1
|
DeVuono MV, Venkatesan T, Hillard CJ. Endocannabinoid signaling in stress, nausea, and vomiting. Neurogastroenterol Motil 2025; 37:e14911. [PMID: 39223918 PMCID: PMC11872018 DOI: 10.1111/nmo.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Classical antiemetics that target the serotonin system may not be effective in treating certain nausea and vomiting conditions like cyclic vomiting syndrome (CVS) and cannabinoid hyperemesis syndrome (CHS). As a result, there is a need for better therapies to manage the symptoms of these disorders, including nausea, vomiting, and anxiety. Cannabis is often used for its purported antiemetic and anxiolytic effects, given regulation of these processes by the endocannabinoid system (ECS). However, there is considerable evidence that cannabinoids can also produce nausea and vomiting and increase anxiety in certain instances, especially at higher doses. This paradoxical effect of cannabinoids on nausea, vomiting, and anxiety may be due to the dysregulation of the ECS, altering how it maintains these processes and contributing to the pathophysiology of CVS or CHS. PURPOSE The purpose of this review is to highlight the involvement of the ECS in the regulation of stress, nausea, and vomiting. We discuss how prolonged cannabis use, such as in the case of CHS or heightened stress, can dysregulate the ECS and affect its modulation of these functions. The review also examines the evidence for the roles of ECS and stress systems' dysfunction in CVS and CHS to better understand the underlying mechanisms of these conditions.
Collapse
Affiliation(s)
- Marieka V DeVuono
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Thangam Venkatesan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Skórzewska M, Gęca K. The Role of Cannabinoids in Advancing Cancer Treatment: Insights from Evidence-Based Medicine. Curr Oncol Rep 2024; 26:1334-1348. [PMID: 39110350 PMCID: PMC11579082 DOI: 10.1007/s11912-024-01589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW This document critically examines the role of cannabinoids in cancer care during an era marked by rapid advancements in oncology and changing perceptions on cannabis. It traces the historical context of cannabis in medicinal use, navigating its journey from widespread acceptance, subsequent criminalization, to its resurgence in modern therapeutic applications, particularly within the framework of Evidence-Based Medicine (EBM). RECENT FINDINGS Anchored in EBM principles, this study synthesizes current research from clinical trials, systematic reviews, and meta-analyses to evaluate the efficacy and safety of cannabinoids in oncology. The focus is on their palliative effects, considering the nuances of effectiveness, risk assessment, and challenges inherent in translating these findings into clinical guidelines. The study seeks to bridge the gap between scientific research and clinical practice, offering insights to inform future oncological therapies and symptom management strategies involving cannabinoids. The potential benefits and risks of cannabinoid use in cancer treatment are assessed to guide clinicians and researchers in developing comprehensive, evidence-based approaches to patient care.
Collapse
Affiliation(s)
- Magdalena Skórzewska
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St, 20-080, Lublin, Poland
| | - Katarzyna Gęca
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St, 20-080, Lublin, Poland.
| |
Collapse
|
3
|
Boujenoui F, Nkambeu B, Salem JB, Castano Uruena JD, Beaudry F. Cannabidiol and Tetrahydrocannabinol Antinociceptive Activity is Mediated by Distinct Receptors in Caenorhabditis elegans. Neurochem Res 2024; 49:935-948. [PMID: 38141130 DOI: 10.1007/s11064-023-04069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
Cannabis has gained popularity in recent years as a substitute treatment for pain following the risks of typical treatments uncovered by the opioid crisis. The active ingredients frequently associated with pain-relieving effects are the phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), but their effectiveness and mechanisms of action are still under research. In this study, we used Caenorhabditis elegans, an ideal model organism for the study of nociception that expresses mammal ortholog cannabinoid (NPR-19 and NPR-32) and vanilloid (OSM-9 and OCR-2) receptors. Here, we evaluated the antinociceptive activity of THC and CBD, identifying receptor targets and several metabolic pathways activated following exposure to these molecules. The thermal avoidance index was used to phenotype each tested C. elegans experimental group. The data revealed for the first time that THC and CBD decreases the nocifensive response of C. elegans to noxious heat (32-35 °C). The effect was reversed 6 h post- CBD exposure but not for THC. Further investigations using specific mutants revealed CBD and THC are targeting different systems, namely the vanilloid and cannabinoid systems, respectively. Proteomic analysis revealed differences following Reactome pathways and gene ontology biological process database enrichment analyses between CBD or THC-treated nematodes and provided insights into potential targets for future drug development.
Collapse
Affiliation(s)
- Fatma Boujenoui
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Bruno Nkambeu
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jennifer Ben Salem
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Jesus David Castano Uruena
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Saleem S, Tarar ZI, Aziz M, Alsamman MA, Tansel A, Abell TL. Cannabis Use in Patients with Gastroparesis. Cannabis Cannabinoid Res 2023; 8:1100-1105. [PMID: 36067326 DOI: 10.1089/can.2022.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim: The primary aim was to determine the prevalence of cannabis use among patients hospitalized for gastroparesis. The secondary aim was to identify independent variables associated with cannabis use compared with noncannabis-related gastroparesis hospitalization. Methods: We use the nationwide inpatient sample database from January 2012 to December 2014. The patients included in this study were the ones with primary diagnosis of gastroparesis and cannabis use. The analysis was performed using the Statistical Package for the Social Sciences 27 (SPSS) and a multivariable regression was conducted to identify independent variables. Results: We found 50,170 patients with a primary diagnosis of gastroparesis. The prevalence of cannabis use among patients hospitalized for gastroparesis was 4.2%. Multivariate regression analysis was performed, adjusting for confounders. The variables found to increase the odds of cannabis use in gastroparesis populations independently were age interval of 18-35 and 36-50 years, male, Black and Asian, median household income 1-25th percentile, Medicaid insurance, no charge hospitalization, and smoking. Cannabis use was associated with lower odds of vomiting. Conclusion: Patients who used cannabis were younger and of African American, Asian, or Pacific Islander descent. They had Medicaid insurance and a lower median household income.
Collapse
Affiliation(s)
- Saad Saleem
- Department of Internal Medicine, Sunrise Hospital and Medical Center, Las Vegas, Nevada, USA
| | - Zahid Ijaz Tarar
- Department of Internal Medicine, University of Missouri, Columbia, Missouri, USA
| | - Muhammad Aziz
- Department of Gastroenterology, Division of Gastroenterology and Hepatology, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Mohd Amer Alsamman
- Department of Gastroenterology, Georgetown University, Washington, District of Columbia, USA
| | - Aylin Tansel
- Department of Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Thomas L Abell
- Department of Gastroenterology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
5
|
Sukpiriyagul A, Chartchaiyarerk R, Tabtipwon P, Smanchat B, Prommas S, Bhamarapravatana K, Suwannarurk K. Oral Tetrahydrocannabinol (THC):Cannabinoid (CBD) Cannabis Extract Adjuvant for Reducing Chemotherapy-Induced Nausea and Vomiting (CINV): A Randomized, Double-Blinded, Placebo-Controlled, Crossover Trial. Int J Womens Health 2023; 15:1345-1352. [PMID: 37608911 PMCID: PMC10440684 DOI: 10.2147/ijwh.s401938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Objective To evaluate the effects of tetrahydrocannabinol (THC):cannabinoid (CBD) (1:1) oil in reducing chemotherapy-induced nausea and vomiting (CINV) in gynecologic cancer patients who received moderate-to-high emetogenic chemotherapy. Material and Method This was a randomized, double-blinded, crossover and placebo-controlled trial. The study was conducted at the Gynecologic Oncology Units, Bhumibol Adulyadej Hospital (BAH), Royal Thai Air Force, Bangkok, Thailand, between August and November 2022. Participants had gynecologic cancer and received moderate-to-high emetogenic chemotherapy. Subjects were randomized and divided into two groups (A and B) based on the block of four randomization method. In the first cycle, groups A and B received THC:CBD extract oil 1:1 (TCEO) and placebo before chemotherapy administration. In the second cycle, groups A and B received placebo and TCEO before chemotherapy administration. Both groups received per protocol antiemetic medication during chemotherapy. Nausea score and side effects were recorded. Results A total of 60 cases were recruited. After exclusion, 54 cases were included in the study. The mean age of participants was 54.4 years. The mean body mass index (BMI) was 26.5 kg/m2. Fifty-nine (21/54) percent cases were the advanced stages of cancer. The nausea score of TCEO and placebo groups were 2.11 and 2.99, respectively (P < 0.05). More than half of the participants (36/54) reported dizziness and sedation side effects. Dry mouth, confusion, anxiety, and palpitation of both groups were comparable. Conclusion The cannabinoid extract (THC:CBD) was an appropriate adjuvant agent to reduce CINV in patients with gynecologic cancer who received high-emetogenic chemotherapy. Dizziness and sedation were the major side effects.
Collapse
Affiliation(s)
- Apichaya Sukpiriyagul
- Department of Obstetrics and Gynecology, Bhumibol Adulyadej Hospital, Royal Thai Air ForceBangkokThailand
| | - Ratiporn Chartchaiyarerk
- Department of Obstetrics and Gynecology, Bhumibol Adulyadej Hospital, Royal Thai Air ForceBangkokThailand
| | - Paluekpon Tabtipwon
- Department of Obstetrics and Gynecology, Bhumibol Adulyadej Hospital, Royal Thai Air ForceBangkokThailand
| | - Buppa Smanchat
- Department of Obstetrics and Gynecology, Bhumibol Adulyadej Hospital, Royal Thai Air ForceBangkokThailand
| | - Sinart Prommas
- Department of Obstetrics and Gynecology, Bhumibol Adulyadej Hospital, Royal Thai Air ForceBangkokThailand
| | - Kornkarn Bhamarapravatana
- Department of Preclinical Science, Faculty of Medicine, Thammasat University Hospital, Pathum Thani, Thailand
| | - Komsun Suwannarurk
- Gynecologic Oncology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Thammasat University Hospital, Pathum Thani, Thailand
| |
Collapse
|
6
|
Creanga-Murariu I, Filipiuc LE, Cuciureanu M, Tamba BI, Alexa-Stratulat T. Should oncologists trust cannabinoids? Front Pharmacol 2023; 14:1211506. [PMID: 37521486 PMCID: PMC10373070 DOI: 10.3389/fphar.2023.1211506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Cannabis enjoyed a "golden age" as a medicinal product in the late 19th, early 20th century, but the increased risk of overdose and abuse led to its criminalization. However, the 21st century have witnessed a resurgence of interest and a large body of literature regarding the benefits of cannabinoids have emerged. As legalization and decriminalization have spread around the world, cancer patients are increasingly interested in the potential utility of cannabinoids. Although eager to discuss cannabis use with their oncologist, patients often find them to be reluctant, mainly because clinicians are still not convinced by the existing evidence-based data to guide their treatment plans. Physicians should prescribe cannabis only if a careful explanation can be provided and follow up response evaluation ensured, making it mandatory for them to be up to date with the positive and also negative aspects of the cannabis in the case of cancer patients. Consequently, this article aims to bring some clarifications to clinicians regarding the sometimes-confusing various nomenclature under which this plant is mentioned, current legislation and the existing evidence (both preclinical and clinical) for the utility of cannabinoids in cancer patients, for either palliation of the associated symptoms or even the potential antitumor effects that cannabinoids may have.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Leontina Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Magda Cuciureanu
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | | |
Collapse
|
7
|
Kearney SE, Gangano AJ, Barrus DG, Rehrauer KJ, Reid TER, Navaratne PV, Tracy EK, Roitberg A, Ghiviriga I, Cunningham CW, Gamage T, Grenning AJ. Axially Chiral Cannabinoids: Design, Synthesis, and Cannabinoid Receptor Affinity. J Am Chem Soc 2023; 145:13581-13591. [PMID: 37314891 PMCID: PMC11392426 DOI: 10.1021/jacs.3c00129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The resorcinol-terpene phytocannabinoid template is a privileged scaffold for the development of diverse therapeutics targeting the endocannabinoid system. Axially chiral cannabinols (axCBNs) are unnatural cannabinols (CBNs) that bear an additional C10 substituent, which twists the cannabinol biaryl framework out of planarity creating an axis of chirality. This unique structural modification is hypothesized to enhance both the physical and biological properties of cannabinoid ligands, thus ushering in the next generation of endocannabinoid system chemical probes and cannabinoid-inspired leads for drug development. In this full report, we describe the philosophy guiding the design of axCBNs as well as several synthetic strategies for their construction. We also introduce a second class of axially chiral cannabinoids inspired by cannabidiol (CBD), termed axially chiral cannabidiols (axCBDs). Finally, we provide an analysis of axially chiral cannabinoid (axCannabinoid) atropisomerism, which spans two classes (class 1 and 3 atropisomers), and provide first evidence that axCannabinoids retain─and in some cases, strengthen─affinity and functional activity at cannabinoid receptors. Together, these findings present a promising new direction for the design of novel cannabinoid ligands for drug discovery and exploration of the complex endocannabinoid system.
Collapse
Affiliation(s)
- Sara E Kearney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Anghelo J Gangano
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Daniel G Barrus
- Analytical Chemistry and Pharmaceutics, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Kyle J Rehrauer
- Concordia University Wisconsin School of Pharmacy, Mequon, Wisconsin 53097, United States
| | - Terry-Elinor R Reid
- Concordia University Wisconsin School of Pharmacy, Mequon, Wisconsin 53097, United States
| | - Primali V Navaratne
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Emily K Tracy
- Analytical Chemistry and Pharmaceutics, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Adrian Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Thomas Gamage
- Analytical Chemistry and Pharmaceutics, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Alexander J Grenning
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Vadhel A, Kumar A, Bashir S, Malik T, Mohan A. Synergistic and non-synergistic impact of HAP-based nano fertilizer and PGPR for improved nutrient utilization and metabolite variation in hemp crops. ENVIRONMENTAL SCIENCE: NANO 2023; 10:3101-3110. [DOI: 10.1039/d3en00380a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Nanofertilizer prepared with urea-hydroxyapatite amalgamation along with PGPR promotes urea availability over longer period of plant growth and reduces wasteful urea expense in soil, curtailing environmental pollution.
Collapse
Affiliation(s)
- Agrataben Vadhel
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Sabreen Bashir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| |
Collapse
|
9
|
TRPV1: A Common Denominator Mediating Antinociceptive and Antiemetic Effects of Cannabinoids. Int J Mol Sci 2022; 23:ijms231710016. [PMID: 36077412 PMCID: PMC9456209 DOI: 10.3390/ijms231710016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
The most common medicinal claims for cannabis are relief from chronic pain, stimulation of appetite, and as an antiemetic. However, the mechanisms by which cannabis reduces pain and prevents nausea and vomiting are not fully understood. Among more than 450 constituents in cannabis, the most abundant cannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids either directly or indirectly modulate ion channel function. Transient receptor potential vanilloid 1 (TRPV1) is an ion channel responsible for mediating several modalities of pain, and it is expressed in both the peripheral and the central pain pathways. Activation of TRPV1 in sensory neurons mediates nociception in the ascending pain pathway, while activation of TRPV1 in the central descending pain pathway, which involves the rostral ventral medulla (RVM) and the periaqueductal gray (PAG), mediates antinociception. TRPV1 channels are thought to be implicated in neuropathic/spontaneous pain perception in the setting of impaired descending antinociceptive control. Activation of TRPV1 also can cause the release of calcitonin gene-related peptide (CGRP) and other neuropeptides/neurotransmitters from the peripheral and central nerve terminals, including the vagal nerve terminal innervating the gut that forms central synapses at the nucleus tractus solitarius (NTS). One of the adverse effects of chronic cannabis use is the paradoxical cannabis-induced hyperemesis syndrome (HES), which is becoming more common, perhaps due to the wider availability of cannabis-containing products and the chronic use of products containing higher levels of cannabinoids. Although, the mechanism of HES is unknown, the effective treatment options include hot-water hydrotherapy and the topical application of capsaicin, both activate TRPV1 channels and may involve the vagal-NTS and area postrema (AP) nausea and vomiting pathway. In this review, we will delineate the activation of TRPV1 by cannabinoids and their role in the antinociceptive/nociceptive and antiemetic/emetic effects involving the peripheral, spinal, and supraspinal structures.
Collapse
|
10
|
Kaczor EE, Greene K, Zacharia J, Tormoehlen L, Neavyn M, Carreiro S. The Potential Proconvulsant Effects of Cannabis: a Scoping Review. J Med Toxicol 2022; 18:223-234. [PMID: 35352276 PMCID: PMC9198115 DOI: 10.1007/s13181-022-00886-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Cannabis' effect on seizure activity is an emerging topic that remains without consensus and merits further investigation. We therefore performed a scoping review to identify the available evidence and knowledge gaps within the existing literature on cannabis product exposures as a potential cause of seizures in humans. METHODS A scoping review was conducted in accordance with the PRISMA Extension for Scoping Reviews guidelines. The PubMed and Scopus databases were searched over a 20-year period from the date of the database query (12/21/2020). Inclusion criteria were (1) English language original research articles, (2) inclusion of human subjects, and (3) either investigation of seizures as a part of recreational cannabinoid use OR of exogenous cannabinoids as a cause of seizures. RESULTS A total of 3104 unique articles were screened, of which 68 underwent full-text review, and 13 met inclusion/exclusion criteria. Ten of 11 studies evaluating acute cannabis exposures reported a higher seizure incidence than would be expected based on the prevalence of epilepsy in the general and pediatric populations (range 0.7-1.2% and 0.3-0.5% respectively). The remaining two studies demonstrated increased seizure frequency and/or seizure-related hospitalization in recreational cannabis users and those with cannabis use disorder. CONCLUSIONS This scoping review demonstrates that a body of literature describing seizures in the setting of cannabis exposure exists, but it has several limitations. Ten identified studies showed a higher than expected incidence of seizures in populations exposed to cannabis products. Based on the Bradford Hill criteria, delta-9 tetrahydrocannabinol (THC) may be the causative xenobiotic for this phenomenon.
Collapse
Affiliation(s)
- Eric E Kaczor
- Division of Medical Toxicology, Department of Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Kevin Greene
- Division of Medical Toxicology, Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer Zacharia
- Department of Emergency Medicine, Maine Medical Center, Tufts University School of Medicine, Portland, ME, USA
| | - Laura Tormoehlen
- Departments of Neurology and Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark Neavyn
- Department of Emergency Medicine, Maine Medical Center, Tufts University School of Medicine, Portland, ME, USA
| | - Stephanie Carreiro
- Division of Medical Toxicology, Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
11
|
Schoeman R, de la Harpe A, Beukes N, Frost CL. Cannabis with breast cancer treatment: propitious or pernicious? 3 Biotech 2022; 12:54. [PMID: 35127309 PMCID: PMC8807790 DOI: 10.1007/s13205-021-03102-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/25/2021] [Indexed: 02/03/2023] Open
Abstract
Cannabis has been used for various medicinal applications including, but not limited to, cancer: most commonly to treat chemotherapy-associated side effects. Cannabis is often used for its palliative effects in the form of purified cannabinoids, or as extracts. This study was conducted using two breast cancer cell lines and aimed to evaluate potential anti-proliferative "intra-entourage effects" between purified phytocannabinoids resembling the THC and CBD ratios of medicinal and recreational cannabis strains, as well as to investigate potential "inter-entourage effects" between the different ratios and the phytochemicals found in a Cannabis sativa extract. This study also aimed to evaluate the potential interaction between cannabinoids and chemotherapeutic agents. The data identified an intra-entourage effect present in the MCF-7 cells when treated with a recreational, but not a medicinal, cannabis formulation. This effect may be due to THC partially exerting its anti-proliferative effects through the estrogen receptor (ER), present in the MCF-7 cell line. Little to no intra-entourage effects were observed in the MDA-MB-231 cell line and no inter-entourage effects were observed in either cell line. The simultaneous treatment of the MCF-7 cell line with various cannabinoid formulations and the common breast cancer treatment, tamoxifen, resulted in the diminished anti-proliferative activity of tamoxifen, an effect that was more evident when combined with recreational cannabis formulations. Since cannabis is commonly used in palliative care to treat chemotherapy-associated side effects, further research is required to investigate the potential interference of various cannabis formulations to ensure that the efficacy of chemotherapeutic agents is not compromised. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03102-1.
Collapse
Affiliation(s)
- Recardia Schoeman
- grid.412139.c0000 0001 2191 3608Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa ,grid.412219.d0000 0001 2284 638XPresent Address: Department of Pharmacology, Faculty of Health Science, University of the Free State, Bloemfontein, 9301 South Africa
| | - Amy de la Harpe
- grid.412139.c0000 0001 2191 3608Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa
| | - Natasha Beukes
- grid.412139.c0000 0001 2191 3608Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa
| | - Carminita L. Frost
- grid.412139.c0000 0001 2191 3608Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa
| |
Collapse
|
12
|
Levin M, Zhang H, Gupta MK. Attitudes Toward and Acceptability of Medical Marijuana Use Among Head and Neck Cancer Patients. Ann Otol Rhinol Laryngol 2022; 132:13-18. [PMID: 35094599 DOI: 10.1177/00034894211072624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study aims to understand the attitudes toward marijuana in HNC patients. METHODS A 17-question questionnaire regarding medical marijuana (MM) was distributed to HNC patients at a tertiary cancer center. RESULTS 63 HNC patients completed the questionnaire. Patients that had used or were using marijuana described benefit with symptoms of headache, pain, nausea, and loss of appetite. 83% of all patients considered marijuana as treatment for cancer related pain and 67% as treatment for cancer related anxiety. About 70% of patients actively undergoing cancer treatment believed marijuana medications would help with symptoms during treatment. CONCLUSIONS By understanding how HNC patients perceive MM, HNC teams may be able to prescribe and educate their patients on MM.
Collapse
Affiliation(s)
- Marc Levin
- Department of Otolaryngology, Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Han Zhang
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Michael K Gupta
- Division of Otolaryngology Head and Neck Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Senderovich H, Wagman H, Zhang D, Vinoraj D, Waicus S. The Effectiveness of Cannabis and Cannabis Derivatives in Treating Lower Back Pain in the Aged Population: A Systematic Review. Gerontology 2021; 68:612-624. [PMID: 34515130 DOI: 10.1159/000518269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Cannabis is increasingly used in the management of pain, though minimal research exists to support its use since approval. Reduction in stigma has led to a growing interest in pharmaceutical cannabinoids as a possible treatment for lower back pain (LBP). The objective of this review was to assess the role and efficacy of cannabis and its derivatives in the management of LBP and compile global data related to the role of cannabis in the management of LBP in an aging population. METHODS A systematic review was conducted using predetermined keywords by 3 independent researchers. Predetermined inclusion and exclusion criteria were applied, and 23 articles were selected for further analysis. RESULTS Studies identified both significant and insignificant impacts of cannabis on LBP. Contradicting evidence was noted on the role of cannabis in the management of anxiety and insomnia, 2 common comorbidities with LBP. The existing literature suggests that cannabis may be used in the management of LBP and comorbid symptoms. CONCLUSIONS Further research is needed to consider cannabis as an independent management option. There is a lack of evidence pertaining to the benefits of cannabis in an aged population, and thus, additional research is warranted to support its use in the aged population.
Collapse
Affiliation(s)
- Helen Senderovich
- Department of Family and Community Medicine, Division of Palliative Care, University of Toronto, Geriatrics, Palliative Care, Pain Medicine, Baycrest, Toronto, Ontario, Canada
| | - Hayley Wagman
- Wilfred Laurier University, Waterloo, Ontario, Canada
| | - Dennis Zhang
- Department of Family Medicine, University of British Columbia, Victoria, British Columbia, Canada
| | - Danusha Vinoraj
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Waicus
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Toxicological properties of Δ9-tetrahydrocannabinol and cannabidiol. Arh Hig Rada Toksikol 2021; 71:1-11. [PMID: 32597140 PMCID: PMC7837244 DOI: 10.2478/aiht-2020-71-3301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/01/2020] [Indexed: 11/20/2022] Open
Abstract
Cannabis sativa L. contains more than 100 phytocannabinoids that can interact with cannabinoid receptors CB1 and CB2. None of the cannabinoid receptor ligands is entirely CB1- or CB2-specific. The effects of cannabinoids therefore differ not just because of different potency at cannabinoid receptors but also because they can interact with other non-CB1 and non-CB2 targets, such as TRPV1, GPR55, and GPR119. The most studied phytocannabinoid is Δ9-tetrahydrocannabinol (THC). THC is a partial agonist at both cannabinoid receptors, but its psychotomimetic effect is produced primarily via activation of the CB1 receptor, which is strongly expressed in the central nervous system, with the noteworthy exception of the brain stem. Although acute cognitive and other effects of THC are well known, the risk of irreversible neuropsychological effects of THC needs further research to elucidate the association. Unlike THC, phytocannabinoid cannabidiol (CBD) does not appear to have psychotomimetic effects but may interact with some of the effects of THC if taken concomitantly. CBD administered orally has recently undergone well-controlled clinical trials to assess its safety in the treatment of paediatric epilepsy syndromes. Their findings point to increased transaminase levels as a safety issue that calls for postmarketing surveillance for liver toxicity. The aim of this review is to summarise what is known about acute and chronic toxicological effects of both compounds and address the gaps in knowledge about the safety of exogenous cannabinoids that are still open.
Collapse
|
15
|
Stasiłowicz A, Tomala A, Podolak I, Cielecka-Piontek J. Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment. Int J Mol Sci 2021; 22:E778. [PMID: 33466734 PMCID: PMC7830475 DOI: 10.3390/ijms22020778] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cannabis sativa L. turned out to be a valuable source of chemical compounds of various structures, showing pharmacological activity. The most important groups of compounds include phytocannabinoids and terpenes. The pharmacological activity of Cannabis (in epilepsy, sclerosis multiplex (SM), vomiting and nausea, pain, appetite loss, inflammatory bowel diseases (IBDs), Parkinson's disease, Tourette's syndrome, schizophrenia, glaucoma, and coronavirus disease 2019 (COVID-19)), which has been proven so far, results from the affinity of these compounds predominantly for the receptors of the endocannabinoid system (the cannabinoid receptor type 1 (CB1), type two (CB2), and the G protein-coupled receptor 55 (GPR55)) but, also, for peroxisome proliferator-activated receptor (PPAR), glycine receptors, serotonin receptors (5-HT), transient receptor potential channels (TRP), and GPR, opioid receptors. The synergism of action of phytochemicals present in Cannabis sp. raw material is also expressed in their increased bioavailability and penetration through the blood-brain barrier. This review provides an overview of phytochemistry and pharmacology of compounds present in Cannabis extracts in the context of the current knowledge about their synergistic actions and the implications of clinical use in the treatment of selected diseases.
Collapse
Affiliation(s)
- Anna Stasiłowicz
- Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 61-781 Poznan, Poland;
| | - Anna Tomala
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (A.T.); (I.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Cracow, Poland; (A.T.); (I.P.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Swiecickiego 4, 61-781 Poznan, Poland;
| |
Collapse
|
16
|
Cornwell AC, Feigin ME. Unintended Effects of GPCR-Targeted Drugs on the Cancer Phenotype. Trends Pharmacol Sci 2020; 41:1006-1022. [PMID: 33198923 PMCID: PMC7672258 DOI: 10.1016/j.tips.2020.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/28/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most common class of therapeutic targets, accounting for ~35% of all FDA-approved drugs. Cancer patients receive numerous medications not only to combat cancer but also to alleviate pain, nausea, and anxiety, many of which target GPCRs. Emerging evidence has implicated GPCRs as drivers of cancer progression, therapeutic resistance, and metastasis. Therefore, the effects of commonly prescribed GPCR-targeted drugs must be reevaluated in the context of cancer. Epidemiological and experimental evidence indicate that widely used GPCR-targeted drugs may promote or inhibit cancer progression. It is crucial that we more fully understand the indirect effects of GPCR-targeted drugs on the cancer phenotype. This review summarizes recent advances in characterizing these interactions and highlights future research opportunities.
Collapse
Affiliation(s)
- Abigail C Cornwell
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Michael E Feigin
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
17
|
Wooldridge LM, Ji L, Liu Y, Nikas SP, Makriyannis A, Bergman J, Kangas BD. Antiemetic Effects of Cannabinoid Agonists in Nonhuman Primates. J Pharmacol Exp Ther 2020; 374:462-468. [PMID: 32561684 PMCID: PMC7445860 DOI: 10.1124/jpet.120.265710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge. Although cannabinergic medications have been used in certain treatment-resistant populations, Food and Drug Administration-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications. The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg) against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys. Pretreatment with 0.1 mg/kg Δ9-THC blocked nicotine-induced emesis and reduced hypersalivation in all subjects and blocked LiCl-induced emesis and reduced hypersalivation in three of four subjects. Pretreatment with 10 mg/kg mAEA blocked nicotine-induced emesis in three of four subjects and LiCl-induced emesis in one of four subjects and reduced both nicotine- and LiCl-induced hypersalivation. Antiemetic effects of Δ9-THC and mAEA were reversed by rimonabant pretreatment, providing verification of cannabinoid receptor type 1 mediation. These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggest that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side effect liability. SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved antiemetic pharmacotherapies has been impeded by a paucity of animal models. The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid analog methanandamide in nonhuman primates.
Collapse
Affiliation(s)
- Lisa M Wooldridge
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Lipin Ji
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Yingpeng Liu
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Spyros P Nikas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Alexandros Makriyannis
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (J.B., B.D.K.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (L.M.W., J.B., B.D.K.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (L.J., Y.L., S.P.N., A.M.)
| |
Collapse
|
18
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
19
|
Barbash B, Mehta D, Siddiqui MT, Chawla L, Dworkin B. Impact of Cannabinoids on Symptoms of Refractory Gastroparesis: A Single-center Experience. Cureus 2019; 11:e6430. [PMID: 31993268 PMCID: PMC6970440 DOI: 10.7759/cureus.6430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background and aims Cannabinoids are increasingly used for medicinal purposes, including neuropathy. Gastroparesis is a neuromuscular disorder and neuropathy plays a large role in its pathogenesis. It is thus reasonable that cannabinoids can serve a beneficial role in the management of gastroparesis. Our study evaluates the effect of cannabinoids on gastroparesis symptoms. Methods Twenty-four (n=24) patients with gastroparesis and refractory symptoms were selected from a single gastroenterology practice associated with a tertiary care medical center. The ‘Gastroparesis Cardinal Symptom Index' (GCSI) and an analog scale rating abdominal pain were applied to prospectively assess the effect of cannabinoids, in the form of dronabinol and medical cannabis, on refractory gastroparesis symptoms. Patients completed a GCSI form and rated their abdominal pain, before and after treatment. There was a minimum of 60 days of cannabinoid use between reporting intervals. Total composite GCSI symptom scores, GCSI symptom subset scores, and abdominal pain scores were calculated before and after treatment. Results A significant improvement in the GCSI total symptom composite score was seen with either cannabinoid treatment (mean score difference of 12.8, 95% confidence interval 10.4-15.2; p-value < 0. 001). Patients prescribed marijuana experienced a statistically significant improvement in every GCSI symptom subgroup. Significant improvement in abdominal pain score was also seen with either cannabinoid treatment (mean score difference of 1.6; p-value <0.001). Conclusions Cannabinoids dramatically improve the symptoms of gastroparesis. Furthermore, an improvement in abdominal pain with cannabinoids represents a breakthrough for gastroparesis-associated abdominal pain treatment, for which there are currently no validated therapies.
Collapse
Affiliation(s)
- Benjamin Barbash
- Department of Gastroenterology, Bridgeport Hospital, Bridgeport, USA
| | - Dhruv Mehta
- Department of Gastroenterology and Hepatology, Westchester Medical Center, Valhalla, USA
| | | | - Lavneet Chawla
- Department of Hospital Medicine, Bridgeport Hospital, Bridgeport, USA
| | - Brad Dworkin
- Division of Gastroenterology and Hepatobiliary Diseases, Westchester Medical Center/New York Medical College, Valhalla, USA
| |
Collapse
|
20
|
Tian L, Qian W, Qian Q, Zhang W, Cai X. Gingerol inhibits cisplatin-induced acute and delayed emesis in rats and minks by regulating the central and peripheral 5-HT, SP, and DA systems. J Nat Med 2019; 74:353-370. [PMID: 31768887 PMCID: PMC7044144 DOI: 10.1007/s11418-019-01372-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
Abstract Gingerol, a biologically active component in ginger, has shown antiemetic properties. Our study aimed to explore the underlying mechanisms of gingerol on protecting rats and minks from chemotherapy-induced nausea and vomiting. The preventive impact of gingerol was evaluated in the pica model of rats and the vomiting model of minks induced by cisplatin at every 6 h continuously for a duration of 72 h. Animals were arbitrarily separated into blank control group, simple gingerol control group, cisplatin control group, cisplatin + metoclopramide group, cisplatin + three different doses gingerol group (low-dose; middle-dose; high-dose). The area postrema as well as ileum damage were assessed using H&E stain. The levels of 5-TH, 5-HT3 receptor, TPH, SERT, SP, NK1 receptor, PPT, NEP, DA, D2R, TH, and DAT were determined using immunohistochemistry or qRT-PCR in rats and minks. All indicators were measured in the area postrema along with ileum. The kaolin intake by rats and the incidence of CINV of minks were significantly decreased after pretreatment with gingerol in a dosage-dependent way for the duration of 0–24-h and 24–72-h. Gingerol markedly decreased the levels of 5-TH, 5-HT3 receptor, TPH, SP, NK1 receptor, PPT, DA, D2R, TH, alleviated area postrema as well as ileum damage, and increased the accumulation of SERT, NEP, DAT in the area postrema along with ileum of rats and minks. Gingerol alleviates cisplatin-induced kaolin intake of rats and emesis of minks possibly by regulating central and peripheral 5-HT system, SP system and DA system. Graphic abstract ![]()
Collapse
Affiliation(s)
- Li Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Weibin Qian
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.,Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, Shandong, People's Republic of China
| | - Qiuhai Qian
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Wei Zhang
- Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, Shandong, People's Republic of China.
| | - Xinrui Cai
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 17 Yuxing Road, Central District, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
21
|
Brierley DI, Harman JR, Giallourou N, Leishman E, Roashan AE, Mellows BA, Bradshaw HB, Swann JR, Patel K, Whalley BJ, Williams CM. Chemotherapy-induced cachexia dysregulates hypothalamic and systemic lipoamines and is attenuated by cannabigerol. J Cachexia Sarcopenia Muscle 2019; 10:844-859. [PMID: 31035309 PMCID: PMC6711413 DOI: 10.1002/jcsm.12426] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle wasting, anorexia, and metabolic dysregulation are common side-effects of cytotoxic chemotherapy, having a dose-limiting effect on treatment efficacy, and compromising quality of life and mortality. Extracts of Cannabis sativa, and analogues of the major phytocannabinoid Δ9-tetrahydrocannabinol, have been used to ameliorate chemotherapy-induced appetite loss and nausea for decades. However, psychoactive side-effects limit their clinical utility, and they have little efficacy against weight loss. We recently established that the non-psychoactive phytocannabinoid cannabigerol (CBG) stimulates appetite in healthy rats, without neuromotor side-effects. The present study assessed whether CBG attenuates anorexia and/or other cachectic effects induced by the broad-spectrum chemotherapy agent cisplatin. METHODS An acute cachectic phenotype was induced in adult male Lister-hooded rats by 6 mg/kg (i.p.) cisplatin. In total 66 rats were randomly allocated to groups receiving vehicle only, cisplatin only, or cisplatin and 60 or 120 mg/kg CBG (po, b.i.d.). Feeding behavior, bodyweight and locomotor activity were recorded for 72 hours, at which point rats were sacrificed for post-mortem analyses. Myofibre atrophy, protein synthesis and autophagy dysregulation were assessed in skeletal muscle, plasma metabolic profiles were obtained by untargeted 1H-NMR metabonomics, and levels of endocannabinoid-like lipoamines quantified in plasma and hypothalami by targeted HPLC-MS/MS lipidomics. RESULTS CBG (120 mg/kg) modestly increased food intake, predominantly at 36-60hrs (p<0.05), and robustly attenuated cisplatin-induced weight loss from 6.3% to 2.6% at 72hrs (p<0.01). Cisplatin-induced skeletal muscle atrophy was associated with elevated plasma corticosterone (3.7 vs 13.1ng/ml, p<0.01), observed selectively in MHC type IIx (p<0.05) and IIb (p<0.0005) fibres, and was reversed by pharmacological rescue of dysregulated Akt/S6-mediated protein synthesis and autophagy processes. Plasma metabonomic analysis revealed cisplatin administration produced a wide-ranging aberrant metabolic phenotype (Q2Ŷ=0.5380, p=0.001), involving alterations to glucose, amino acid, choline and lipid metabolism, citrate cycle, gut microbiome function, and nephrotoxicity, which were partially normalized by CBG treatment (Q2Ŷ=0.2345, p=0.01). Lipidomic analysis of hypothalami and plasma revealed extensive cisplatin-induced dysregulation of central and peripheral lipoamines (29/79 and 11/26 screened, respectively), including reversible elevations in systemic N-acyl glycine concentrations which were negatively associated with the anti-cachectic effects of CBG treatment. CONCLUSIONS Endocannabinoid-like lipoamines may have hitherto unrecognized roles in the metabolic side-effects associated with chemotherapy, with the N-acyl glycine subfamily in particular identified as a potential therapeutic target and/or biomarker of anabolic interventions. CBG-based treatments may represent a novel therapeutic option for chemotherapy-induced cachexia, warranting investigation in tumour-bearing cachexia models.
Collapse
Affiliation(s)
- Daniel I. Brierley
- School of Psychology and Clinical Language SciencesUniversity of ReadingBerkshireUK
- School of PharmacyUniversity of ReadingBerkshireUK
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Joe R. Harman
- School of Biological SciencesUniversity of ReadingBerkshireUK
| | | | - Emma Leishman
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | | | | | - Heather B. Bradshaw
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonINUSA
| | - Jonathan R. Swann
- Division of Computational and Systems MedicineImperial College LondonLondonUK
| | - Ketan Patel
- School of Biological SciencesUniversity of ReadingBerkshireUK
| | | | - Claire M. Williams
- School of Psychology and Clinical Language SciencesUniversity of ReadingBerkshireUK
| |
Collapse
|
22
|
Venkatesan T, Levinthal DJ, Li BUK, Tarbell SE, Adams KA, Issenman RM, Sarosiek I, Jaradeh SS, Sharaf RN, Sultan S, Stave CD, Monte AA, Hasler WL. Role of chronic cannabis use: Cyclic vomiting syndrome vs cannabinoid hyperemesis syndrome. Neurogastroenterol Motil 2019; 31 Suppl 2:e13606. [PMID: 31241817 PMCID: PMC6788295 DOI: 10.1111/nmo.13606] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 03/17/2019] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Cannabis is commonly used in cyclic vomiting syndrome (CVS) due to its antiemetic and anxiolytic properties. Paradoxically, chronic cannabis use in the context of cyclic vomiting has led to the recognition of a putative new disorder called cannabinoid hyperemesis syndrome (CHS). Since its first description in 2004, numerous case series and case reports have emerged describing this phenomenon. Although not pathognomonic, a patient behavior called "compulsive hot water bathing" has been associated with CHS. There is considerable controversy about how CHS is defined. Most of the data remain heterogenous with limited follow-up, making it difficult to ascertain whether chronic cannabis use is causal, merely a clinical association with CVS, or unmasks or triggers symptoms in patients inherently predisposed to develop CVS. This article will discuss the role of cannabis in the regulation of nausea and vomiting, specifically focusing on both CVS and CHS, in order to address controversies in this context. To this objective, we have collated and analyzed published case series and case reports on CHS in order to determine the number of reported cases that meet current Rome IV criteria for CHS. We have also identified limitations in the existing diagnostic framework and propose revised criteria to diagnose CHS. Future research in this area should improve our understanding of the role of cannabis use in cyclic vomiting and help us better understand and manage this disorder.
Collapse
Affiliation(s)
- Thangam Venkatesan
- Division of Gastroenterology and HepatologyMedical College of WisconsinMilwaukeeWisconsin
| | - David J. Levinthal
- Division of Gastroenterology, Hepatology, and NutritionUniversity of Pittsburgh Medical CenterPittsburghPennsylvania
| | - B U. K. Li
- Department of PediatricsMedical College of WisconsinMilwaukeeWisconsin
| | - Sally E. Tarbell
- Department of Psychiatry and Behavioral SciencesNorthwestern Feinberg School of MedicineChicagoIllinois
| | | | - Robert M. Issenman
- Division of Pediatric GastroenterologyMcMaster UniversityHamiltonOntarioCanada
| | - Irene Sarosiek
- Division of GastroenterologyTexas Tech University Health Sciences CenterEl PasoTexas
| | | | - Ravi N. Sharaf
- Division of GastroenterologyDepartment of Medicine and Department of Healthcare Policy and ResearchWeill Cornell Medical CenterNew YorkNew York
| | | | | | - Andrew A. Monte
- Department of Emergency MedicineUniversity of Colorado School of MedicineAuroraColorado
| | - William L. Hasler
- Division of GastroenterologyUniversity of Michigan Health SystemAnn ArborMichigan
| |
Collapse
|
23
|
Uranga JA, Vera G, Abalo R. Cannabinoid pharmacology and therapy in gut disorders. Biochem Pharmacol 2018; 157:134-147. [PMID: 30076849 DOI: 10.1016/j.bcp.2018.07.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
Cannabis sp. and their products (marijuana, hashish…), in addition to their recreational, industrial and other uses, have a long history for their use as a remedy for symptoms related with gastrointestinal diseases. After many reports suggesting these beneficial effects, it was not surprising to discover that the gastrointestinal tract expresses endogenous cannabinoids, their receptors, and enzymes for their synthesis and degradation, comprising the so-called endocannabinoid system. This system participates in the control of tissue homeostasis and important intestinal functions like motor and sensory activity, nausea, emesis, the maintenance of the epithelial barrier integrity, and the correct cellular microenvironment. Thus, different cannabinoid-related pharmacological agents may be useful to treat the main digestive pathologies. To name a few examples, in irritable bowel syndrome they may normalize dysmotility and reduce pain, in inflammatory bowel disease they may decrease inflammation, and in colorectal cancer, apart from alleviating some symptoms, they may play a role in the regulation of the cell niche. This review summarizes the main recent findings on the role of cannabinoid receptors, their synthetic or natural ligands and their metabolizing enzymes in normal gastrointestinal function and in disorders including irritable bowel syndrome, inflammatory bowel disease, colon cancer and gastrointestinal chemotherapy-induced adverse effects (nausea/vomiting, constipation, diarrhea).
Collapse
Affiliation(s)
- J A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Spain
| | - G Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Spain; Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Spain
| | - R Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Spain; Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Spain; Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Spain.
| |
Collapse
|
24
|
Fonseca BM, Teixeira NA, Correia-da-Silva G. Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions. Rev Physiol Biochem Pharmacol 2017; 173:63-88. [PMID: 28425013 DOI: 10.1007/112_2017_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids. In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment. For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system. Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment. This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.
Collapse
Affiliation(s)
- B M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal.
| | - N A Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|