1
|
Guo JH, Thuong LHH, Jiang YJ, Huang CL, Huang YW, Cheng FJ, Liu PI, Liu CL, Huang WC, Tang CH. Cigarette smoke promotes IL-6-dependent lung cancer migration and osteolytic bone metastasis. Int J Biol Sci 2024; 20:3257-3268. [PMID: 38993553 PMCID: PMC11234207 DOI: 10.7150/ijbs.94339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024] Open
Abstract
Lung cancer stands as a major contributor to cancer-related fatalities globally, with cigarette smoke playing a pivotal role in its development and metastasis. Cigarette smoke is also recognized as a risk factor for bone loss disorders like osteoporosis. However, the association between cigarette smoke and another bone loss disorder, lung cancer osteolytic bone metastasis, remains largely uncertain. Our Gene Set Enrichment Analysis (GSEA) indicated that smokers among lung cancer patients exhibited higher expression levels of bone turnover gene sets. Both The Cancer Genome Atlas (TCGA) database and our clinic samples demonstrated elevated expression of the osteolytic factor IL-6 in ever-smokers with bone metastasis among lung cancer patients. Our cellular experiments revealed that benzo[α]pyrene (B[α]P) and cigarette smoke extract (CSE) promoted IL-6 production and cell migration in lung cancer. Activation of the PI3K, Akt, and NF-κB signaling pathways was involved in cigarette smoke-augmented IL-6-dependent migration. Additionally, cigarette smoke lung cancer-secreted IL-6 promoted osteoclast formation. Importantly, blocking IL-6 abolished cigarette smoke-facilitated lung cancer osteolytic bone metastasis in vivo. Our findings provide evidence that cigarette smoke is a risk factor for osteolytic bone metastasis. Thus, inhibiting IL-6 may be a valuable therapeutic strategy for managing osteolytic bone metastasis in lung cancer patients who smoke.
Collapse
Affiliation(s)
- Jeng-Hung Guo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Le Huynh Hoai Thuong
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ya-Jing Jiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chang-Lun Huang
- Division of General Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Wen Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Fang-Ju Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Po-I Liu
- Department of Physical Therapy, Asia University, Taichung, Taiwan
- Department of General Thoracic Surgery, Asia University Hospital, Taichung, Taiwan
| | - Chun-Lin Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
2
|
Zhang Y, Nong H, Bai Y, Zhou Q, Zhang Q, Liu M, Liu P, Zeng G, Zong S. Conditional knockout of PDK1 in osteoclasts suppressed osteoclastogenesis and ameliorated prostate cancer-induced osteolysis in murine model. Eur J Med Res 2023; 28:433. [PMID: 37828580 PMCID: PMC10571267 DOI: 10.1186/s40001-023-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The development and maintenance of normal bone tissue is maintained by balanced communication between osteoblasts and osteoclasts. The invasion of cancer cells disrupts this balance, leading to osteolysis. As the only bone resorbing cells in vivo, osteoclasts play important roles in cancer-induced osteolysis. However, the role of 3-phosphoinositide-dependent protein kinase-1 (PDK1) in osteoclast resorption remains unclear. METHODS In our study, we used a receptor activator of nuclear factor-kappa B (RANK) promoter-driven Cre-LoxP system to conditionally delete the PDK1 gene in osteoclasts in mice. We observed the effect of osteoclast-specific knockout of PDK1 on prostate cancer-induced osteolysis. Bone marrow-derived macrophage cells (BMMs) were extracted and induced to differentiate osteoclasts in vitro to explore the role of PDK1 in osteoclasts. RESULTS In this study, we found that PDK1 conditional knockout (cKO) mice exhibited smaller body sizes when compared to the wild-type (WT) mice. Moreover, deletion of PDK1 in osteoclasts ameliorated osteolysis and rPDK1educed bone resorption markers in the murine model of prostate cancer-induced osteolysis. In vivo, we discovered that osteoclast-specific knockout of suppressed RANKL-induced osteoclastogenesis, bone resorption function, and osteoclast-specific gene expression (Ctsk, TRAP, MMP-9, NFATc1). Western blot analyses of RANKL-induced signaling pathways showed that conditional knockout of PDK1 in osteoclasts inhibited the early nuclear factor κB (NF-κB) activation, which consequently suppressed the downstream induction of NFATc1. CONCLUSION These findings demonstrated that PDK1 performs an important role in osteoclastogenesis and prostate cancer-induced osteolysis by modulating the PDK1/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanan Zhang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haibin Nong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiguang Bai
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Quan Zhou
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Qiong Zhang
- College of Public Hygiene of Guangxi Medical University, Nanning, China
| | - Mingfu Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gaofeng Zeng
- College of Public Hygiene of Guangxi Medical University, Nanning, China.
| | - Shaohui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Hahm ER, Kim SH, Singh SV. Withaferin A inhibits breast cancer-induced osteoclast differentiation. Mol Carcinog 2023; 62:1051-1061. [PMID: 37067392 PMCID: PMC10330236 DOI: 10.1002/mc.23545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Bone is the most prone to metastatic spread of breast cancer cells for each subtype of the disease. Bone metastasis-related complications including severe pain and pathological fractures affect patients' quality of life. Current treatment options including surgery, radiation, and bone-targeted therapies (e.g., bisphosphonates) are costly or have serious adverse effects such as renal toxicity and osteonecrosis of the jaws. Therefore, a safe, inexpensive, and efficacious agent for prevention of breast cancer bone metastasis is urgently needed. Our previously published RNA sequencing analysis revealed that many genes implicated in bone remodeling and breast cancer bone metastasis were significantly downregulated by treatment with withaferin A (WA), which is a promising cancer chemopreventive agent derived from a medicinal plant (Withania somnifera). The present study investigated whether WA inhibits breast cancer induction of osteoclast differentiation. At plasma achievable doses, WA treatment inhibited osteoclast differentiation (osteoclastogenesis) induced by three different subtypes of breast cancer cells (MCF-7, SK-BR-3, and MDA-MB-231). WA and the root extract of W. somnifera were equally effective for inhibition of breast cancer induction of osteoclast differentiation. This inhibition was accompanied by suppression of interleukin (IL)-6, IL-8, and receptor activator of nuclear factor-κB ligand, which are pivotal osteoclastogenic cytokines. The expression of runt-related transcription factor 2, nuclear factor-κB, and SOX9 transcription factors, which positively regulate osteoclastogenesis, was decreased in WA-treated breast cancer cells as revealed by confocal microscopy and/or immunoblotting. Taken together, these data suggest that WA could be a promising agent for prevention of breast cancer-induced bone metastasis.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Tong Y, Cao Y, Jin T, Huang Z, He Q, Mao M. Role of Interleukin-1 family in bone metastasis of prostate cancer. Front Oncol 2022; 12:951167. [PMID: 36237303 PMCID: PMC9552844 DOI: 10.3389/fonc.2022.951167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Prostate cancer (PCa) is one of the most fatal diseases in male patients with high bone metastatic potential. Bone metastasis severely shortens overall survival and brings skeletal-related events (SREs) which reduces the life quality of patients, and this situation is currently regarded as irreversible and incurable. The progression and metastasis of PCa are found to be closely associated with inflammatory cytokines and chemokines. As pivotal members of inflammatory cytokines, Interleukin-1 (IL-1) family plays a crucial role in this process. Elevated expression of IL-1 family was detected in PCa patients with bone metastasis, and accumulating evidences proved that IL-1 family could exert vital effects on the progression and bone metastasis of many cancers, while some members have dual effects. In this review, we discuss the role of IL-1 family in the bone metastasis of PCa. Furthermore, we demonstrate that many members of IL-1 family could act as pivotal biomarkers to predict the clinical stage and prognosis of PCa patients. More importantly, we have elucidated the role of IL-1 family in the bone metastasis of PCa, which could provide potential targets for the treatment of PCa bone metastasis and probable directions for future research.
Collapse
Affiliation(s)
- Yuanhao Tong
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinghao Cao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhe Jin
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengwei Huang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Qinyuan He
- Organization Department, Suzhou Traditional Chinese Medicine Hospital, Suzhou, China
| | - Min Mao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Min Mao,
| |
Collapse
|
5
|
The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Sci Rep 2022; 12:6261. [PMID: 35428832 PMCID: PMC9012857 DOI: 10.1038/s41598-022-10143-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Metabolic reprogramming is a malignant phenotype of cancer. Cancer cells utilize glycolysis to fuel rapid proliferation even in the presence of oxygen, and elevated glycolysis is coupled to lactate fermentation in the cancer microenvironment. Although lactate has been recognized as a metabolic waste product, it has become evident that lactate functions as not only an energy source but a signaling molecule through the lactate receptor G-protein-coupled receptor 81 (GPR81) under physiological conditions. However, the pathological role of GPR81 in cancer remains unclear. Here, we show that GPR81 regulates the malignant phenotype of breast cancer cell by reprogramming energy metabolism. We found that GPR81 is highly expressed in breast cancer cell lines but not in normal breast epithelial cells. Knockdown of GPR81 decreased breast cancer cell proliferation, and tumor growth. Mechanistically, glycolysis and lactate-dependent ATP production were impaired in GPR81-silenced breast cancer cells. RNA sequencing accompanied by Gene Ontology enrichment analysis further demonstrated a significant decrease in genes associated with cell motility and silencing of GPR81 suppressed cell migration and invasion. Notably, histological examination showed strong expression of GPR81 in clinical samples of human breast cancer. Collectively, our findings suggest that GPR81 is critical for malignancy of breast cancer and may be a potential novel therapeutic target for breast carcinoma.
Collapse
|
6
|
Song X, Wei C, Li X. The Signaling Pathways Associated With Breast Cancer Bone Metastasis. Front Oncol 2022; 12:855609. [PMID: 35372035 PMCID: PMC8965611 DOI: 10.3389/fonc.2022.855609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer (BC) is now the leading cause of cancer in women, and bone is the primary site of distant BC metastasis. BC bone metastasis seriously affects the quality of life of patients and increases the mortality rate. However, the mechanism of BC bone metastasis is not fully understood. Main Body Paget’s “seed and soil” hypothesis led experts to explore the relationship between surface markers and receptors in breast tumors and various growth factors in bone. The relevant breast tumor markers serve as “seeds”, and the bone microenvironment that is suitable for the survival of the tumor serves as the “soil”. These factors interact to make up an entire system and form feedback pathways that accelerate the production of various cytokines, attracting BC cells to migrate to bone tissue, which worsens the development of BC and seriously affects the prognosis of patients. This process is a vicious cycle. At present, there are seven major signaling pathways involved in BC bone metastasis: the OPG/RANK/RANKL signaling pathway, TGF-β signaling pathway, IGF system, PI3K-AKT-mTOR signaling pathway, Wnt signaling pathway and Hippo signaling pathway. In addition, FGF-FGFR signaling pathway, androgen-AR/LSD1-target gene pathway, Notch signaling pathway, JAK-STAT signaling pathway and CaN/NFATC1 signaling pathway also seem to be associated with BC bone metastasis. Conclusion This review focuses on the signaling pathways related to BC bone metastasis and explores the interactions among these pathways, which will lay a solid theoretical foundation for further understanding the mechanism of BC bone metastasis and developing effective targeted therapeutic drugs.
Collapse
Affiliation(s)
- Xuelian Song
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Changran Wei
- Department of The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
7
|
Yamagata AS, Freire PP, Jones Villarinho N, Teles RHG, Francisco KJM, Jaeger RG, Freitas VM. Transcriptomic Response to Acidosis Reveals Its Contribution to Bone Metastasis in Breast Cancer Cells. Cells 2022; 11:cells11030544. [PMID: 35159353 PMCID: PMC8834614 DOI: 10.3390/cells11030544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
Bone is the most common site of metastasis in breast cancer. Metastasis is promoted by acidosis, which is associated with osteoporosis. To investigate how acidosis could promote bone metastasis, we compared differentially expressed genes (DEGs) in MDA-MB-231 cancer cells in acidosis, bone metastasis, and bone metastatic tumors. The DEGs were identified using Biojupies and GEO2R. The expression profiles were assessed with Morpheus. The overlapping DEGs between acidosis and bone metastasis were compared to the bulk of the DEGs in terms of the most important genes and enriched terms using CytoHubba and STRING. The expression of the genes in this overlap filtered by secreted proteins was assessed in the osteoporosis secretome. The analysis revealed that acidosis-associated transcriptomic changes were more similar to bone metastasis than bone metastatic tumors. Extracellular matrix (ECM) organization would be the main biological process shared between acidosis and bone metastasis. The secretome genes upregulated in acidosis, bone metastasis, and osteoporosis-associated mesenchymal stem cells are enriched for ECM organization and angiogenesis. Therefore, acidosis may be more important in the metastatic niche than in the primary tumor. Acidosis may contribute to bone metastasis by promoting ECM organization. Untreated osteoporosis could favor bone metastasis through the increased secretion of ECM organization proteins.
Collapse
Affiliation(s)
- Ana Sayuri Yamagata
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
- Correspondence:
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Nícolas Jones Villarinho
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Ramon Handerson Gomes Teles
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Kelliton José Mendonça Francisco
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Ruy Gastaldoni Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| | - Vanessa Morais Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (N.J.V.); (R.H.G.T.); (K.J.M.F.); (R.G.J.); (V.M.F.)
| |
Collapse
|
8
|
CMAHP promotes metastasis by reducing ubiquitination of Snail and inducing angiogenesis via GM-CSF overexpression in gastric cancer. Oncogene 2022; 41:159-172. [PMID: 34716430 DOI: 10.1038/s41388-021-02087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022]
Abstract
Pseudogenes are generally considered "junk" DNA or "genomic fossils" generated during the evolution process that lack biological activity. However, accumulating reports indicate that pseudogenes have biological functions critical for cancer development. Experiments from the current study showed marked overexpression of the cytidine monophospho-N-acetylneuraminic acid hydroxylase pseudogene (CMAHP) in gastric cancer, which was associated with poor overall survival. However, the mechanisms underlying the activity of CMAHP in tumor development are largely unknown. Gene Set Enrichment Analysis (GSEA) revealed that CMAHP-correlated genes are significantly involved in epithelial-mesenchymal transition (EMT) and angiogenesis. Functional studies further confirmed that CMAHP mediates metastasis and angiogenesis in vitro and in vivo. Furthermore, CMAHP promoted cancer cell migration, invasion, and metastasis through Snail overexpression, which decreased ubiquitination mediated by NF-κB signaling. Angiogenesis is known to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. CMAHP increased GM-CSF transactivation via promoting direct binding of c-Jun to the -1981/-1975 region of the GM-CSF promoter. Notably, CMAHP interacts with Histone H1.4 promoting histone acetylation to enhance c-Jun and RelA (p65) expression. Our collective findings provide novel evidence that CMAHP contributes to tumor progression and modulates metastasis and angiogenesis in gastric cancer.
Collapse
|
9
|
Rimal R, Desai P, Marquez AB, Sieg K, Marquardt Y, Singh S. 3-D vascularized breast cancer model to study the role of osteoblast in formation of a pre-metastatic niche. Sci Rep 2021; 11:21966. [PMID: 34754042 PMCID: PMC8578551 DOI: 10.1038/s41598-021-01513-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer cells (BCCs) preferentially metastasize to bone. It is known that BCCs remotely primes the distant bone site prior to metastasis. However, the reciprocal influence of bone cells on the primary tumor is relatively overlooked. Here, to study the bone-tumor paracrine influence, a tri-cellular 3-D vascularized breast cancer tissue (VBCTs) model is engineered which comprised MDA-MB231, a triple-negative breast cancer cells (TNBC), fibroblasts, and endothelial cells. This is indirectly co-cultured with osteoblasts (OBs), thereby constituting a complex quad-cellular tumor progression model. VBCTs alone and in conjunction with OBs led to abnormal vasculature and reduced vessel density but enhanced VEGF production. A total of 1476 significantly upregulated and 775 downregulated genes are identified in the VBCTs exposed to OBs. HSP90N, CYCS, RPS27A, and EGFR are recognized as upregulated hub-genes. Kaplan Meier plot shows HSP90N to have a significant outcome in TNBC patient survivability. Furthermore, compared to cancer tissues without vessels, gene analysis recognized 1278 significantly upregulated and 566 downregulated genes in VBCTs. DKK1, CXCL13, C3 protein and BMP4 are identified to be downregulated hub genes in VBCTs. Together, a multi-cellular breast cancer model and culture protocols are established to study pre-metastatic events in the presence of OBs.
Collapse
Affiliation(s)
- Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Andrea Bonnin Marquez
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Karina Sieg
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, University Hospital, RWTH Aachen University, 52074, Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany.
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Wigner P, Szymańska B, Bijak M, Sawicka E, Kowal P, Marchewka Z, Saluk-Bijak J. Oxidative stress parameters as biomarkers of bladder cancer development and progression. Sci Rep 2021; 11:15134. [PMID: 34302052 PMCID: PMC8302678 DOI: 10.1038/s41598-021-94729-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/09/2021] [Indexed: 12/09/2022] Open
Abstract
The epidemiological studies confirm that the overproduction of free radical is an important factor of cancer induction as well as development, and loss of antioxidant systems efficiency is associated with an increased risk of carcinogenesis. While bladder cancer is the fourth most common type of cancer all over the world, there is little evidence of the advancing changes in oxidative/nitrative stress during the progression of bladder cancer. Our study aimed to investigate the plasma levels of typical markers of oxidative/nitrative stress depending on the clinical classification of bladder cancer differentiation and infiltration degree. We examined 40 patients with newly diagnosed bladder cancer and 20 healthy volunteers as a control group. We analysed the plasma levels of protein carbonyls, thiol groups, 3-nitrotyrosine, lipid peroxidation, as well as non-enzymatic plasma antioxidant capacity using DPPH· and ABTS·+ radicals. We confirmed that all analysed biomarkers are higher in enrolled BC patients than in healthy subjects. Furthermore, our findings demonstrate a positive correlation between the degree of bladder cancer progression and the level of oxidative stress, but no correlation in the case of NT-3. Based on obtained results, we might conclude that during carcinogenesis of the bladder increased oxidative damage of biomolecules is manifested. This indicates the participation of oxidative stress in the development of bladder cancer, and it is important the ensure the proper antioxidant protection.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136, Lodz, Poland
| | - Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Paweł Kowal
- Department and Clinic of Urology and Urological Oncology, Faculty of Postgraduate Medical Training, Wroclaw Medical University, Kamieńskiego 73a, 51-124, Wrocław, Poland
| | - Zofia Marchewka
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
11
|
Overview of Evidence-Based Chemotherapy for Oral Cancer: Focus on Drug Resistance Related to the Epithelial-Mesenchymal Transition. Biomolecules 2021; 11:biom11060893. [PMID: 34208465 PMCID: PMC8234904 DOI: 10.3390/biom11060893] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of resistance to chemotherapeutic agents has become a major issue in the treatment of oral cancer (OC). Epithelial-mesenchymal transition (EMT) has attracted a great deal of attention in recent years with regard to its relation to the mechanism of chemotherapy drug resistance. EMT-activating transcription factors (EMT-ATFs), such as Snail, TWIST, and ZEB, can activate several different molecular pathways, e.g., PI3K/AKT, NF-κB, and TGF-β. In contrast, the activated oncological signal pathways provide reciprocal feedback that affects the expression of EMT-ATFs, resulting in a peritumoral extracellular environment conducive to cancer cell survival and evasion of the immune system, leading to resistance to multiple chemotherapeutic agents. We present an overview of evidence-based chemotherapy for OC treatment based on the National Comprehensive Cancer Network (NCCN) Chemotherapy Order Templates. We focus on the molecular pathways involved in drug resistance related to the EMT and highlight the signal pathways and transcription factors that may be important for EMT-regulated drug resistance. Rapid progress in antitumor regimens, together with the application of powerful techniques such as high-throughput screening and microRNA technology, will facilitate the development of therapeutic strategies to augment chemotherapy.
Collapse
|
12
|
Göbel A, Dell’Endice S, Jaschke N, Pählig S, Shahid A, Hofbauer LC, Rachner TD. The Role of Inflammation in Breast and Prostate Cancer Metastasis to Bone. Int J Mol Sci 2021; 22:5078. [PMID: 34064859 PMCID: PMC8151893 DOI: 10.3390/ijms22105078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor metastasis to bone is a common event in multiple forms of malignancy. Inflammation holds essential functions in homeostasis as a defense mechanism against infections and is a strategy to repair injured tissue and to adapt to stress conditions. However, exaggerated and/or persistent (chronic) inflammation may eventually become maladaptive and evoke diseases such as autoimmunity, diabetes, inflammatory tissue damage, fibrosis, and cancer. In fact, inflammation is now considered a hallmark of malignancy with prognostic relevance. Emerging studies have revealed a central involvement of inflammation in several steps of the metastatic cascade of bone-homing tumor cells through supporting their survival, migration, invasion, and growth. The mechanisms by which inflammation favors these steps involve activation of epithelial-to-mesenchymal transition (EMT), chemokine-mediated homing of tumor cells, local activation of osteoclastogenesis, and a positive feedback amplification of the protumorigenic inflammation loop between tumor and resident cells. In this review, we summarize established and evolving concepts of inflammation-driven tumorigenesis, with a special focus on bone metastasis.
Collapse
Affiliation(s)
- Andy Göbel
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefania Dell’Endice
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nikolai Jaschke
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Sophie Pählig
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Amna Shahid
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
| | - Lorenz C. Hofbauer
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| | - Tilman D. Rachner
- Mildred Scheel Early Career Center, Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität Dresden, 01159 Dresden, Germany; (S.D.); (N.J.); (S.P.); (A.S.); (L.C.H.); (T.D.R.)
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, 01159 Dresden, Germany
| |
Collapse
|
13
|
Wigner P, Grębowski R, Bijak M, Saluk-Bijak J, Szemraj J. The Interplay between Oxidative Stress, Inflammation and Angiogenesis in Bladder Cancer Development. Int J Mol Sci 2021; 22:ijms22094483. [PMID: 33923108 PMCID: PMC8123426 DOI: 10.3390/ijms22094483] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
In 2018, 550,000 people were diagnosed with bladder cancer (BC), of which nearly 200,000 people died. Moreover, men are 4 times more likely than women to be diagnosed with BC. The risk factors include exposure to environmental and occupational chemicals, especially tobacco smoke, benzidine and genetic factors. Despite numerous studies, the molecular basis of BC development remains unclear. A growing body of evidence suggests that inflammation, oxidant-antioxidant imbalance and angiogenesis disorders may play a significant role in the development and progression of bladder cancer. The patients with bladder cancer were characterised by an increased level of reactive oxygen species (ROS), the products of lipid peroxidation, proinflammatory cytokines and proangiogenic factors as compared to controls. Furthermore, it was shown that polymorphisms localised in genes associated with these pathways may modulate the risk of BC. Interestingly, ROS overproduction may induce the production of proinflammatory cytokines, which finally activated angiogenesis. Moreover, the available literature shows that both inflammation and oxidative stress may lead to activation of angiogenesis and tumour progression in BC patients.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-85; Fax: +48-42-635-44-84
| | - Radosław Grębowski
- Department of Urology, Provincial Integrated Hospital in Plock, 09-400 Plock, Poland;
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-216 Lodz, Poland;
| |
Collapse
|
14
|
Frugé AD, Smith KS, Riviere AJ, Tenpenny-Chigas R, Demark-Wahnefried W, Arthur AE, Murrah WM, van der Pol WJ, Jasper SL, Morrow CD, Arnold RD, Braxton-Lloyd K. A Dietary Intervention High in Green Leafy Vegetables Reduces Oxidative DNA Damage in Adults at Increased Risk of Colorectal Cancer: Biological Outcomes of the Randomized Controlled Meat and Three Greens (M3G) Feasibility Trial. Nutrients 2021; 13:nu13041220. [PMID: 33917165 PMCID: PMC8067874 DOI: 10.3390/nu13041220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
Green leafy vegetables (GLV) may reduce the risk of red meat (RM)-induced colonic DNA damage and colorectal cancer (CRC). We previously reported the primary outcomes (feasibility) of a 12-week randomized controlled crossover trial in adults with habitual high RM and low GLV intake with body mass index (BMI) > 30 kg/m2 (NCT03582306). Herein, our objective was to report a priori secondary outcomes. Participants were recruited and enrolled in 2018, stratified by gender, and randomized to two arms: immediate intervention group (IG, n = 26) or delayed intervention group (DG, n = 24). During the 4 week intervention period, participants were provided with frozen GLV and counseled to consume 1 cooked cup equivalent daily. Participants consumed their normal diet for the remaining 8 weeks. At each of four study visits, anthropometrics, stool, and blood were taken. Overall, plasma Vitamin K1 (0.50 ± 1.18 ng/mL, p < 0.001) increased, while circulating 8OHdG (−8.52 ± 19.05 ng/mL, p < 0.001), fecal 8OHdG (−6.78 ± 34.86 ng/mL, p < 0.001), and TNFα (−16.95 ± 60.82 pg/mL, p < 0.001) decreased during the GLV intervention compared to control periods. Alpha diversity of fecal microbiota and relative abundance of major taxa did not differ systematically across study periods. Further investigation of the effects of increased GLV intake on CRC risk is warranted.
Collapse
Affiliation(s)
- Andrew D. Frugé
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (A.J.R.); (R.T.-C.)
- Correspondence: ; Tel.: +334-844-3271
| | - Kristen S. Smith
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (A.J.R.); (R.T.-C.)
| | - Aaron J. Riviere
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (A.J.R.); (R.T.-C.)
| | - Rachel Tenpenny-Chigas
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (A.J.R.); (R.T.-C.)
| | - Wendy Demark-Wahnefried
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Anna E. Arthur
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA;
| | - William M. Murrah
- Department of Educational Foundations, Leadership, and Technology, Auburn University, Auburn, AL 36849, USA;
| | - William J. van der Pol
- Department of Computational Biology and Bioinformatics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shanese L. Jasper
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Casey D. Morrow
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (C.D.M.); (R.D.A.)
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (C.D.M.); (R.D.A.)
| | - Kimberly Braxton-Lloyd
- Department of Pharmacy Services, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA;
| |
Collapse
|
15
|
Vaught DB, Merkel AR, Lynch CC, Edwards J, Tantawy MN, Hilliard T, Wang S, Peterson T, Johnson RW, Sterling JA, Brantley‐Sieders D. EphA2 Is a Clinically Relevant Target for Breast Cancer Bone Metastatic Disease. JBMR Plus 2021; 5:e10465. [PMID: 33869989 PMCID: PMC8046157 DOI: 10.1002/jbm4.10465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
EphA2 receptor tyrosine kinase (RTK) is highly expressed in breast tumor cells across multiple molecular subtypes and correlates with poor patient prognosis. In this study, the potential role of EphA2 in this clinically relevant phenomenon is investigated as metastasis of breast cancer to bone is a major cause of morbidity and mortality in patients. It was found that the EphA2 function in breast cancer cells promotes osteoclast activation and the development of osteolytic bone disease. Blocking EphA2 function molecularly and pharmacologically in breast tumors reduced the number and size of bone lesions and the degree of osteolytic disease in intratibial and intracardiac mouse models, which correlated with a significant decrease in the number of osteoclasts at the tumor-bone interface. EphA2 loss of function in tumor cells impaired osteoclast progenitor differentiation in coculture, which is mediated, at least in part, by reduced expression of IL-6. EPHA2 transcript levels are enriched in human breast cancer bone metastatic lesions relative to visceral metastatic sites; EphA2 protein expression was detected in breast tumor cells in bone metastases in patient samples, supporting the clinical relevance of the study's findings. These data provide a strong rationale for the development and application of molecularly targeted therapies against EphA2 for the treatment of breast cancer bone metastatic disease. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- David B Vaught
- Department of Cancer BiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Alyssa R Merkel
- Vanderbilt Center for Bone BiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Conor C Lynch
- Department of Tumor BiologyH. Lee Moffitt Cancer CenterTampaFLUSA
| | | | - Mohammed Noor Tantawy
- Radiology and Vanderbilt Institute of Imaging SciencesVanderbilt University School of MedicineNashvilleTNUSA
| | - Timothy Hilliard
- Radiology and Vanderbilt Institute of Imaging SciencesVanderbilt University School of MedicineNashvilleTNUSA
| | - Shan Wang
- Department of Medicine, Division of Rheumatology and ImmunologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Todd Peterson
- Radiology and Vanderbilt Institute of Imaging SciencesVanderbilt University School of MedicineNashvilleTNUSA
| | - Rachelle W Johnson
- Vanderbilt Center for Bone BiologyVanderbilt University School of MedicineNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University School of MedicineNashvilleTNUSA
- Department of Tumor BiologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Division of Clinical PharmacologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Julie A Sterling
- Vanderbilt Center for Bone BiologyVanderbilt University School of MedicineNashvilleTNUSA
- Department of Veterans Affairs, Tennessee Valley Healthcare System (VISN 9)Vanderbilt UniversityNashvilleTNUSA
| | - Dana Brantley‐Sieders
- Vanderbilt‐Ingram Cancer CenterVanderbilt University School of MedicineNashvilleTNUSA
- Department of Tumor BiologyH. Lee Moffitt Cancer CenterTampaFLUSA
- Radiology and Vanderbilt Institute of Imaging SciencesVanderbilt University School of MedicineNashvilleTNUSA
- Department of Medicine, Division of Rheumatology and ImmunologyVanderbilt University School of MedicineNashvilleTNUSA
| |
Collapse
|
16
|
Wilburn WJ, Jamal S, Ismail F, Brooks D, Whalen M. Evaluation of triclosan exposures on secretion of pro-inflammatory cytokines from human immune cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103599. [PMID: 33516901 PMCID: PMC7956230 DOI: 10.1016/j.etap.2021.103599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 05/06/2023]
Abstract
Triclosan (TCS) is widely used in personal hygiene products, such as mouthwash and toothpaste, and is found in human tissues. Interleukin (IL)-1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNFα), and interferon gamma (IFNγ) are pro-inflammatory cytokines and inappropriately elevated levels of each have been associated with pathologies including rheumatoid arthritis and certain cancers. Here we examine effects of TCS on the secretion of the pro-inflammatory cytokines from human immune cell preparations. TCS at concentrations between 0.05-5 μM consistently increased the secretion of IL-1β, IL-6, and TNFα within 24 h of exposure and the increases often maintained out to 6 days of exposure. TCS also induced increases in IFNγ secretion, however the increases were most consistent after 48 h of exposure rather than within 24 h. Additionally, a role for both p44/42 and p38 MAPK in TCS-stimulated increases in IL-1β was seen in cells from some donors.
Collapse
Affiliation(s)
- Wendy J Wilburn
- Departments of Biological Sciences, Tennessee State UnIversity, Nashville, TN, 37209, United States
| | - Sara Jamal
- Department of Chemistry, Tennessee State University, Nashville, TN, 37209, United States
| | - Farah Ismail
- Department of Chemistry, Tennessee State University, Nashville, TN, 37209, United States
| | - Dylan Brooks
- Department of Chemistry, Tennessee State University, Nashville, TN, 37209, United States
| | - Margaret Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN, 37209, United States.
| |
Collapse
|
17
|
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel) 2020; 12:cancers12020326. [PMID: 32023849 PMCID: PMC7072680 DOI: 10.3390/cancers12020326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
Collapse
Affiliation(s)
- Tolu Omokehinde
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-8965
| |
Collapse
|
18
|
Semina EV, Rubina KA, Shmakova AA, Rysenkova KD, Klimovich PS, Aleksanrushkina NA, Sysoeva VY, Karagyaur MN, Tkachuk VA. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol 2020; 235:6268-6286. [PMID: 31990070 PMCID: PMC7318179 DOI: 10.1002/jcp.29555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The urokinase system is involved in a variety of physiological processes, such as fibrinolysis, matrix remodeling, wound healing, and regeneration. Upon binding to its cognate receptor urokinase‐type plasminogen activator receptor (uPAR), urokinase‐type plasminogen activator (uPA) catalyzes the conversion of plasminogen to plasmin and the activation of matrix metalloproteases. Apart from this, uPA–uPAR interaction can lead to the activation of transcription factors, mitogen‐activated protein kinase signaling pathways and RTK cascades. Elevated expression of uPA and uPAR is markedly associated with cancer progression and metastasis and correlates with a poor prognosis in clinics. Targeting the urokinase system has proved to be effective in experimental models in vitro and in vivo, however, in clinics the inhibition of the uPA/uPAR system has fallen short of expectations, suggesting that the question of the functional relevance of uPA/uPAR system is far from being moot. Recently, using CRISPR/Cas9 technology, we have shown that uPAR knockout decreases the proliferation of neuroblastoma Neuro2a cells in vitro. In the present study we demonstrate that uPAR expression is essential for maintaining the epithelial phenotype in Neuro2a cells and that uPAR silencing promotes epithelial‐mesenchymal transition (EMT) and increased cell migration. Accordingly, uPAR knockout results in the downregulation of epithelial markers (E‐cadherin, occludin, and claudin‐5) and in the increase of mesenchymal markers (N‐cadherin, α‐smooth muscle actin, and interleukin‐6). In search of the molecular mechanism underlying these changes, we identified uPA as a key component. Two key insights emerged as a result of this work: in the absence of uPAR, uPA is translocated into the nucleus where it is presumably involved in the activation of transcription factors (nuclear factor κB and Snail) resulting in EMT. In uPAR‐expressing cells, uPAR functions as a uPA “trap” that binds uPA on the cell surface and promotes controlled uPA internalization and degradation in lysosomes.
Collapse
Affiliation(s)
- Ekaterina V Semina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya A Rubina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Morohogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Shmakova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Karina D Rysenkova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Polina S Klimovich
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalya A Aleksanrushkina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Veronika Y Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim N Karagyaur
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
19
|
Abstract
Bone is the most frequent site of breast cancer and prostate cancer metastasis, and one of the most common sites of metastasis for many solid tumors. Once cancer cells colonize in the bone, it imposes a major clinical challenge for the treatment of the disease, and fatality rates increase drastically. Bone, the largest organ in the body, provides a fertile microenvironment enriched with nutrients, growth factors and hormones, a generous reward for cancer cells. Dependent on cancer type, cancer cells can cause osteoblastic (bone forming) or osteolytic lesions to promote the net resorption and/or release of growth factors from the bone extracellular matrix. These processes activate a "vicious cycle", leading to disruption of bone integrity and promoting cancer cell growth and migration. Cancer cells influence the bone microenvironment favoring their colonization and growth. In order to metastasize to the bone, cancer cells must first migrate from the site of origin, and once established within the bone, they must overcome the dormant inducing effects of resident cells. If successful, cancer cells can then colonize and continually disrupt bone homeostasis that is primarily maintained by osteocytes, the most abundant bone cell type. For example, it has been shown that exercise induces osteocytes to release anabolic factors that inhibit osteoclast resorptive activity, promote dormancy and the release of anti-cancer factors that inhibit breast cancer cell metastasis. In this review, we will summarize recent research findings and provide mechanistic insights related to the role of osteocytes in osteolytic metastasis.
Collapse
|
20
|
Polak KL, Chernosky NM, Smigiel JM, Tamagno I, Jackson MW. Balancing STAT Activity as a Therapeutic Strategy. Cancers (Basel) 2019; 11:cancers11111716. [PMID: 31684144 PMCID: PMC6895889 DOI: 10.3390/cancers11111716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Driven by dysregulated IL-6 family member cytokine signaling in the tumor microenvironment (TME), aberrant signal transducer and activator of transcription (STAT3) and (STAT5) activation have been identified as key contributors to tumorigenesis. Following transformation, persistent STAT3 activation drives the emergence of mesenchymal/cancer-stem cell (CSC) properties, important determinants of metastatic potential and therapy failure. Moreover, STAT3 signaling within tumor-associated macrophages and neutrophils drives secretion of factors that facilitate metastasis and suppress immune cell function. Persistent STAT5 activation is responsible for cancer cell maintenance through suppression of apoptosis and tumor suppressor signaling. Furthermore, STAT5-mediated CD4+/CD25+ regulatory T cells (Tregs) have been implicated in suppression of immunosurveillance. We discuss these roles for STAT3 and STAT5, and weigh the attractiveness of different modes of targeting each cancer therapy. Moreover, we discuss how anti-tumorigenic STATs, including STAT1 and STAT2, may be leveraged to suppress the pro-tumorigenic functions of STAT3/STAT5 signaling.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Noah M Chernosky
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Jacob M Smigiel
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
21
|
Martin TJ, Gabure S, Maise J, Snipes S, Peete M, Whalen MM. The organochlorine pesticides pentachlorophenol and dichlorodiphenyltrichloroethane increase secretion and production of interleukin 6 by human immune cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103263. [PMID: 31542660 PMCID: PMC6814497 DOI: 10.1016/j.etap.2019.103263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 05/22/2023]
Abstract
The environmental contaminants pentachlorophenol (PCP) and 4, 4'-dichlorodiphenyltrichloroethane (DDT) are detected in some human blood samples at levels as high as 5 μM (PCP) and 260 nM (DDT). Several cancers are associated with exposures to these contaminants. IL-6 is a pro-inflammatory cytokine that when dysregulated stimulates inflammatory diseases and tumor progression. Immune cells exposed to PCP at 0.05-5 μM and DDT at 0.025-2.5 μM showed increased secretion of IL-6 when the cell preparations contained either T lymphocytes or monocytes. Increased IL-6 secretion was due to PCP and DDT induced cellular production of the cytokine and was dependent on MAP kinase signaling pathways (in the case of PCP). Compound-induced increases in IL-6 production were in part due to increases in either the transcription of and/or stability of its mRNA. Thus, both PCP and DDT have the potential to produce chronic inflammation by stimulating production of IL-6 by immune cells.
Collapse
Affiliation(s)
- Tamara J Martin
- Departments of Biological Sciences and Chemistry, Tennessee State University, Nashville, TN, 37209, United States
| | - Sahra Gabure
- Departments of Biological Sciences and Chemistry, Tennessee State University, Nashville, TN, 37209, United States
| | - JaQuel Maise
- Departments of Biological Sciences and Chemistry, Tennessee State University, Nashville, TN, 37209, United States
| | - Sequena Snipes
- Departments of Biological Sciences and Chemistry, Tennessee State University, Nashville, TN, 37209, United States
| | - Margarita Peete
- Departments of Biological Sciences and Chemistry, Tennessee State University, Nashville, TN, 37209, United States
| | - Margaret M Whalen
- Departments of Biological Sciences and Chemistry, Tennessee State University, Nashville, TN, 37209, United States.
| |
Collapse
|
22
|
Soond SM, Kozhevnikova MV, Townsend PA, Zamyatnin AA. Cysteine Cathepsin Protease Inhibition: An update on its Diagnostic, Prognostic and Therapeutic Potential in Cancer. Pharmaceuticals (Basel) 2019; 12:ph12020087. [PMID: 31212661 PMCID: PMC6630828 DOI: 10.3390/ph12020087] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022] Open
Abstract
In keeping with recent developments in basic research; the importance of the Cathepsins as targets in cancer therapy have taken on increasing importance and given rise to a number of key areas of interest in the clinical setting. In keeping with driving basic research in this area in a translational direction; recent findings have given rise to a number of exciting developments in the areas of cancer diagnosis; prognosis and therapeutic development. As a fast-moving area of research; the focus of this review brings together the latest findings and highlights the translational significance of these developments.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, 119991 Moscow, Russia.
| | - Maria V Kozhevnikova
- Federal State Autonomous Edu-cational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), Hospital Therapy Department No. 1, 6-1 Bolshaya Pirogovskaya str, 119991 Moscow, Russia.
| | - Paul A Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M20 4GJ, UK.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, 119991 Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| |
Collapse
|
23
|
Tawara K, Scott H, Emathinger J, Wolf C, LaJoie D, Hedeen D, Bond L, Montgomery P, Jorcyk C. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: synergistic induction of IL-6 secretion by OSM and IL-1β. Oncotarget 2019; 10:2068-2085. [PMID: 31007849 PMCID: PMC6459341 DOI: 10.18632/oncotarget.26699] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation has been recognized as a risk factor for the development and maintenance of malignant disease. Cytokines such as interleukin-6 (IL-6), oncostatin M (OSM), and interleukin-1 beta (IL-1β) promote the development of both acute and chronic inflammation while promoting in vitro metrics of breast cancer metastasis. However, anti-IL-6 and anti-IL-1β therapeutics have not yielded significant results against solid tumors in clinical trials. Here we show that these three cytokines are interrelated in expression. Using the Curtis TCGA™ dataset, we have determined that there is a correlation between expression levels of OSM, IL-6, and IL-1β and reduced breast cancer patient survival (r = 0.6, p = 2.2 x 10−23). Importantly, we confirm that OSM induces at least a 4-fold increase in IL-6 production from estrogen receptor-negative (ER−) breast cancer cells in a manner that is dependent on STAT3 signaling. Furthermore, OSM induces STAT3 phosphorylation and IL-1β promotes p65 phosphorylation to synergistically induce IL-6 secretion in ER− MDA-MB-231 and to a lesser extent in ER+ MCF7 human breast cancer cells. Induction may be reduced in the ER+ MCF7 cells due to a previously known suppressive interaction between ER and STAT3. Interestingly, we show in MCF7 cells that ER’s interaction with STAT3 is reduced by 50% through both OSM and IL-1β treatment, suggesting a role for ER in mitigating STAT3-mediated inflammatory cascades. Here, we provide a rationale for a breast cancer treatment regime that simultaneously suppresses multiple targets, as these cytokines possess many overlapping functions that increase metastasis and worsen patient survival.
Collapse
Affiliation(s)
- Ken Tawara
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA
| | - Hannah Scott
- Boise State University, Department of Biological Sciences, Boise, ID, USA
| | | | - Cody Wolf
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA.,Boise State University, Department of Biological Sciences, Boise, ID, USA
| | - Dollie LaJoie
- Boise State University, Department of Biological Sciences, Boise, ID, USA.,University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Danielle Hedeen
- Boise State University, Department of Biological Sciences, Boise, ID, USA.,University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Laura Bond
- Boise State University, Biomolecular Research Center, Boise, ID, USA
| | | | - Cheryl Jorcyk
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA.,Boise State University, Department of Biological Sciences, Boise, ID, USA
| |
Collapse
|
24
|
Xi D. Vitamin C in Cancer Therapeutics and Metastasis. JOURNAL OF ORTHOPEDIC RESEARCH AND THERAPY 2019; 10:1127. [PMID: 31179437 PMCID: PMC6553485 DOI: 10.29011/2575-8241.001127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There have been significant increased publications of preclinical studies and clinical trials of vitamin C (ascorbate) on cancer therapeutics in the past a few years. In this communication reflecting my personal opinions, I will highlight the main points of current research status; discuss impacts of vitamin C on immune cell function and inflammation at tumor microenvironment, and tumor metastasis; and propose stimulating questions and direction for future research in this area.
Collapse
Affiliation(s)
- Dan Xi
- National Cancer Institute, Division of Cancer Treatment and Diagnosis,
Office of Cancer Complementary and Alternative Medicine, Rockville, USA
| |
Collapse
|
25
|
Harmer D, Falank C, Reagan MR. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front Endocrinol (Lausanne) 2019; 9:788. [PMID: 30671025 PMCID: PMC6333051 DOI: 10.3389/fendo.2018.00788] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
The immune system is strongly linked to the maintenance of healthy bone. Inflammatory cytokines, specifically, are crucial to skeletal homeostasis and any dysregulation can result in detrimental health complications. Interleukins, such as interleukin 6 (IL-6), act as osteoclast differentiation modulators and as such, must be carefully monitored and regulated. IL-6 encourages osteoclastogenesis when bound to progenitors and can cause excessive osteoclastic activity and osteolysis when overly abundant. Numerous bone diseases are tied to IL-6 overexpression, including rheumatoid arthritis, osteoporosis, and bone-metastatic cancers. In the latter, IL-6 can be released with growth factors into the bone marrow microenvironment (BMM) during osteolysis from bone matrix or from cancer cells and osteoblasts in an inflammatory response to cancer cells. Thus, IL-6 helps create an ideal microenvironment for oncogenesis and metastasis. Multiple myeloma (MM) is a blood cancer that homes to the BMM and is strongly tied to overexpression of IL-6 and bone loss. The roles of IL-6 in the progression of MM are discussed in this review, including roles in bone homing, cancer-associated bone loss, disease progression and drug resistance. MM disease progression often includes the development of drug-resistant clones, and patients commonly struggle with reoccurrence. As such, therapeutics that specifically target the microenvironment, rather than the cancer itself, are ideal and IL-6, and its myriad of downstream signaling partners, are model targets. Lastly, current and potential therapeutic interventions involving IL-6 and connected signaling molecules are discussed in this review.
Collapse
Affiliation(s)
- Danielle Harmer
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Carolyne Falank
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Michaela R. Reagan
- Reagan Laboratory, Maine Medical Center Research Institute, Scarborough, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
26
|
Muccioli M, Nandigam H, Loftus T, Singh M, Venkatesh A, Wright J, Pate M, McCall K, Benencia F. Modulation of double-stranded RNA pattern recognition receptor signaling in ovarian cancer cells promotes inflammatory queues. Oncotarget 2018; 9:36666-36683. [PMID: 30613350 PMCID: PMC6291178 DOI: 10.18632/oncotarget.26378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation and cancer are inter-related, and both pro- and anti-tumorigenic effects are possible in different contexts, highlighting the importance of characterizing specific inflammatory pathways in distinct tumor types. Malignant cells and non-cancerous cells such as fibroblasts, infiltrating leukocytes (i.e., dendritic cells [DC], macrophages, or lymphocytes) and endothelial cells, in combination with the extracellular matrix, constitute the tumor microenvironment (TME). In the last decades, the role of the TME in cancer progression has gained increased attention and efforts directed at abrogating its deleterious effects on anti-cancer therapies have been ongoing. In this context, we investigated the potential of mouse and human ovarian cancer cells to produce inflammatory factors in response to pathogen recognition receptor (PRR) signaling, which might help to shape the biology of the TME. We determined that mouse ovarian tumors generate chemokines that are able to interact with receptors harbored by tumor-associated DCs. We also found that dsRNA triggers significant pro-inflammatory cytokine up-regulation in both human and mouse ovarian tumor cell lines, and that several PRR can simultaneously contribute to the stimulated inflammatory response displayed by these cells. Thus, dsRNA-activated PRRs may not only constitute potentially relevant drug targets for therapies aiming to prevent inflammation associated with leukocyte recruitment, or as co-adjuvants of therapeutic treatments, but also might have a role in development of nascent tumors, for example via activation of cancer cells by microbial molecules associated to pathogens, or with those appearing in circulation due to dysbiosis.
Collapse
Affiliation(s)
- Maria Muccioli
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Harika Nandigam
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Tiffany Loftus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Manindra Singh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA
| | - Amritha Venkatesh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA
| | - Julia Wright
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Michelle Pate
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Kelly McCall
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| | - Fabian Benencia
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, 45701, USA.,Diabetes Institute at Ohio University, Ohio University, Athens, OH, 45701, USA.,Biomedical Engineering Program, Russ College of Engineering & Technology, Ohio University, Athens, OH, 45701, USA.,Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
27
|
Murali B, Ren Q, Luo X, Faget DV, Wang C, Johnson RM, Gruosso T, Flanagan KC, Fu Y, Leahy K, Alspach E, Su X, Ross MH, Burnette B, Weilbaecher KN, Park M, Mbalaviele G, Monahan JB, Stewart SA. Inhibition of the Stromal p38MAPK/MK2 Pathway Limits Breast Cancer Metastases and Chemotherapy-Induced Bone Loss. Cancer Res 2018; 78:5618-5630. [PMID: 30093561 PMCID: PMC6168362 DOI: 10.1158/0008-5472.can-18-0234] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022]
Abstract
The role of the stromal compartment in tumor progression is best illustrated in breast cancer bone metastases, where the stromal compartment supports tumor growth, albeit through poorly defined mechanisms. p38MAPKα is frequently expressed in tumor cells and surrounding stromal cells, and its expression levels correlate with poor prognosis. This observation led us to investigate whether inhibition of p38MAPKα could reduce breast cancer metastases in a clinically relevant model. Orally administered, small-molecule inhibitors of p38MAPKα or its downstream kinase MK2 each limited outgrowth of metastatic breast cancer cells in the bone and visceral organs. This effect was primarily mediated by inhibition of the p38MAPKα pathway within the stromal compartment. Beyond effectively limiting metastatic tumor growth, these inhibitors reduced tumor-associated and chemotherapy-induced bone loss, which is a devastating comorbidity that drastically affects quality of life for patients with cancer. These data underscore the vital role played by stromal-derived factors in tumor progression and identify the p38MAPK-MK2 pathway as a promising therapeutic target for metastatic disease and prevention of tumor-induced bone loss.Significance: Pharmacologically targeting the stromal p38MAPK-MK2 pathway limits metastatic breast cancer growth, preserves bone quality, and extends survival. Cancer Res; 78(19); 5618-30. ©2018 AACR.
Collapse
Affiliation(s)
- Bhavna Murali
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Qihao Ren
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Xianmin Luo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Douglas V Faget
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Chun Wang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Radia Marie Johnson
- Goodman Cancer Center, Department of Oncology, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Tina Gruosso
- Goodman Cancer Center, Department of Oncology, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Kevin C Flanagan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Yujie Fu
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Kathleen Leahy
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Elise Alspach
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Xinming Su
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Michael H Ross
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Morag Park
- Goodman Cancer Center, Department of Oncology, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri
| | | | - Sheila A Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
28
|
Kim HJ, Choi JH, Hwang JH, Kim KS, Noh JR, Choi DH, Moon SJ, Kim HY, Kim SW, Choi S, Eum SM, Bach TT, Rho J, Lee JY, Park JG, Oh SR, Lee CH, Oh WK, Kim YH. 3,5-Di-C-β-D-glucopyranosyl phloroacetophenone, a major component of Melicope ptelefolia, suppresses fibroblast activation and alleviates arthritis in a mouse model: Potential therapeutics for rheumatoid arthritis. Int J Mol Med 2018; 42:2763-2775. [PMID: 30226571 PMCID: PMC6192774 DOI: 10.3892/ijmm.2018.3849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022] Open
Abstract
Melicope ptelefolia has been traditionally used to treat rheumatism and fever. The present study aimed to investigate the therapeutic effect of 3,5-di-C-β-d-glucopyranosyl phloroacetophenone (βGP), a main component of M. ptelefolia, on rheumatoid arthritis (RA). A model of collagen-induced arthritis (CIA) was established in mice using the RAW 264.7 murine macrophage cell line and mouse embryonic fibroblasts (MEFs). The clinical scores of arthritis, swelling, histopathological findings, and micro-computed tomography in CIA mouse paws were assessed. The levels of anti-type II collagen antibody and cytokines were determined in the plasma and cell culture supernatant, respectively. Protein and gene expression levels were analyzed by western blot and reverse transcription-quantitative polymerase chain reaction analyses. βGP significantly decreased the gross arthritic scores of CIA mice and joint swelling, and decreased articular inflammation, cartilage degradation and bone erosion. However, βGP did not exert any effect on anti-type II collagen immunoglobulin G plasma levels or inflammatory cytokine expression in macrophages. βGP significantly suppressed the expression of interleukin-6 and leukemia inhibitory factor and decreased the phosphorylation of signal transducer and activator of transcription 3, and expression of receptor activator of nuclear factor-κB ligand in tumor necrosis factor-α-stimulated MEFs and in CIA mouse paws. Osteoclast-related gene expression was significantly reduced in CIA mouse paws. Taken together, βGP suppressed the development of RA by regulating the activation of synovial fibroblasts.
Collapse
Affiliation(s)
- Hyun Jong Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji Hyun Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung-Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyong-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sung Je Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun-Yong Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang-Woo Kim
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju, Chungcheongbuk‑do 28160, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang Mi Eum
- International Biological Material Research Center, Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ju Yong Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Geun Park
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sei-Ryang Oh
- University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
Chiang YT, Ho CH, Hu SW, Yang TY, Sung CW, Wang YH, Wu CC. Association between the rs1800795G>C polymorphism in the promoter of interleukin-6 gene and bladder cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3598-3604. [PMID: 31949739 PMCID: PMC6962851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/28/2018] [Indexed: 06/10/2023]
Abstract
Interleukin-6 (IL-6) is an inflammatory cytokines that plays a role in the development of cancer. Several studies have examined the relationship between the IL-6 -174G>C polymorphism and bladder cancer, but these results are inconclusive. Therefore, we conducted a meta-analysis to explore the association between IL-6 -174G>C polymorphism and bladder cancer risk. A comprehensive literature search was performed to identify eligible studies regarding the IL-6 -174G>C polymorphism and bladder cancer. Effect sizes under fixed- and random-effects models were calculated using odds ratios (ORs) with 95% confidence intervals (CIs). Finally, five case-control studies were included in the subsequent analyses. In the fixed-effect analysis, significantly higher bladder cancer risks of 1.20 (95% CI = 1.07-1.36) and 1.30 (95% CI = 1.08-1.56) were found for the dominant model (C/C+G/C vs. G/G) and recessive model (C/C vs. G/C+G/G), respectively. Especially for the Asian population, significantly greater bladder cancer risks of 1.63 (95% CI = 1.32-2.00) and 1.54 (95% CI = 1.07-2.21) were observed for the dominant model (C/C+G/C vs. G/G) and the recessive model (C/C vs. G/C+G/G), respectively. Non-significantly increased risks of bladder cancer were observed for the dominant and recessive models under the random-effects analysis. The major findings of this meta-analysis suggest that IL-6 -174G>C polymorphism is significantly associated with bladder cancer risk in the Asian population. Further studies with a larger sample size are needed to validate the effects of IL-6 polymorphisms on bladder cancer risk.
Collapse
Affiliation(s)
- Yi-Te Chiang
- Department of Urology, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan
| | - Chen-Hsun Ho
- Department of Urology, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Su-Wei Hu
- Department of Urology, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan
| | - Tse-Yen Yang
- Department of Medical Research, China Medical University HospitalTaichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical UniversityTaichung, Taiwan
| | - Chih-Wei Sung
- Department of Emergency Medicine, National Taiwan University Hospital Hsin-Chu BranchHsinchu, Taiwan
- Department of Emergency Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan
| | - Chia-Chang Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical UniversityNew Taipei City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
30
|
Alterations in NO- and PGI 2- dependent function in aorta in the orthotopic murine model of metastatic 4T1 breast cancer: relationship with pulmonary endothelial dysfunction and systemic inflammation. BMC Cancer 2018; 18:582. [PMID: 29788918 PMCID: PMC5964697 DOI: 10.1186/s12885-018-4445-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 04/26/2018] [Indexed: 12/22/2022] Open
Abstract
Background Patients with cancer develop endothelial dysfunction and subsequently display a higher risk of cardiovascular events. The aim of the present work was to examine changes in nitric oxide (NO)- and prostacyclin (PGI2)-dependent endothelial function in the systemic conduit artery (aorta), in relation to the formation of lung metastases and to local and systemic inflammation in a murine orthotopic model of metastatic breast cancer. Methods BALB/c female mice were orthotopically inoculated with 4T1 breast cancer cells. Development of lung metastases, lung inflammation, changes in blood count, systemic inflammatory response (e.g. SAA, SAP and IL-6), as well as changes in NO- and PGI2-dependent endothelial function in the aorta, were examined 2, 4, 5 and 6 weeks following cancer cell transplantation. Results As early as 2 weeks following transplantation of breast cancer cells, in the early metastatic stage, lungs displayed histopathological signs of inflammation, NO production was impaired and nitrosylhemoglobin concentration in plasma was decreased. After 4 to 6 weeks, along with metastatic development, progressive leukocytosis and systemic inflammation (as seen through increased SAA, SAP, haptoglobin and IL-6 plasma concentrations) were observed. Six weeks following cancer cell inoculation, but not earlier, endothelial dysfunction in aorta was detected; this involved a decrease in basal NO production and a decrease in NO-dependent vasodilatation, that was associated with a compensatory increase in cyclooxygenase-2 (COX-2)- derived PGI2 production. Conclusions In 4 T1 metastatic breast cancer in mice early pulmonary metastasis was correlated with lung inflammation, with an early decrease in pulmonary as well as systemic NO availability. Late metastasis was associated with robust, cancer-related, systemic inflammation and impairment of NO-dependent endothelial function in the aorta that was associated with compensatory upregulation of the COX-2-derived PGI2 pathway.
Collapse
|
31
|
Ma X, Sun J, Ye W, Huang Y, Sun C, Tao Y, Wang T, Cong W, Geng F. Pro-apoptotic effects of Kangfuxin on human stomach cancer cells and its underlying mechanism. Oncol Lett 2018; 16:931-939. [PMID: 29963166 PMCID: PMC6019916 DOI: 10.3892/ol.2018.8713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Kangfuxin (KFX) is an oral liquid derived from Periplaneta americana, with complex components. KFX has been demonstrated to exhibit anticancer activity in a variety of different types of tumor, including gastric cancer; however, its underlying molecular mechanism remains unclear. The present study was designed to investigate the pro-apoptotic effects of KFX on SGC-7901 cells, in order to provide a theoretical basis for clinical application. In order to clarify the pro-apoptotic effects of KFX on SGC-7901 cells, MTT analysis was conducted. To evaluate the anticancer effect of KFX, peroxisome proliferator-activated receptor (PPAR)-γ was analyzed by reverse transcription-polymerase chain reaction. Western blot analysis was used to determine the effects of KFX on the expression of cleaved caspase-3, phosphorylated extracellular signal-regulated kinase (p-ERK), ERK, tumor protein p53 (p53), B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X, interleukin (IL)-6 and IL-1β. In addition, terminal deoxynucleotidyl-transferase-mediated dUTP nick-end labeling (TUNEL) analysis was used to detect apoptosis in SGC-7901 cells. It was revealed that PPAR-γ was increased in SGC-7901 cells following treatment with KFX, shown by an increase in mRNA expression. Furthermore, western blot analysis identified that KFX treatment groups exhibited markedly inhibited levels of Bcl-2, IL-6, IL-1β and p-ERK, and induced p53 protein expression. Additionally, TUNEL and MTT assays demonstrated that treatment with KFX may induce SGC-7901 cell apoptosis and inhibit proliferation. In conclusion, to the best of our knowledge, the results of the present study demonstrated for the first time that KFX may induce SGC-7901 cell apoptosis and inhibit its proliferation, and this may be primarily attributed to its role in mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase/ERK signaling pathway inhibition.
Collapse
Affiliation(s)
- Xiuying Ma
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, Sichuan 610000, P.R. China
| | - Jia Sun
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weijian Ye
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yewei Huang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Congcong Sun
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Youli Tao
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tao Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weitao Cong
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
32
|
Kumar S, Singh R, Malik S, Manne U, Mishra M. Prostate cancer health disparities: An immuno-biological perspective. Cancer Lett 2018; 414:153-165. [PMID: 29154974 PMCID: PMC5743619 DOI: 10.1016/j.canlet.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in males, and, in the United States, is the second leading cause of cancer-related death for men older than 40 years. There is a higher incidence of PCa for African Americans (AAs) than for European-Americans (EAs). Investigations related to the incidence of PCa-related health disparities for AAs suggest that there are differences in the genetic makeup of these populations. Other differences are environmentally induced (e.g., diet and lifestyle), and the exposures are different. Men who immigrate from Eastern to Western countries have a higher risk of PCa than men in their native countries. However, the number of immigrants developing PCa is still lower than that of men in Western countries, suggesting that genetic factors are involved in the development of PCa. Altered genetic polymorphisms are associated with PCa progression. Androgens and the androgen receptor (AR) are involved in the development and progression of PCa. For populations with diverse racial/ethnic backgrounds, differences in lifestyle, diet, and biology, including genetic mutations/polymorphisms and levels of androgens and AR, are risk factors for PCa. Here, we provide an immuno-biological perspective on PCa in relation to racial/ethnic disparities and identify factors associated with the disproportionate incidence of PCa and its clinical outcomes.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shalie Malik
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Upender Manne
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
33
|
Cytokines in Endocrine Dysfunction of Plasma Cell Disorders. Mediators Inflamm 2017; 2017:7586174. [PMID: 28740334 PMCID: PMC5504949 DOI: 10.1155/2017/7586174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/25/2017] [Indexed: 12/25/2022] Open
Abstract
Monoclonal gammopathies (MG) are classically associated with lytic bone lesions, hypercalcemia, anemia, and renal insufficiency. However, in some cases, symptoms of endocrine dysfunction are more prominent than these classical signs and misdiagnosis can thus be possible. This concerns especially the situation where the presence of M-protein is limited and the serum protein electrophoresis (sPEP) appears normal. To understand the origin of the endocrine symptoms associated with MG, we overview here the current knowledge on the complexity of interactions between cytokines and the endocrine system in MG and discuss the perspectives for both the diagnosis and treatments for this class of diseases. We also illustrate the role of major cytokines and growth factors such as IL-6, IL-1β, TNF-α, and VEGF in the endocrine system, as these tumor-relevant signaling molecules not only help the clonal expansion and invasion of the tumor cells but also influence cellular metabolism through autocrine, paracrine, and endocrine mechanisms. We further discuss the broader impact of these tumor environment-derived molecules and proinflammatory state on systemic hormone signaling. The diagnostic challenges and clinical work-up are illustrated from the point of view of an endocrinologist.
Collapse
|
34
|
Sen M, Johnston PA, Pollock NI, DeGrave K, Joyce SC, Freilino ML, Hua Y, Camarco DP, Close DA, Huryn DM, Wipf P, Grandis JR. Mechanism of action of selective inhibitors of IL-6 induced STAT3 pathway in head and neck cancer cell lines. J Chem Biol 2017; 10:129-141. [PMID: 28684999 DOI: 10.1007/s12154-017-0169-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/06/2017] [Indexed: 12/13/2022] Open
Abstract
Studies indicate that elevated interleukin-6 (IL-6) levels engage IL6Rα-gp130 receptor complexes to activate signal transducer and activator of transcription 3 (STAT3) that is hyperactivated in many cancers including head and neck squamous cell carcinoma (HNSCC). Our previous HCS campaign identified several hits that selectively blocked IL-6-induced STAT3 activation. This study describes our investigation of the mechanism(s) of action of three of the four chemical series that progressed to lead activities: a triazolothiadiazine (864669), amino alcohol (856350), and an oxazole-piperazine (4248543). We demonstrated that all three blocked IL-6-induced upregulation of the cyclin D1 and Bcl-XL STAT3 target genes. None of the compounds exhibited direct binding interactions with STAT3 in surface plasmon resonance (SPR) binding assays; neither did they inhibit the recruitment and binding of a phospho-tyrosine-gp130 peptide to STAT3 in a fluorescence polarization assay. Furthermore, they exhibited little or no inhibition in a panel of 83 cancer-associated in vitro kinase profiling assays, including lack of inhibition of IL-6-induced Janus kinase (JAK 1, 2, and 3) activation. Further, 864669 and 4248543 selectively inhibited IL-6-induced STAT3 activation but not that induced by oncostatin M (OSM). The compounds 864669 and 4248543 abrogated IL-6-induced phosphorylation of the gp130 signaling subunit (phospho-gp130Y905) of the IL-6-receptor complex in HNSCC cell lines which generate docking sites for the SH2 domains of STAT3. Our data indicate that 864669 and 4248543 block IL-6-induced STAT activation by interfering with the recruitment, assembly, or activation of the hexamer-activated IL-6/IL-6Rα/gp130 signaling complex that occurs after IL-6 binding to IL-6Rα subunits.
Collapse
Affiliation(s)
- Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Netanya I Pollock
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Kara DeGrave
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Sonali C Joyce
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Maria L Freilino
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Daniel P Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - David A Close
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94118 USA.,Clinical and Translational Science Institute, University of California, San Francisco, Box 0558, 550 16th Street, San Francisco, CA 94143 USA
| |
Collapse
|
35
|
Ge JR, Xie LH, Chen J, Li SQ, Xu HJ, Lai YL, Qiu LL, Ni CB. Liuwei Dihuang Pill () Treats Postmenopausal Osteoporosis with Shen (Kidney) Yin Deficiency via Janus Kinase/Signal Transducer and Activator of Transcription Signal Pathway by Up-regulating Cardiotrophin-Like Cytokine Factor 1 Expression. Chin J Integr Med 2016; 24:415-422. [PMID: 28028720 DOI: 10.1007/s11655-016-2744-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the mechanism of Liuwei Dihuang Pill (, LDP) in treating postmenopausal osteoporosis (PMOP) with Shen (Kidney) yin deficiency. METHODS In this study, 205 cases of PMOP were divided into the PMOP Shen-yin deficiency group (Group A), PMOP Shen-yang deficiency group (Group B), PMOP without Shen deficiency group (Group C), and control group (Group N). Real-time polymerase chain reaction (RT-PCR) and Western blot techniques were used to observe the effects of LDP treatment on the cardiotrophin-like cytokine factor 1 (CLCF1), ankyrin repeat and SOCS box containing 1 (ASB1), and prokineticin 2 (PROK2) genes and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. RESULTS The mRNA (P<0.05) and protein (P<0.01) expression levels of the CLCF1 gene in Group A were significantly lower than the corresponding levels in Group N. After LDP treatment for 3 months, the mRNA expression levels of the CLCF1 gene were obviously up-regulated (P<0.01). After 6-month treatment, the expression levels of CLCF1 mRNA and protein were significantly up-regulated (both P<0.01), and the average bone density of the top femur had significantly increased (P<0.05). In vitro, CLCF1 overexpression resulted in a significant increase in the total protein and phosphorylated protein levels of JAK2 and STAT3. CONCLUSIONS The CLCF1 gene is an important gene associated with PMOP Shen-yin deficiency and the therapeutic effects of LDP may be mediated by up-regulation of CLCF1 gene expression and activation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Ji-Rong Ge
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China.
| | - Li-Hua Xie
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Juan Chen
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Sheng-Qiang Li
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Hui-Juan Xu
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Yu-Lian Lai
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Long-Long Qiu
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Chen-Bo Ni
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| |
Collapse
|
36
|
Gan L, Qiu Z, Huang J, Li Y, Huang H, Xiang T, Wan J, Hui T, Lin Y, Li H, Ren G. Cyclooxygenase-2 in tumor-associated macrophages promotes metastatic potential of breast cancer cells through Akt pathway. Int J Biol Sci 2016; 12:1533-1543. [PMID: 27994517 PMCID: PMC5166494 DOI: 10.7150/ijbs.15943] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/09/2016] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer development and progression by releasing various cytokines and chemokines. Previously, we have found that the number of COX-2+ TAMs was associated with lymph node metastasis in breast cancer. However, the mechanism remains enigmatic. In this study, we show that COX-2 in breast TAMs enhances the metastatic potential of breast cancer cells. COX-2 in TAMs induces MMP-9 expression and promotes epithelial-mesenchymal transition (EMT) in breast cancer cells. In addition, COX-2/PGE2 induces IL-6 release in macrophages. Furthermore, we find that the activation of Akt pathway in cancer cells is crucial for the pro-metastatic effect of COX-2+ TAMs by regulating MMP-9 and EMT. These findings indicate that TAMs facilitate breast cancer cell metastasis through COX-2-mediated intercellular communication.
Collapse
Affiliation(s)
- Lu Gan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Tianli Hui
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Lin
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Clinical Roles of Interleukin-6 and STAT3 in Oral Squamous Cell Carcinoma. Pathol Oncol Res 2016; 23:425-431. [PMID: 27744625 DOI: 10.1007/s12253-016-0134-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/12/2016] [Indexed: 12/29/2022]
Abstract
The effect inflammation has on cancer prognosis is marked by the presence of cytokines and chemokines. Interleukin-6 (IL-6) is one a multifunctional cytokine that regulates inflammatory responses. We investigated the roles of IL-6 and STAT3 and examined the relationship between IL-6 signaling and clinicopathological factors in patients with oral squamous cell carcinoma (OSCC). We retrospectively examined 116 patients who underwent radical surgery for OSCC. IL-6 and STAT3 expression were detected by immunohistochemistry. IL-6 and STAT3 positivity were detected by IHC, at 78.4 and 80.2 %, respectively. IL-6 expression was significantly associated with pattern of invasion (P = 0.004), vascular invasion (P = 0.003), and pathological nodal status (P = 0.019). Multivariate logistic regression analysis revealed that IL-6 expression was significantly associated with vascular invasion (P = 0.044). Meanwhile, there was no significant association between STAT3 expression and clinicopathological factors and no significant relationship between IL-6 and STAT3 expression. IL-6 expression was significantly associated with 5-year disease-free survival. These results suggest that IL-6 is involved in lymphangiogenesis and recurrence in OSCC.
Collapse
|
38
|
Takeda Y, Kato T, Ito H, Kurota Y, Yamagishi A, Sakurai T, Araki A, Nara H, Tsuchiya N, Asao H. The pattern of GPI-80 expression is a useful marker for unusual myeloid maturation in peripheral blood. Clin Exp Immunol 2016; 186:373-386. [PMID: 27569996 DOI: 10.1111/cei.12859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have a wide spectrum of immunosuppressive activity; control of these cells is a new target for improving clinical outcomes in cancer patients. MDSCs originate from unusual differentiation of neutrophils or monocytes induced by inflammatory cytokines, including granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage (GM)-CSF. However, MDSCs are difficult to detect in neutrophil or monocyte populations because they are not uniform cells, resembling both neutrophils and monocytes; thus, they exist in a heterogeneous population. In this study, we investigated GPI-80, a known regulator of Mac-1 (CD11b/CD18) and associated closely with neutrophil maturation, to clarify this unusual differentiation. First, we demonstrated that the mean fluorescence intensity (MFI) of GPI-80 and coefficient of variation (CV) of GPI-80 were increased by treatment with G-CSF and GM-CSF, respectively, using a human promyelocytic leukaemia (HL60) cell differentiation model. To confirm the value of GPI-80 as a marker of unusual differentiation, we measured GPI-80 expression and MDSC functions using peripheral blood cells from metastatic renal cell carcinoma patients. The GPI-80 CV was augmented significantly in the CD16hi neutrophil cell population, and GPI-80 MFI was increased significantly in the CD33hi monocyte cell population. Furthermore, the GPI-80 CV in the CD16hi population was correlated inversely with the proliferative ability of T cells and the GPI-80 MFI of the CD33hi population was correlated with reactive oxygen species production. These results led us to propose that the pattern of GPI-80 expression in these populations is a simple and useful marker for unusual differentiation, which is related to MDSC functions.
Collapse
Affiliation(s)
- Y Takeda
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - T Kato
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - H Ito
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Y Kurota
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - A Yamagishi
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - T Sakurai
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - A Araki
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - H Nara
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - N Tsuchiya
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - H Asao
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
39
|
Fu S, Zhou RR, Li N, Huang Y, Fan XG. Hepatitis B virus X protein in liver tumor microenvironment. Tumour Biol 2016; 37:10.1007/s13277-016-5406-2. [PMID: 27658781 PMCID: PMC5250643 DOI: 10.1007/s13277-016-5406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
Encoded by the hepatitis B virus, hepatitis B virus X protein (HBx) is a multifunctional, potentially oncogenic protein that acts primarily during the progression from chronic hepatitis B to cirrhosis and hepatocellular carcinoma (HCC). In recent decades, it has been established that chronic inflammation generates a tumor-supporting microenvironment. HCC is a typical chronic inflammation-related cancer, and inflammation is the main risk factor for HCC progression. The viral transactivator HBx plays a pivotal role in the initiation and maintenance of hepatic inflammatory processes through interactions with components of the tumor microenvironment including tumor cells and the surrounding peritumoral stroma. The complex interactions between HBx and this microenvironment are thought to regulate tumor growth, progression, invasion, metastasis, and angiogenesis. In this review, we have summarized the current evidence evaluating the function of HBx and its contribution to the inflammatory liver tumor microenvironment.
Collapse
Affiliation(s)
- Sha Fu
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan Province, Xiangya Hospital, Central South University, P. O. Box: 410008, Changsha, China
| | - Rong-Rong Zhou
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan Province, Xiangya Hospital, Central South University, P. O. Box: 410008, Changsha, China.
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan Province, Xiangya Hospital, Central South University, P. O. Box: 410008, Changsha, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan Province, Xiangya Hospital, Central South University, P. O. Box: 410008, Changsha, China.
| |
Collapse
|
40
|
Labovsky V, Martinez LM, Calcagno MDL, Davies KM, García-Rivello H, Wernicke A, Feldman L, Giorello MB, Matas A, Borzone FR, Howard SC, Chasseing NA. Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer. Tumour Biol 2016; 37:13377-13384. [PMID: 27460086 DOI: 10.1007/s13277-016-5268-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023] Open
Abstract
Spindle-shaped stromal cells, like carcinoma-associated fibroblasts and mesenchymal stem cells, influence tumor behavior and can serve as parameters in the clinical diagnosis, therapy, and prognosis of early breast cancer. Therefore, the aim of this study is to explore the clinicopathological significance of tumor necrosis factor-related apoptosis-induced ligand (TRAIL) receptors (Rs) 2 and 4 (TRAIL-R2 and R4), and interleukin-6 R (IL-6R) in spindle-shaped stromal cells, not associated with the vasculature, as prognostic determinants of early breast cancer patients. Receptors are able to trigger the migratory activity, among other functions, of these stromal cells. We conducted immunohistochemical analysis for the expression of these receptors in spindle-shaped stromal cells, not associated with the vasculature, of primary tumors from early invasive breast cancer patients, and analyzed their association with clinicopathological characteristics. Here, we demonstrate that the elevated levels of TRAIL-R2, TRAIL-R4, and IL-6R in these stromal cells were significantly associated with a higher risk of metastatic occurrence (p = 0.034, 0.026, and 0.006; respectively). Moreover, high expression of TRAIL-R4 was associated with shorter disease-free survival and metastasis-free survival (p = 0.013 and 0.019; respectively). Also, high expression of IL-6R was associated with shorter disease-free survival, metastasis-free survival, and overall survival (p = 0.003, 0.001, and 0.003; respectively). Multivariate analysis showed that IL-6R expression was an independent prognostic factor for disease-free survival and metastasis-free survival (p = 0.035). This study is the first to demonstrate that high levels of IL-6R expression in spindle-shaped stromal cells, not associated with the vasculature, could be used to identify early breast cancer patients with poor outcomes.
Collapse
Affiliation(s)
- Vivian Labovsky
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María de Luján Calcagno
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, CP 1113, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Kevin Mauro Davies
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, CP 1181, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Hernán García-Rivello
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, CP 1181, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Wernicke
- Departamento de Anatomía Patológica, Hospital Italiano, Juan Domingo Perón 4190, CP 1181, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonardo Feldman
- Departamento de Trasplante de Medula Ósea, Fundación Favaloro, Solís 443, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ayelén Matas
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Scott C Howard
- University of Memphis, 3720 Alumni Ave, 38152, Memphis, TN, USA
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, CP 1428, Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
41
|
Novack DV, Mbalaviele G. Osteoclasts-Key Players in Skeletal Health and Disease. Microbiol Spectr 2016; 4:10.1128/microbiolspec.MCHD-0011-2015. [PMID: 27337470 PMCID: PMC4920143 DOI: 10.1128/microbiolspec.mchd-0011-2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/12/2022] Open
Abstract
The differentiation of osteoclasts (OCs) from early myeloid progenitors is a tightly regulated process that is modulated by a variety of mediators present in the bone microenvironment. Once generated, the function of mature OCs depends on cytoskeletal features controlled by an αvβ3-containing complex at the bone-apposed membrane and the secretion of protons and acid-protease cathepsin K. OCs also have important interactions with other cells in the bone microenvironment, including osteoblasts and immune cells. Dysregulation of OC differentiation and/or function can cause bone pathology. In fact, many components of OC differentiation and activation have been targeted therapeutically with great success. However, questions remain about the identity and plasticity of OC precursors and the interplay between essential networks that control OC fate. In this review, we summarize the key principles of OC biology and highlight recently uncovered mechanisms regulating OC development and function in homeostatic and disease states.
Collapse
Affiliation(s)
- Deborah Veis Novack
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gabriel Mbalaviele
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
| |
Collapse
|
42
|
Szalayova G, Ogrodnik A, Spencer B, Wade J, Bunn J, Ambaye A, James T, Rincon M. Human breast cancer biopsies induce eosinophil recruitment and enhance adjacent cancer cell proliferation. Breast Cancer Res Treat 2016; 157:461-74. [PMID: 27249999 PMCID: PMC5026505 DOI: 10.1007/s10549-016-3839-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
Abstract
Chronic inflammation is known to facilitate cancer progression and metastasis. Less is known about the effect of acute inflammation within the tumor microenvironment, resulting from standard invasive procedures. Recent studies in mouse models have shown that the acute inflammatory response triggered by a biopsy in mammary cancer increases the frequency of distal metastases. Although tumor biopsies are part of the standard clinical practice in breast cancer diagnosis, no studies have reported their effect on inflammatory response. The objective of this study is to (1) determine whether core needle biopsies in breast cancer patients trigger an inflammatory response, (2) characterize the type of inflammatory response present, and (3) evaluate the potential effect of any acute inflammatory response on residual tumor cells. The biopsy wound site was identified in the primary tumor resection tissue samples from breast cancer patients. The inflammatory response in areas adjacent (i.e., immediately around previous biopsy site) and distant to the wound biopsy was investigated by histology and immunohistochemistry analysis. Proliferation of tumor cells was also assayed. We demonstrate that diagnostic core needle biopsies trigger a selective recruitment of inflammatory cells at the site of the biopsy, and they persist for extended periods of time. While macrophages were part of the inflammatory response, an unexpected accumulation of eosinophils at the edge of the biopsy wound was also identified. Importantly, we show that biopsy causes an increase in the proliferation rate of tumor cells located in the area adjacent to the biopsy wound. Diagnostic core needle biopsies in breast cancer patients do induce a unique acute inflammatory response within the tumor microenvironment and have an effect on the surrounding tumor cells. Therefore, biopsy-induced inflammation could have an impact on residual tumor cell progression and/or metastasis in human breast cancer. These findings may carry relevance in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Gabriela Szalayova
- Department of Surgery, University of Vermont, Burlington, VT 05405
- Department of Surgery, Danbury Hospital, CT 06810
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| | - Aleksandra Ogrodnik
- Department of Surgery, University of Vermont, Burlington, VT 05405
- Department of Surgery, Danbury Hospital, CT 06810
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| | - Brianna Spencer
- Department of Surgery, University of Vermont, Burlington, VT 05405
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| | - Jacqueline Wade
- Department of Surgery, University of Vermont, Burlington, VT 05405
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| | - Janice Bunn
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405
| | - Abiy Ambaye
- Department of Pathology, University of Vermont, Burlington, VT 05405
| | - Ted James
- Department of Surgery, University of Vermont, Burlington, VT 05405
| | - Mercedes Rincon
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405
| |
Collapse
|
43
|
Culig Z, Pencik J, Merkel O, Kenner L. Breaking a paradigm: IL-6/STAT3 signaling suppresses metastatic prostate cancer upon ARF expression. Mol Cell Oncol 2016; 3:e1090048. [PMID: 27308625 DOI: 10.1080/23723556.2015.1090048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/09/2023]
Abstract
Interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling is considered to have important oncogenic functions in prostate cancer (PCa). However, a recent study highlighted the central role of IL-6/STAT3 signaling in regulation of the ARF-MDM2-p53 senescence axis. This reversal of the postulated oncogenic properties of IL-6/STAT3 signaling in PCa has important therapeutic implications.
Collapse
Affiliation(s)
- Zoran Culig
- Department of Urology, Medical University of Innsbruck , Innsbruck, Austria
| | - Jan Pencik
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Lukas Kenner
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria; Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
44
|
Significance of Interleukin-6 in Papillary Thyroid Carcinoma. J Thyroid Res 2016; 2016:6178921. [PMID: 27034885 PMCID: PMC4808558 DOI: 10.1155/2016/6178921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022] Open
Abstract
This study sought to reveal the significance of IL-6 in papillary thyroid carcinoma by determining its circulating levels, tumoral protein, and mRNA expressions. As compared to the healthy individuals, serum IL-6 was significantly higher in patients with benign thyroid diseases and PTC. Further, its level was significantly higher in PTC patients as compared to patients with benign thyroid diseases. ROC curves also confirmed a good discriminatory efficacy of serum IL-6 between healthy individuals and patients with benign thyroid diseases and PTC. The circulating IL-6 was significantly associated with poor overall survival in PTC patients. IL-6 immunoreactivity was significantly high in PTC patients as compared to the benign thyroid disease patients. Significantly higher IL-6 mRNA expression was also observed in the primary tumour tissues of PTC patients than the adjacent normal tissues. The protein expression of IL-6 at both the circulating and tissue level correlated with disease aggressiveness in PTC patients. Moreover, a significant positive correlation was observed between the IL-6 protein and mRNA expression in the primary tumours of PTC patients. Finally in conclusion, IL-6 has an important role in thyroid cancer progression. Thus targeting IL-6 signalling can help in clinical management of thyroid carcinoma patients.
Collapse
|
45
|
Saber MM, Galal MA, Ain-Shoka AA, Shouman SA. Combination of metformin and 5-aminosalicylic acid cooperates to decrease proliferation and induce apoptosis in colorectal cancer cell lines. BMC Cancer 2016; 16:126. [PMID: 26896068 PMCID: PMC4759732 DOI: 10.1186/s12885-016-2157-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/10/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The link between inflammation and cancer has been confirmed by the use of anti-inflammatory therapies in cancer prevention and treatment. 5-aminosalicylic acid (5-ASA) was shown to decrease the growth and survival of colorectal cancer (CRC) cells. Studies also revealed that metformin induced apoptosis in several cancer cell lines. METHODS We investigated the combinatory effect of 5-ASA and metformin on HCT-116 and Caco-2 CRC cell lines. Apoptotic markers were determined using western blotting. Expression of pro-inflammatory cytokines was determined by RT-PCR. Inflammatory transcription factors and metastatic markers were measured by ELISA. RESULTS Metformin enhanced CRC cell death induced by 5-ASA through significant increase in oxidative stress and activation of apoptotic machinery. Moreover, metformin enhanced the anti-inflammatory effect of 5-ASA by decreasing the gene expression of IL-1β, IL-6, COX-2 and TNF-α and its receptors; TNF-R1 and TNF-R2. Significant inhibition of activation of NF-κB and STAT3 transcription factors, and their downstream targets was also observed. Metformin also enhanced the inhibitory effect of 5-ASA on MMP-2 and MMP-9 enzyme activity, indicating a decrease in metastasis. CONCLUSION The current data demonstrate that metformin potentiates the antitumor effect of 5-ASA on CRC cells suggesting their potential use as an adjuvant treatment in CRC.
Collapse
Affiliation(s)
- Mona M Saber
- Pharmacology and Toxicolgy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - May A Galal
- Pharmacology and Toxicolgy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Afaf A Ain-Shoka
- Pharmacology and Toxicolgy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Samia A Shouman
- Parmacology Unit,Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt.
| |
Collapse
|
46
|
Ziaee S, Chu GCY, Huang JM, Sieh S, Chung LWK. Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics. Transl Androl Urol 2016; 4:438-54. [PMID: 26816842 PMCID: PMC4708593 DOI: 10.3978/j.issn.2223-4683.2015.04.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) metastasizes to bone and soft tissues, greatly decreasing quality of life, causing bone pain, skeletal complications, and mortality in PCa patients. While new treatment strategies are being developed, the molecular and cellular basis of PCa metastasis and the “cross-talk” between cancer cells and their microenvironment and crucial cell signaling pathways need to be successfully dissected for intervention. In this review, we introduce a new concept of the mechanism of PCa metastasis, the recruitment and reprogramming of bystander and dormant cells (DCs) by a population of metastasis-initiating cells (MICs). We provide evidence that recruited and reprogrammed DCs gain MICs phenotypes and can subsequently metastasize to bone and soft tissues. We show that MICs can also recruit and reprogram circulating tumor cells (CTCs) and this could contribute to cancer cell evolution and the acquisition of therapeutic resistance. We summarize relevant molecular signaling pathways, including androgen receptors (ARs) and their variants and growth factors (GFs) and cytokines that could contribute to the predilection of PCa for homing to bone and soft tissues. To understand the etiology and the biology of PCa and the effectiveness of therapeutic targeting, we briefly summarize the animal and cell models that have been employed. We also report our experience in the use of three-dimensional (3-D) culture and co-culture models to understand cell signaling networks and the use of these attractive tools to conduct drug screening exercises against already-identified molecular targets. Further research into PCa growth and metastasis will improve our ability to target cancer metastasis more effectively and provide better rationales for personalized oncology.
Collapse
Affiliation(s)
- Shabnam Ziaee
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gina Chia-Yi Chu
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jen-Ming Huang
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shirly Sieh
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- 1 Department of Medicine, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA ; 2 Australian Prostate Cancer Research Centre, Brisbane, Queensland 4102, Australia ; 3 Department of Surgery, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
47
|
Luo X, Fu Y, Loza AJ, Murali B, Leahy KM, Ruhland MK, Gang M, Su X, Zamani A, Shi Y, Lavine KJ, Ornitz DM, Weilbaecher KN, Long F, Novack DV, Faccio R, Longmore GD, Stewart SA. Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Rep 2015; 14:82-92. [PMID: 26725121 DOI: 10.1016/j.celrep.2015.12.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/22/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
More than 85% of advanced breast cancer patients suffer from metastatic bone lesions, yet the mechanisms that facilitate these metastases remain poorly understood. Recent studies suggest that tumor-derived factors initiate changes within the tumor microenvironment to facilitate metastasis. However, whether stromal-initiated changes are sufficient to drive increased metastasis in the bone remains an open question. Thus, we developed a model to induce reactive senescent osteoblasts and found that they increased breast cancer colonization of the bone. Analysis of senescent osteoblasts revealed that they failed to mineralize bone matrix and increased local osteoclastogenesis, the latter process being driven by the senescence-associated secretory phenotype factor, IL-6. Neutralization of IL-6 was sufficient to limit senescence-induced osteoclastogenesis and tumor cell localization to bone, thereby reducing tumor burden. Together, these data suggest that a reactive stromal compartment can condition the niche, in the absence of tumor-derived signals, to facilitate metastatic tumor growth in the bone.
Collapse
Affiliation(s)
- Xianmin Luo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yujie Fu
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew J Loza
- ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bhavna Murali
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen M Leahy
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Megan K Ruhland
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Margery Gang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xinming Su
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ali Zamani
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yu Shi
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine N Weilbaecher
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fanxin Long
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deborah V Novack
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Roberta Faccio
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gregory D Longmore
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sheila A Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; ICCE Institute, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
48
|
Jiang YN, Yan HQ, Huang XB, Wang YN, Li Q, Gao FG. Interleukin 6 trigged ataxia-telangiectasia mutated activation facilitates lung cancer metastasis via MMP-3/MMP-13 up-regulation. Oncotarget 2015; 6:40719-33. [PMID: 26528698 PMCID: PMC4747364 DOI: 10.18632/oncotarget.5825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022] Open
Abstract
Our previous studies show that the phosphorylation of ataxia-telangiectasia mutated (ATM) induced by interleukin 6 (IL-6) treatment contributes to multidrug resistance formation in lung cancer cells, but the exact role of ATM activation in IL-6 increased metastasis is still elusive. In the present study, matrix metalloproteinase-3 (MMP-3) and MMP-13 were firstly demonstrated to be involved in IL-6 correlated cell migration. Secondly, IL-6 treatment not only increased MMP-3/MMP-13 expression but also augmented its activities. Thirdly, the inhibition of ATM phosphorylation efficiently abolished IL-6 up-regulating MMP-3/MMP-13 expression and increasing abilities of cell migration. Most importantly, the in vivo test showed that the inhibition of ATM abrogate the effect of IL-6 on lung cancer metastasis via MMP-3/MMP-13 down-regulation. Taken together, these findings demonstrate that IL-6 inducing ATM phosphorylation increases the expression of MMP-3/MMP-13, augments the abilities of cell migration, and promotes lung cancer metastasis, indicating that ATM is a potential target molecule to overcome IL-6 correlated lung cancer metastasis.
Collapse
Affiliation(s)
- Yi Na Jiang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hong Qiong Yan
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiao Bo Huang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yi Nan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qing Li
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Feng Guang Gao
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Shang Hai Jiao Tong University, Shanghai 200032, People's Republic of China
| |
Collapse
|
49
|
Cancer-Osteoblast Interaction Reduces Sost Expression in Osteoblasts and Up-Regulates lncRNA MALAT1 in Prostate Cancer. MICROARRAYS 2015; 4:503-19. [PMID: 27600237 PMCID: PMC4996404 DOI: 10.3390/microarrays4040503] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 12/29/2022]
Abstract
Dynamic interaction between prostate cancer and the bone microenvironment is a major contributor to metastasis of prostate cancer to bone. In this study, we utilized an in vitro co-culture model of PC3 prostate cancer cells and osteoblasts followed by microarray based gene expression profiling to identify previously unrecognized prostate cancer–bone microenvironment interactions. Factors secreted by PC3 cells resulted in the up-regulation of many genes in osteoblasts associated with bone metabolism and cancer metastasis, including Mmp13, Il-6 and Tgfb2, and down-regulation of Wnt inhibitor Sost. To determine whether altered Sost expression in the bone microenvironment has an effect on prostate cancer metastasis, we co-cultured PC3 cells with Sost knockout (SostKO) osteoblasts and wildtype (WT) osteoblasts and identified several genes differentially regulated between PC3-SostKO osteoblast co-cultures and PC3-WT osteoblast co-cultures. Co-culturing PC3 cells with WT osteoblasts up-regulated cancer-associated long noncoding RNA (lncRNA) MALAT1 in PC3 cells. MALAT1 expression was further enhanced when PC3 cells were co-cultured with SostKO osteoblasts and treatment with recombinant Sost down-regulated MALAT1 expression in these cells. Our results suggest that reduced Sost expression in the tumor microenvironment may promote bone metastasis by up-regulating MALAT1 in prostate cancer.
Collapse
|
50
|
Yu SH, Zheng Q, Esopi D, Macgregor-Das A, Luo J, Antonarakis ES, Drake CG, Vessella R, Morrissey C, De Marzo AM, Sfanos KS. A Paracrine Role for IL6 in Prostate Cancer Patients: Lack of Production by Primary or Metastatic Tumor Cells. Cancer Immunol Res 2015; 3:1175-84. [PMID: 26048576 DOI: 10.1158/2326-6066.cir-15-0013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023]
Abstract
Correlative human studies suggest that the pleiotropic cytokine IL6 contributes to the development and/or progression of prostate cancer. However, the source of IL6 production in the prostate microenvironment in patients has yet to be determined. The cellular origin of IL6 in primary and metastatic prostate cancer was examined in formalin-fixed, paraffin-embedded tissues using a highly sensitive and specific chromogenic in situ hybridization (CISH) assay that underwent extensive analytical validation. Quantitative RT-PCR showed that benign prostate tissues often had higher expression of IL6 mRNA than matched tumor specimens. CISH analysis further indicated that both primary and metastatic prostate adenocarcinoma cells do not express IL6 mRNA. IL6 expression was highly heterogeneous across specimens and was nearly exclusively restricted to the prostate stromal compartment--including endothelial cells and macrophages, among other cell types. The number of IL6-expressing cells correlated positively with the presence of acute inflammation. In metastatic disease, tumor cells were negative in all lesions examined, and IL6 expression was restricted to endothelial cells within the vasculature of bone metastases. Finally, IL6 was not detected in any cells in soft tissue metastases. These data suggest that, in prostate cancer patients, paracrine rather than autocrine IL6 production is likely associated with any role for the cytokine in disease progression.
Collapse
Affiliation(s)
- Shu-Han Yu
- Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Esopi
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anne Macgregor-Das
- Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emmanuel S Antonarakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert Vessella
- Department of Urology, University of Washington Medical Center, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington Medical Center, Seattle, Washington
| | - Angelo M De Marzo
- Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen S Sfanos
- Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|