
- Kexin Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Tong Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhuocheng Yu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qingqing Yuan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yanping Qing
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Ahmadi M, Morshedzadeh F, Ghafouri-Fard S. Circular RNA_0000285: A novel double-edged sword circular RNA in human malignancies. Pathol Res Pract 2023; 251:154900. [PMID: 37871444 DOI: 10.1016/j.prp.2023.154900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Circular RNAs (circRNAs) are a class of RNA molecules that are characterized by their covalently closed structure, which is formed through a process of back splicing of the precursor mRNA. Abnormal expression of circRNAs has been shown to indirectly affect their interaction with microRNAs (miRNAs), thereby modulating gene transcription. One such circRNA, circ_0000285, is known to be dysregulated in various cancers and human diseases. This circRNA is derived from the HIPK3 gene on chromosome 11 and acts as a competing endogenous RNA for several miRNAs, including miR-654-3p, miR-197-3p, miR-1278, miR-582-3p, and miR-599. Notably, circ_0000285 has been linked to poor overall survival and several clinicopathological features in multiple human cancers. In this review, we present a comprehensive summary of the oncogenic effect of circ_0000285 in various cancers, drawing on experiment performed on cell lines, animals, and human tissues. Furthermore, we predicted potential miRNAs and RNA-binding proteins that may interact with circ_0000285, thereby providing new insights for further studies.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Li Q, Wang T, Wang X, Ge XY, Yang T, Bai G, Wang W. Inhibition of sepsis-induced acute kidney injury via the circITCH-miR-579-3p-ZEB2 axis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1217-1225. [PMID: 36999488 DOI: 10.1002/tox.23682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 05/18/2023]
Abstract
Circular RNAs (circRNAs) are linked to the regulation of sepsis-induced acute kidney injury (AKI). However, the function of circITCH in the development of sepsis-induced AKI is still unclear. The levels of circITCH, miR-579-3p and ZEB2 were examined by real-time PCR and immunoblotting. Then, the roles of circITCH in cell viability, apoptosis, and inflammation in lipopolysaccharide (LPS)-treated HK-2 cells were evaluated. The further mechanism was investigated using rescue assays. CircITCH was downregulated in septic AKI patients and LPS-triggered HK-2 cells. CircITCH overexpression restored cell viability in LPS-treated HK-2 cells and restrained apoptosis and inflammatory cytokine production. CircITCH negatively regulated miR-579-3p, thereby upregulating ZEB2 expression. Taken together, circITCH alleviates LPS-induced HK-2 cell injury by regulating miR-579-3p/ZEB2 signal axis, which provides a theoretical basis for AKI therapy.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tianyi Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ximin Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xin-Yu Ge
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Guang Bai
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
8
|
Wu K, Tan J, Yang C. Recent advances and application value of circRNA in neuroblastoma. Front Oncol 2023; 13:1180300. [PMID: 37091173 PMCID: PMC10116045 DOI: 10.3389/fonc.2023.1180300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Neuroblastoma (NB) is children’s most prevalent solid malignant tumor, accounting for 15% of childhood cancer mortality. Non-coding RNA is important in NB pathogenesis. As a newly identified non-coding RNA, abnormal regulation (abnormal up-regulation or down-regulation) of the circRNAs expression is implicated in the tumorigenesis of various tumors, including NB. CircRNAs primarily regulate the expression of microRNA (miRNA) target genes by microRNA (miRNA) sponge adsorption. Clinical evidence suggests that the expression of certain circRNAs is associated with the prognosis and clinical features of NB and hence may be exploited as a biomarker or therapeutic target. This review examines circRNAs that have been demonstrated to play a function in NB.
Collapse
Affiliation(s)
- Ke Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Juan Tan
- Child Healthcare Department, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yang
- Child Healthcare Department, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Surgical Oncology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chao Yang,
| |
Collapse
|
9
|
Karami Fath M, Pourbagher Benam S, Kouhi Esfahani N, Shahkarami N, Shafa S, Bagheri H, Shafagh SG, Payandeh Z, Barati G. The functional role of circular RNAs in the pathogenesis of retinoblastoma: a new potential biomarker and therapeutic target? Clin Transl Oncol 2023:10.1007/s12094-023-03144-2. [PMID: 37000290 DOI: 10.1007/s12094-023-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
Retinoblastoma (RB) is a common cancer in infants and children. It is a curable disease; however, a delayed diagnosis or treatment makes the treatment difficult. Genetic mutations have a central role in the pathogenesis of RB. Genetic materials such as RNAs (coding and non-coding RNAs) are also involved in the progression of the tumor. Circular RNA (circRNA) is the most recently identified RNA and is involved in regulating gene expression mainly through "microRNA sponges". The dysregulation of circRNAs has been observed in several diseases and tumors. Also, various studies have shown that circRNAs expression is changed in RB tissues. Due to their role in the pathogenesis of the disease, circRNAs might be helpful as a diagnostic or prognostic biomarker in patients with RB. In addition, circRNAs could be a suitable therapeutic target to treat RB in a targeted therapy approach.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | | | - Negar Shahkarami
- School of Allied Medical Sciences, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bagheri
- Faculty of Medicine, Islamic Azad University of Tehran Branch, Tehran, Iran
| | | | - Zahra Payandeh
- Division Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
10
|
Yesharim L, Talebi S, Mojbafan M, Alemrajabi M, Teimourian S. An evaluation of gastric adenocarcinoma-associated CircRNAs based on microarray meta-analysis and ceRNA networks. Transl Oncol 2022; 28:101611. [PMID: 36586189 PMCID: PMC9830311 DOI: 10.1016/j.tranon.2022.101611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Gastric cancer is the fourth leading cause of cancer-related mortality and one of the most commonly diagnosed malignancies worldwide. Gastric adenocarcinoma (GAC) accounts for the majority of gastric cancer cases. Circular RNAs (circRNAs) have been shown to be associated with carcinogenesis and cancer progression. This research aims to investigate GAC-associated circRNAs and the underlying mechanisms of circRNA-miRNA-mRNA networks in the development and progression of GAC. Differentially expressed miRNAs and mRNAs (DEMs and DEGs) were identified in Gene Expression Omnibus (GEO) microarray datasets using the R package Limma. A microarray meta-analysis was performed to identify potential GAC-associated circRNAs with high statistical power, resulting in 13 up-regulated and 19 down-regulated circRNAs. CircRNA-miRNA-mRNA networks were constructed by combining predicted and experimentally validated databases and considering differentially expressed miRNAs and mRNAs. The constructed ceRNA networks revealed the potential regulatory effect of hsa_circ_0002019 and hsa_circ_0074736 on key survival-related genes. The expression levels of these two circRNAs were measured in plasma samples from GAC patients and healthy controls using SYBR Green-based real-time PCR. Axon guidance, cellular senescence, AGE-RAGE signaling pathway in diabetic complications, and AMPK signaling pathway were among the major significant (P-value <0.05) enriched pathways of "main mRNAs" in the constructed ceRNA networks. In conclusion, we identified strongly correlated circRNAs and their likely mechanisms of action in GAC, which may improve the knowledge of regulatory networks underlying GAC formation and contribute to developing better strategies for early diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Liora Yesharim
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mojbafan
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alemrajabi
- Department of General Surgery, School of Medicine, Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,Corresponding author.
| |
Collapse
|
11
|
Rudich A, Garzon R, Dorrance A. Non-Coding RNAs Are Implicit in Chronic Myeloid Leukemia Therapy Resistance. Int J Mol Sci 2022; 23:ijms232012271. [PMID: 36293127 PMCID: PMC9603161 DOI: 10.3390/ijms232012271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm initiated by the presence of the fusion gene BCR::ABL1. The development of tyrosine kinase inhibitors (TKIs) highly specific to p210BCR-ABL1, the constitutively active tyrosine kinase encoded by BCR::ABL1, has greatly improved the prognosis for CML patients. Now, the survival rate of CML nearly parallels that of age matched controls. However, therapy resistance remains a persistent problem in the pursuit of a cure. TKI resistance can be attributed to both BCR::ABL1 dependent and independent mechanisms. Recently, the role of non-coding RNAs (ncRNAs) has been increasingly explored due to their frequent dysregulation in a variety of malignancies. Specifically, microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) have been shown to contribute to the development and progression of therapy resistance in CML. Since each ncRNA exhibits multiple functions and is capable of controlling gene expression, they exert their effect on CML resistance through a diverse set of mechanisms and pathways. In most cases ncRNAs with tumor suppressing functions are silenced in CML, while those with oncogenic properties are overexpressed. Here, we discuss the relevance of many aberrantly expressed ncRNAs and their effect on therapy resistance in CML.
Collapse
MESH Headings
- Humans
- Fusion Proteins, bcr-abl
- RNA, Circular
- RNA, Long Noncoding/genetics
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MicroRNAs/genetics
- MicroRNAs/pharmacology
Collapse
|
12
|
Karami Fath M, Pourbagher Benam S, Salmani K, Naderi S, Fahham Z, Ghiabi S, Houshmand Kia SA, Naderi M, Darvish M, Barati G. Circular RNAs in neuroblastoma: Pathogenesis, potential biomarker, and therapeutic target. Pathol Res Pract 2022; 238:154094. [PMID: 36087416 DOI: 10.1016/j.prp.2022.154094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022]
Abstract
Neuroblastoma (NB) is a common cancer in childhood responsible for 15 % of fatalities by pediatric cancers. Epigenetic factors play an important role in the pathogenesis of NB. Recently, it has been demonstrated that circular RNAs (circRNAs, ciRNAs), a newly identified class of non-coding RNAs, are also dysregulated in NB. CircRNAs mediate their functions by regulating gene expression mainly through microRNA (miRNA) sponging. The dysregulation (abnormal upregulation or downregulation) of circRNAs is involved in tumorigenesis of a variety of tumors including NB. It seems that the expression of some circRNAs is correlated with NB prognosis and clinical features. CircRNAs might be favorable as a diagnostic/prognostic biomarker and therapeutic target. However, due to the lack of studies, it is difficult to make a conclusion regarding the clinical benefits of circRNAs. In this review, we discussed the circRNAs that experimentally have been proved to be dysregulated in NB tissues and cancer cells.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Kiana Salmani
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Naderi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Fahham
- Faculty of Biology, Technische Universitat Dresden, Dresden, Germany
| | - Shamim Ghiabi
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Malihe Naderi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | |
Collapse
|
13
|
Pedraz-Valdunciel C, Giannoukakos S, Giménez-Capitán A, Fortunato D, Filipska M, Bertran-Alamillo J, Bracht JWP, Drozdowskyj A, Valarezo J, Zarovni N, Fernández-Hilario A, Hackenberg M, Aguilar-Hernández A, Molina-Vila MÁ, Rosell R. Multiplex Analysis of CircRNAs from Plasma Extracellular Vesicle-Enriched Samples for the Detection of Early-Stage Non-Small Cell Lung Cancer. Pharmaceutics 2022; 14:2034. [PMID: 36297470 PMCID: PMC9610636 DOI: 10.3390/pharmaceutics14102034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The analysis of liquid biopsies brings new opportunities in the precision oncology field. Under this context, extracellular vesicle circular RNAs (EV-circRNAs) have gained interest as biomarkers for lung cancer (LC) detection. However, standardized and robust protocols need to be developed to boost their potential in the clinical setting. Although nCounter has been used for the analysis of other liquid biopsy substrates and biomarkers, it has never been employed for EV-circRNA analysis of LC patients. METHODS EVs were isolated from early-stage LC patients (n = 36) and controls (n = 30). Different volumes of plasma, together with different number of pre-amplification cycles, were tested to reach the best nCounter outcome. Differential expression analysis of circRNAs was performed, along with the testing of different machine learning (ML) methods for the development of a prognostic signature for LC. RESULTS A combination of 500 μL of plasma input with 10 cycles of pre-amplification was selected for the rest of the study. Eight circRNAs were found upregulated in LC. Further ML analysis selected a 10-circRNA signature able to discriminate LC from controls with AUC ROC of 0.86. CONCLUSIONS This study validates the use of the nCounter platform for multiplexed EV-circRNA expression studies in LC patient samples, allowing the development of prognostic signatures.
Collapse
Affiliation(s)
- Carlos Pedraz-Valdunciel
- Department of Cancer Biology and Precision Medicine, Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
- Department of Biochemistry, Molecular Biology and Biomedicine, Autonomous University of Barcelona, Campus de Bellaterra, 08193 Barcelona, Spain
- Laboratory of Oncology, Pangaea Oncology, Dexeus University Hospital, 08028 Barcelona, Spain
| | - Stavros Giannoukakos
- Department of Genetics, Facultad de Ciencias, Campus Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | - Ana Giménez-Capitán
- Laboratory of Oncology, Pangaea Oncology, Dexeus University Hospital, 08028 Barcelona, Spain
| | | | - Martyna Filipska
- Department of Cancer Biology and Precision Medicine, Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
- B Cell Biology Group, Hospital del Mar Biomedical Research Park (IMIM), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain
| | - Jordi Bertran-Alamillo
- Laboratory of Oncology, Pangaea Oncology, Dexeus University Hospital, 08028 Barcelona, Spain
| | - Jillian W. P. Bracht
- Vesicle Observation Centre, Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam UMC location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1105AZ Amsterdam, The Netherlands
| | - Ana Drozdowskyj
- Oncology Institute Dr. Rosell (IOR), Dexeus University Institute, 08028 Barcelona, Spain
| | - Joselyn Valarezo
- Laboratory of Oncology, Pangaea Oncology, Dexeus University Hospital, 08028 Barcelona, Spain
| | | | - Alberto Fernández-Hilario
- Department of Computer Science and Artificial Intelligence, DaSCI., University of Granada, 18071 Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Facultad de Ciencias, Campus Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Rafael Rosell
- Department of Cancer Biology and Precision Medicine, Germans Trias I Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
- Oncology Institute Dr. Rosell (IOR), Dexeus University Institute, 08028 Barcelona, Spain
- Catalan Institute of Oncology, Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
14
|
Rashedi S, Mardani M, Rafati A, Khavandi MM, Mohammadi F, Javanshir S, Sarallah R, Dolatshahi M, Sabahi M, Azadnajafabad S, Tavolinejad H, Rezaei N. Circular RNAs as prognostic and diagnostic biomarkers in renal cell carcinoma. J Clin Lab Anal 2022; 36:e24670. [PMID: 35989533 PMCID: PMC9550963 DOI: 10.1002/jcla.24670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Circular RNAs (circRNAs) play pivotal roles in proliferation, apoptosis, migration, and invasion of renal cell carcinoma (RCC) cells. This study is aimed to systematically summarize the current evidence regarding the clinical implications of circRNAs in RCC patients. Methods A systematic search in PubMed, Embase, and Web of Science was performed until January 1, 2022. The correlation between the expression of circRNAs and clinicopathological, prognostic, and diagnostic features of RCC was evaluated using the meta‐analysis. Results Ultimately, 41 studies with 3485 RCC patients were included in this study: 26 studies for clinicopathological features, 31 studies for prognosis, and eight studies for diagnosis. Altered expression of circRNAs was significantly associated with clinicopathological characteristics of RCC, including tumor size, tumor stage, lymph node metastasis, distant metastasis, and TNM stage. The tumor promoter circRNAs were associated with reduced overall survival (OS) (Hazard Ratio (HR) = 1.98, 95% confidence interval [CI] 1.68–2.34) and disease/progression/recurrence‐free survival (DFS/PFS/RFS) (HR = 2.34, 95% CI 1.85–2.97). Contrarily, the tumor suppressor circRNAs were linked with better OS (HR = 0.49, 95% CI 0.40–0.60) and DFS/PFS/RFS (HR = 0.40, 95% CI 0.28–0.59). The pooled sensitivity and specificity of circRNAs for RCC diagnosis in tissue samples were both 0.84. These results in fluid samples (serum and urine) were 0.78 and 0.69, respectively. Conclusion CircRNAs can serve as promising diagnostic and prognostic biomarkers for RCC.
Collapse
Affiliation(s)
- Sina Rashedi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Mardani
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rafati
- Rajai Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Rojin Sarallah
- School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Dolatshahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadmahdi Sabahi
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Azadnajafabad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Tavolinejad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Gao F, Li J, Liang S, Wei L, He X, Liu S, Cheng X, Shi K, Jiang H, Chen L. Emerging roles of circRNAs in mice kidney with aging. Microsc Res Tech 2022; 85:2984-2996. [PMID: 35656876 DOI: 10.1002/jemt.24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Circular RNA (circRNA) is a novel type of noncoding RNA expressed in different tissues and species. Up to now, little is known of the function and expression of circRNAs in kidney aging. In this research, we used RNA sequencing to identify 11,929 circRNAs in kidney from 3-, 12-, and 24-month-old mice, of which 12 circRNAs were validated by qPCR. Based on the validated circRNAs and their predicted miRNA-mRNA target pairs, a circRNA-miRNA-mRNA interactions network was conducted. Bioinformatics analysis for all the mRNAs in the ceRNA network showed that the most enriched gene ontology (GO) term and one of the most enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were associated with endoplasmic reticulum (ER). The network also identified circNpas2, which was decreased significantly in mice kidney during aging, as a hub gene. Subsequently, we found that the cell cycle was arrested in G1 phase and the expression of P53 and P16 increased significantly in the circNpas2-knockdown cells. Moreover, knockdown of circNpas2 inhibited expression of ER-related proteins, HSPA5 and ERO1L. Taken together, our findings contribute to a better understanding of the role played by circRNA during kidney aging and provide potential therapeutic targets for the prevention of kidney aging.
Collapse
Affiliation(s)
- Fanfan Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Li
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shanshan Liang
- Blood Transfusion Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Limin Wei
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin He
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sixiu Liu
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Cheng
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kehui Shi
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Chen
- Dialysis Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Allegra A, Cicero N, Tonacci A, Musolino C, Gangemi S. Circular RNA as a Novel Biomarker for Diagnosis and Prognosis and Potential Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14071700. [PMID: 35406472 PMCID: PMC8997050 DOI: 10.3390/cancers14071700] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
Circular RNAs (circRNAs) are a novel type of covalently closed RNAs involved in several physiological and pathological processes. They display tissue-specific expression and are constant, abundant, and highly conserved, making them perfect markers for diagnosis and prognosis. Several studies have proposed that circRNAs are also differentially produced in malignancies where they have oncogenic effects. Furthermore, circRNAs affecting microRNAs modify the expression profile of several transcription factors which play essential roles in tumors. CircRNAs within the hematopoietic compartment were identified as modulators of mechanisms able to enhance or suppress tumor progression in blood malignancies. Moreover, several circRNAs were suggested to confer resistance to the conventional drugs employed in hematopoietic cancers. In this review, we highlight the growing role and the controlling mechanisms by which circRNAs modify multiple myeloma genesis. We propose that circRNAs can be considered as potential diagnostic and prognostic markers, can induce chemoresistance, and might represent novel therapeutic targets for multiple myeloma.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
- Correspondence:
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
17
|
Nie Y, Zhu X, Bu N, Jiang Y, Su Y, Pan K, Li S. Circ_0064288 acts as an oncogene of hepatocellular carcinoma cells by inhibiting miR-335-5p expression and promoting ROCK1 expression. BMC Cancer 2022; 22:265. [PMID: 35287604 PMCID: PMC8919637 DOI: 10.1186/s12885-022-09323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Reportedly, circular RNA (circRNA) is a key modulator in the development of human malignancies. This work is aimed to probe the expression pattern, biological effects and mechanism of circ_0064288 on hepatocellular carcinoma (HCC) progression. Methods The differentially expressed circRNA was screened by analyzing the expression profiles of circRNAs in HCC tissues and normal tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the expression of circ_0064288, miR-335-5p and Rho associated coiled-coil containing protein kinase 1 (ROCK1) mRNA in HCC specimens. After circ_0064288 was overexpressed or knocked down in HCC cells, cell growth was detected by the CCK-8 experiment, and cell migration was evaluated using Transwell experiment and scratch healing experiment. The targeting relationship between miR-335-5p and circ_0064288 and ROCK1 mRNA was predicted and verified using bioinformatic analysis and dual-luciferase reporter gene experiments, respectively. Western blot was executed to examine ROCK1 protein expression in HCC cells. Results Circ_0064288 and ROCK1 expression was up-modulated in HCC, while miR-335-5p was down-modulated. High circ_0064288 expression was associated with shorter survival time of HCC patients. It was also revealed that circ_0064288 overexpression remarkably enhanced HCC cell growth and migration, while knockdown of circ_0064288 induced opposite effects. Additionally, circ_0064288 could competitively bind with miR-335-5p thereby up-modulate ROCK1 expression. MiR-335-5p overexpression partly counteracted the effect of circ_0064288 overexpression on HCC cells. Conclusion Circ_0064288 facilitates HCC cell growth and migration by modulating the miR-335-5p/ROCK1 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09323-8.
Collapse
Affiliation(s)
- Yingying Nie
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamusi, 154002, Heilongjiang, China
| | - Xuedan Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Nan Bu
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China
| | - Yang Jiang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamusi, 154002, Heilongjiang, China
| | - Yue Su
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China
| | - Keming Pan
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China
| | - Shanshan Li
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China.
| |
Collapse
|
18
|
Shen Q, Liu X, Li W, Zhao X, Li T, Zhou K, Zhou J. Emerging Role and Mechanism of circRNAs in Pediatric Malignant Solid Tumors. Front Genet 2022; 12:820936. [PMID: 35116058 PMCID: PMC8804321 DOI: 10.3389/fgene.2021.820936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with covalent closed-loop structures and are widely distributed in eukaryotes, conserved and stable as well as tissue-specific. Malignant solid tumors pose a serious health risk to children and are one of the leading causes of pediatric mortality. Studies have shown that circRNAs play an important regulatory role in the development of childhood malignant solid tumors, hence are potential biomarkers and therapeutic targets for tumors. This paper reviews the biological characteristics and functions of circRNAs as well as the research progress related to childhood malignant solid tumors.
Collapse
Affiliation(s)
- Qiyang Shen
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Li
- Department of ENT, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Li
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhou
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| | - Jianfeng Zhou
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jianfeng Zhou, ; Kai Zhou,
| |
Collapse
|