1
|
Xu W, Zhao T, Xiao H. The Implication of Oxidative Stress and AMPK-Nrf2 Antioxidative Signaling in Pneumonia Pathogenesis. Front Endocrinol (Lausanne) 2020; 11:400. [PMID: 32625169 PMCID: PMC7311749 DOI: 10.3389/fendo.2020.00400] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
It is widely recognized that chemical, physical, and biological factors can singly or synergistically evoke the excessive production of oxidative stress in pulmonary tissue that followed by pulmonary lesions and pneumonia. In addition, metabolic and endocrine disorder-induced diseases such as diabetes and obesity often expressed higher susceptibility to pulmonary infections, and presented severe symptoms which increasing the mortality rate. Therefore, the connection between the lesion of the lungs and the metabolic/endocrine disorders is an interesting and essential issue to be addressed. Studies have noticed a similar pathological feature in both infectious pneumonia and metabolic disease-intercurrent pulmonary lesions, that is, from the view of molecular pathology, the accumulation of excessive reactive oxygen species (ROS) in pulmonary tissue accompanying with activated pro-inflammatory signals. Meanwhile, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and nuclear factor erythroid-2-related factor 2 (Nrf2) signaling plays important role in metabolic/endocrine homeostasis and infection response, and it's closely associated with the anti-oxidative capacity of the body. For this reason, this review will start from the summary upon the implication of ROS accumulation, and to discuss how AMPK-Nrf2 signaling contributes to maintaining the metabolic/endocrine homeostasis and attenuates the susceptibility of pulmonary infections.
Collapse
Affiliation(s)
| | | | - Hengyi Xiao
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Reliability and Usefulness of Different Biomarkers of Oxidative Stress in Chronic Obstructive Pulmonary Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4982324. [PMID: 32509143 PMCID: PMC7244946 DOI: 10.1155/2020/4982324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is a progressive disease characterized by airflow limitation that is not fully reversible after inhaled bronchodilator use associated with an abnormal inflammatory condition. The biggest risk factor for COPD is cigarette smoking. The exposure to noxious chemicals contained within tobacco smoke is known to cause airway epithelial injury through oxidative stress, which in turn has the ability to elicit an inflammatory response. In fact, the disruption of the delicate balance between oxidant and antioxidant defenses leads to an oxidative burden that has long been held responsible to play a pivotal role in the pathogenesis of COPD. There are currently several biomarkers of oxidative stress in COPD that have been evaluated in a variety of biological samples. The aim of this review is to identify the best studied molecules by summarizing the key literature findings, thus shedding some light on the subject. Methods We searched for relevant case-control studies examining oxidative stress biomarkers in stable COPD, taking into account the analytical method of detection as an influence factor. Results Many oxidative stress biomarkers have been evaluated in several biological matrices, mostly in the blood. Some of them consistently differ between the cases and controls even when allowing different analytical methods of detection. Conclusions The present review provides an overview of the oxidative stress biomarkers that have been evaluated in patients with COPD, bringing focus on those molecules whose reliability has been confirmed by the use of different analytical methods.
Collapse
|
3
|
Li J, Lu Y, Li N, Li P, Su J, Wang Z, Wang T, Yang Z, Yang Y, Chen H, Xiao L, Duan H, Wu W, Liu X. Muscle metabolomics analysis reveals potential biomarkers of exercise‑dependent improvement of the diaphragm function in chronic obstructive pulmonary disease. Int J Mol Med 2020; 45:1644-1660. [PMID: 32186768 PMCID: PMC7169662 DOI: 10.3892/ijmm.2020.4537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Decreased diaphragm function is a crucial factor leading to reduced ventilatory efficiency and worsening of quality of life in chronic obstructive pulmonary disease (COPD). Exercise training has been demonstrated to effectively improve the function of the diaphragm. However, the mechanism of this process has not been identified. The emergence of metabolomics has allowed the exploration of new ideas. The present study aimed to analyze the potential biomarkers of exercise-dependent enhancement of diaphragm function in COPD using metabolomics. Sprague Dawley rats were divided into three groups: COPD + exercise group (CEG); COPD model group (CMG); and control group (CG). The first two groups were exposed to cigarette smoke for 16 weeks to establish a COPD model. Then, the rats in the CEG underwent aerobic exercise training for 9 weeks. Following confirmation that exercise effectively improved the diaphragm function, a gas chromatography tandem time-of-flight mass spectrometry analysis system was used to detect the differential metabolites and associated pathways in the diaphragm muscles of the different groups. Following exercise intervention, the pulmonary function and diaphragm contractility of the CEG rats were significantly improved compared with those of the CMG rats. A total of 36 different metabolites were identified in the comparison between the CMG and the CG. Pathway enrichment analysis indicated that these different metabolites were involved in 17 pathways. A total of 29 different metabolites were identified in the comparison between the CMG and the CEG, which are involved in 14 pathways. Candidate biomarkers were selected, and the pathways analysis of these metabolites demonstrated that 2 types of metabolic pathways, the nicotinic acid and nicotinamide metabolism and arginine and proline metabolism pathways, were associated with exercise-induced pulmonary rehabilitation.
Collapse
Affiliation(s)
- Jian Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yufan Lu
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Ning Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Peijun Li
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Jianqing Su
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Zhengrong Wang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Ting Wang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Zhaoyu Yang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yahui Yang
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haixia Chen
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Lu Xiao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Hongxia Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weibing Wu
- Department of Sports Medicine, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
4
|
Mukharjee S, Bank S, Maiti S. Chronic Tobacco Exposure by Smoking Develops Insulin Resistance. Endocr Metab Immune Disord Drug Targets 2020; 20:869-877. [PMID: 32065107 DOI: 10.2174/1871530320666200217123901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVES The present review critically discusses the high occurrence rate, insulin resistance and type-2 diabetes in tobacco exposed individuals. Tobacco extracts and smoke contain a large number of toxic materials and a significant number of those are metabolic disintegrators. DISCUSSION Glucose and lipid homeostasis is severely impaired by this compound. Tobacco exposure contributes to adverse effects by impairing the physical, biochemical and molecular mechanisms in the tissues. The immunological components are damaged by tobacco with high production of proinflammatory cytokines (IL-6, TNF-∞) and augmentation of inflammatory responses. These events result in damages to cytoskeletal structures of different tissues. Degradation of matrix structure (by activation of different types of MMPs) results in the permanent damages to the tissues and their metabolic functions. Cellular antioxidant defense system mostly cannot or hardly nullify CS-induced ROS production that activates polymorphonuclear neutrophils (PMNs), which are a major source of cytokines and chemokines (TNFα, IL6, IL8, INFγ). Additive effects of these immediately promote the low energy-metabolism as well as inflammation. Oxidative stress, mitochondrial dysfunction, and inflammation contribute to the direct nicotine toxicity via nAChRs in diabetes. The investigator identified that skeletal muscle insulin-resistance occurs in smokers due to phosphorylation of insulin receptor substrate1 (IRS1) at Ser-636 position. CONCLUSION Tobacco exposure initiates free radical related immunological impairment, DNA damage, and inflammation. So, the present analysis is of importance to figure out the mechanistic layout of tobacco-induced tissue damage and its possible therapeutic interventions.
Collapse
Affiliation(s)
- Suchismita Mukharjee
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Rangamati, Midnapore, WB, 721102, India
| | - Sarbashri Bank
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Rangamati, Midnapore, WB, 721102, India
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Rangamati, Midnapore, WB, 721102, India
| |
Collapse
|
5
|
Lewis P, O'Halloran KD. Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases. Front Physiol 2016; 7:623. [PMID: 28018247 PMCID: PMC5149537 DOI: 10.3389/fphys.2016.00623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.
Collapse
Affiliation(s)
- Philip Lewis
- Department of Physiology, School of Medicine, University College CorkCork, Ireland; Environmental Medicine and Preventative Research, Institute and Policlinic for Occupational Medicine, University of CologneCologne, Germany
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| |
Collapse
|
6
|
Gupta I, Ganguly S, Rozanas CR, Stuehr DJ, Panda K. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis. Proc Natl Acad Sci U S A 2016; 113:E4208-17. [PMID: 27382160 PMCID: PMC4961122 DOI: 10.1073/pnas.1600056113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage.
Collapse
Affiliation(s)
- Indranil Gupta
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India
| | - Souradipta Ganguly
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India
| | - Christine R Rozanas
- Proteomics Applications Laboratory, GE Healthcare Life Sciences, Piscataway, NJ 08854
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Koustubh Panda
- Department of Biotechnology and Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata 700019, India;
| |
Collapse
|
7
|
Gea J, Pascual S, Casadevall C, Orozco-Levi M, Barreiro E. Muscle dysfunction in chronic obstructive pulmonary disease: update on causes and biological findings. J Thorac Dis 2015; 7:E418-38. [PMID: 26623119 DOI: 10.3978/j.issn.2072-1439.2015.08.04] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Respiratory and/or limb muscle dysfunction, which are frequently observed in chronic obstructive pulmonary disease (COPD) patients, contribute to their disease prognosis irrespective of the lung function. Muscle dysfunction is caused by the interaction of local and systemic factors. The key deleterious etiologic factors are pulmonary hyperinflation for the respiratory muscles and deconditioning secondary to reduced physical activity for limb muscles. Nonetheless, cigarette smoke, systemic inflammation, nutritional abnormalities, exercise, exacerbations, anabolic insufficiency, drugs and comorbidities also seem to play a relevant role. All these factors modify the phenotype of the muscles, through the induction of several biological phenomena in patients with COPD. While respiratory muscles improve their aerobic phenotype (percentage of oxidative fibers, capillarization, mitochondrial density, enzyme activity in the aerobic pathways, etc.), limb muscles exhibit the opposite phenotype. In addition, both muscle groups show oxidative stress, signs of damage and epigenetic changes. However, fiber atrophy, increased number of inflammatory cells, altered regenerative capacity; signs of apoptosis and autophagy, and an imbalance between protein synthesis and breakdown are rather characteristic features of the limb muscles, mostly in patients with reduced body weight. Despite that significant progress has been achieved in the last decades, full elucidation of the specific roles of the target biological mechanisms involved in COPD muscle dysfunction is still required. Such an achievement will be crucial to adequately tackle with this relevant clinical problem of COPD patients in the near-future.
Collapse
Affiliation(s)
- Joaquim Gea
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Sergi Pascual
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Carme Casadevall
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Mauricio Orozco-Levi
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| | - Esther Barreiro
- Servei de Pneumologia, Muscle & Respiratory System Research Unit (URMAR), Hospital del Mar-I.M.I.M., Experimental Sciences and Health Department (CEXS), Universitat Pompeu Fabra, CIBERES, ISCIII, Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Brunnquell CR, Vieira NA, Sábio LR, Sczepanski F, Cecchini AL, Cecchini R, Guarnier FA. Oxidative and proteolysis-related parameters of skeletal muscle from hamsters with experimental pulmonary emphysema: a comparison between papain and elastase induction. Int J Exp Pathol 2015; 96:140-50. [PMID: 26102076 DOI: 10.1111/iep.12121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/22/2015] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to investigate whether emphysema induced by elastase or papain triggers the same effects on skeletal muscle, related to oxidative stress and proteolysis, in hamsters. For this purpose, we evaluated pulmonary lesions, body weight, muscle loss, oxidative stress (thiobarbituric acid-reactive substances, total and oxidized glutathiones, chemiluminescence stimulated by tert-butyl hydroperoxide and carbonyl proteins), chymotrypsin-like and calpain-like proteolytic activities and muscle fibre cross-sectional area in the gastrocnemius muscles of emphysemic hamsters. Two groups of animals received different intratracheal inductions of experimental emphysema: by 40 mg/ml papain (EP) or 5.2 IU/100 g animal (EE) elastase (n = 10 animals/group). The control group received intratracheal instillation of 300 μl sterile NaCl 0.9%. Compared with the control group, the EP group had reduced muscle weight (18.34%) and the EE group had increased muscle weight (8.37%). Additionally, tert-butyl hydroperoxide-initiated chemiluminescence, carbonylated proteins and chymotrypsin-like proteolytic activity were all elevated in the EP group compared to the CS group, while total glutathione was decreased compared to the EE group. The EE group showed more fibres with increased cross-sectional areas and increased calpain-like activity. Together, these data show that elastase and papain, when used to induce experimental models of emphysema, lead to different speeds and types of adaptation. These findings provide more information on choosing a suitable experimental model for studying skeletal muscle adaptations in emphysema.
Collapse
Affiliation(s)
- Cláudia R Brunnquell
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Nichelle A Vieira
- Laboratory of Pathophysiology of Muscle Adaptations, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Laís R Sábio
- Laboratory of Pathophysiology of Muscle Adaptations, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Felipe Sczepanski
- Intermunicipal Health Consortium of Pioneer North, Jacarezinho, Brazil
| | - Alessandra L Cecchini
- Laboratory of Molecular Pathology, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Rubens Cecchini
- Laboratory of Pathophysiology and Free Radicals, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| | - Flávia A Guarnier
- Laboratory of Pathophysiology of Muscle Adaptations, Department of General Pathology, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
9
|
Zuo L, Hallman AH, Yousif MK, Chien MT. Oxidative stress, respiratory muscle dysfunction, and potential therapeutics in chronic obstructive pulmonary disease. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1251-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Caron MA, Debigaré R, Dekhuijzen PNR, Maltais F. Comparative assessment of the quadriceps and the diaphragm in patients with COPD. J Appl Physiol (1985) 2009; 107:952-61. [PMID: 19359618 DOI: 10.1152/japplphysiol.00194.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and other chronic diseases such as heart failure are accompanied by skeletal muscle alterations that further enhance morbidity and mortality in affected individuals. Several studies have highlighted important structural and biochemical modifications in limb and respiratory muscles in COPD. Reviewing the similarities and differences between the two most studied muscles in COPD, the quadriceps and the diaphragm, may be helpful in providing important clues about the mechanisms underlying muscle changes associated with this disease. Although oxidative stress is present in both muscles, other muscle alterations are clearly distinct between the quadriceps and the diaphragm. For example, the oxidative metabolism varies in opposite directions, the diaphragm exhibiting increased resistance to fatigue while the quadriceps in COPD is characterized by premature fatigability. Differences in muscle phenotypic expression between the diaphragm and the quadriceps indicate that, in addition to systemic factors, the local microenvironment must participate in the reorganization seen in these two skeletal muscles in COPD.
Collapse
Affiliation(s)
- Marc-André Caron
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada G1V 4G5
| | | | | | | |
Collapse
|
11
|
Kim HC, Mofarrahi M, Hussain SNA. Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2009; 3:637-58. [PMID: 19281080 PMCID: PMC2650609 DOI: 10.2147/copd.s4480] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating disease characterized by inflammation-induced airflow limitation and parenchymal destruction. In addition to pulmonary manifestations, patients with COPD develop systemic problems, including skeletal muscle and other organ-specific dysfunctions, nutritional abnormalities, weight loss, and adverse psychological responses. Patients with COPD often complain of dyspnea on exertion, reduced exercise capacity, and develop a progressive decline in lung function with increasing age. These symptoms have been attributed to increases in the work of breathing and in impairments in gas exchange that result from airflow limitation and dynamic hyperinflation. However, there is mounting evidence to suggest that skeletal muscle dysfunction, independent of lung function, contributes significantly to reduced exercise capacity and poor quality of life in these patients. Limb and ventilatory skeletal muscle dysfunction in COPD patients has been attributed to a myriad of factors, including the presence of low grade systemic inflammatory processes, nutritional depletion, corticosteroid medications, chronic inactivity, age, hypoxemia, smoking, oxidative and nitrosative stresses, protein degradation and changes in vascular density. This review briefly summarizes the contribution of these factors to overall skeletal muscle dysfunction in patients with COPD, with particular attention paid to the latest advances in the field.
Collapse
Affiliation(s)
- Ho Cheol Kim
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Gyeongsang University Hospital, Jinju, Korea
| | | | | |
Collapse
|