1
|
Kocot N, Pękala E, Koczurkiewicz-Adamczyk P, Chłoń-Rzepa G, Łapa A, Wójcik-Pszczoła K. Airway and cardiovascular remodeling in chronic obstructive pulmonary disease (COPD) as a target for transient receptor potential ankyrin 1 (TRPA1) channel modulators. Bioorg Chem 2025; 158:108301. [PMID: 40058223 DOI: 10.1016/j.bioorg.2025.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, which leads to airway remodeling (AR). AR refers to various structural changes occurring in the airway wall, resulting in thickening, and narrowing of the airways. Apart from airways, and lung tissue, pulmonary vasculature also undergoes remodeling. Thus, the pressure in vascular bed is increased, leading to pulmonary hypertension and further right and left ventricle hypertrophy, as well as myocardial fibrosis. Currently, there is lack of effective treatment directly targeting airway and cardiovascular remodeling in the course of COPD. Due to a lot of research showing involvement of transient receptor potential ankyrin 1 (TRPA1) in respiratory disorders, it seems reasonable to consider this ion channel as a molecular target in treatment of remodeling consequences of COPD. The aim of this review is to summarize current knowledge of its role in this case and to identify areas requiring further research. Moreover, we provide few patented structures intended to treat chronic respiratory diseases, which may be worth investigating in the context of airway remodeling.
Collapse
Affiliation(s)
- Natalia Kocot
- Jagiellonian University, Doctoral School of Medical and Health Sciences, Łazarza 16, 31-530 Kraków, Poland; Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Aleksandra Łapa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
2
|
Zhang K, Yao E, Aung T, Chuang PT. The alveolus: Our current knowledge of how the gas exchange unit of the lung is constructed and repaired. Curr Top Dev Biol 2024; 159:59-129. [PMID: 38729684 DOI: 10.1016/bs.ctdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The mammalian lung completes its last step of development, alveologenesis, to generate sufficient surface area for gas exchange. In this process, multiple cell types that include alveolar epithelial cells, endothelial cells, and fibroblasts undergo coordinated cell proliferation, cell migration and/or contraction, cell shape changes, and cell-cell and cell-matrix interactions to produce the gas exchange unit: the alveolus. Full functioning of alveoli also involves immune cells and the lymphatic and autonomic nervous system. With the advent of lineage tracing, conditional gene inactivation, transcriptome analysis, live imaging, and lung organoids, our molecular understanding of alveologenesis has advanced significantly. In this review, we summarize the current knowledge of the constituents of the alveolus and the molecular pathways that control alveolar formation. We also discuss how insight into alveolar formation may inform us of alveolar repair/regeneration mechanisms following lung injury and the pathogenic processes that lead to loss of alveoli or tissue fibrosis.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States.
| |
Collapse
|
3
|
Dikalov SI, Gutor S, Dikalova AE. Pathological mechanisms of cigarette smoking, dietary, and sedentary lifestyle risks in vascular dysfunction: mitochondria as a common target of risk factors. Pflugers Arch 2023; 475:857-866. [PMID: 36995495 PMCID: PMC10911751 DOI: 10.1007/s00424-023-02806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
In the past century, the lifespan of the human population has dramatically increased to the 80 s, but it is hindered by a limited health span to the 60 s due to an epidemic increase in the cardiovascular disease which is a main cause of morbidity and mortality. We cannot underestimate the progress in understanding the major cardiovascular risk factors which include cigarette smoking, dietary, and sedentary lifestyle risks. Despite their clinical significance, these modifiable risk factors are still the major contributors to cardiovascular disease. It is, therefore, important to understand the specific molecular mechanisms behind their pathological effects to develop new therapies to improve the treatment of cardiovascular disease. In recent years, our group and others have made a progress in understanding how these risk factors can promote endothelial dysfunction, smooth muscle dysregulation, vascular inflammation, hypertension, lung, and heart diseases. These factors, despite differences in their nature, lead to stereotypical alterations in vascular metabolism and function. Interestingly, cigarette smoking has a tremendous impact on a very distant site from the initial epithelial exposure, namely circulation and vascular cells mediated by a variety of stable cigarette smoke components which promote vascular oxidative stress and alter vascular metabolism and function. Similarly, dietary and sedentary lifestyle risks facilitate vascular cell metabolic reprogramming promoting vascular oxidative stress and dysfunction. Mitochondria are critical in cellular metabolism, and in this work, we discuss a new concept that mitochondria are a common pathobiological target for these risk factors, and mitochondria-targeted treatments may have a therapeutic effect in the patients with cardiovascular disease.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Ave, PRB 554, Nashville, TN, 37232, USA.
| | - Sergey Gutor
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Ave, PRB 554, Nashville, TN, 37232, USA
| | - Anna E Dikalova
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Ave, PRB 554, Nashville, TN, 37232, USA
| |
Collapse
|
4
|
Wang JM, Labaki WW, Murray S, Martinez FJ, Curtis JL, Hoffman EA, Ram S, Bell AJ, Galban CJ, Han MK, Hatt C. Machine learning for screening of at-risk, mild and moderate COPD patients at risk of FEV 1 decline: results from COPDGene and SPIROMICS. Front Physiol 2023; 14:1144192. [PMID: 37153221 PMCID: PMC10161244 DOI: 10.3389/fphys.2023.1144192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose: The purpose of this study was to train and validate machine learning models for predicting rapid decline of forced expiratory volume in 1 s (FEV1) in individuals with a smoking history at-risk-for chronic obstructive pulmonary disease (COPD), Global Initiative for Chronic Obstructive Lung Disease (GOLD 0), or with mild-to-moderate (GOLD 1-2) COPD. We trained multiple models to predict rapid FEV1 decline using demographic, clinical and radiologic biomarker data. Training and internal validation data were obtained from the COPDGene study and prediction models were validated against the SPIROMICS cohort. Methods: We used GOLD 0-2 participants (n = 3,821) from COPDGene (60.0 ± 8.8 years, 49.9% male) for variable selection and model training. Accelerated lung function decline was defined as a mean drop in FEV1% predicted of > 1.5%/year at 5-year follow-up. We built logistic regression models predicting accelerated decline based on 22 chest CT imaging biomarker, pulmonary function, symptom, and demographic features. Models were validated using n = 885 SPIROMICS subjects (63.6 ± 8.6 years, 47.8% male). Results: The most important variables for predicting FEV1 decline in GOLD 0 participants were bronchodilator responsiveness (BDR), post bronchodilator FEV1% predicted (FEV1.pp.post), and CT-derived expiratory lung volume; among GOLD 1 and 2 subjects, they were BDR, age, and PRMlower lobes fSAD. In the validation cohort, GOLD 0 and GOLD 1-2 full variable models had significant predictive performance with AUCs of 0.620 ± 0.081 (p = 0.041) and 0.640 ± 0.059 (p < 0.001). Subjects with higher model-derived risk scores had significantly greater odds of FEV1 decline than those with lower scores. Conclusion: Predicting FEV1 decline in at-risk patients remains challenging but a combination of clinical, physiologic and imaging variables provided the best performance across two COPD cohorts.
Collapse
Affiliation(s)
- Jennifer M. Wang
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Susan Murray
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | | | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Sundaresh Ram
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Alexander J. Bell
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Craig J. Galban
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Charles Hatt
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Imbio Inc., Minneapolis, MN, United States
| |
Collapse
|
5
|
Truong L, Zheng YM, Wang YX. The Potential Important Role of Mitochondrial Rieske Iron-Sulfur Protein as a Novel Therapeutic Target for Pulmonary Hypertension in Chronic Obstructive Pulmonary Disease. Biomedicines 2022; 10:957. [PMID: 35625694 PMCID: PMC9138741 DOI: 10.3390/biomedicines10050957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, which is often due to pulmonary hypertension (PH). The underlying molecular mechanisms are poorly understood, and current medications are neither specific nor always effective. In this review, we highlight the recent findings on the roles of altered mitochondrial bioenergetics in PH in COPD. We also discuss the central role of mitochondrial reactive oxygen species (ROS) generation mediated by Rieske iron-sulfur protein (RISP) and review the contributions of RISP-dependent DNA damage and NF-κB-associated inflammatory signaling. Finally, the potential importance of mitochondrial RISP and its associated molecules as novel therapeutic targets for PH in COPD are meticulously discussed.
Collapse
Affiliation(s)
| | | | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; (L.T.); (Y.-M.Z.)
| |
Collapse
|
6
|
Grimmer B, Krauszman A, Hu X, Kabir G, Connelly KA, Li M, Grune J, Madry C, Isakson BE, Kuebler WM. Pannexin 1-a novel regulator of acute hypoxic pulmonary vasoconstriction. Cardiovasc Res 2021; 118:2535-2547. [PMID: 34668529 DOI: 10.1093/cvr/cvab326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Hypoxic pulmonary vasoconstriction (HPV) is a physiological response to alveolar hypoxia that diverts blood flow from poorly ventilated to better aerated lung areas to optimize ventilation-perfusion matching. Yet, the exact sensory and signaling mechanisms by which hypoxia triggers pulmonary vasoconstriction remain incompletely understood. Recently, ATP release via pannexin 1 (Panx1) and subsequent signaling via purinergic P2Y receptors has been identified as regulator of vasoconstriction in systemic arterioles. Here, we probed for the role of Panx1-mediated ATP release in HPV and chronic hypoxic pulmonary hypertension (PH). METHODS AND RESULTS Pharmacological inhibition of Panx1 by probenecid, spironolactone, the Panx1 specific inhibitory peptide (10Panx1) and genetic deletion of Panx1 specifically in smooth muscle attenuated HPV in isolated perfused mouse lungs. In pulmonary artery smooth muscle cells (PASMC), both spironolactone and 10Panx1 attenuated the increase in intracellular Ca2+ concentration ([Ca2+]i) in response to hypoxia. Yet, genetic deletion of Panx1 in either endothelial or smooth muscle cells did not prevent the development of PH in mice. Unexpectedly, ATP release in response to hypoxia was not detectable in PASMC, and inhibition of purinergic receptors or ATP degradation by ATPase failed to attenuate HPV. Rather, transient receptor potential vanilloid 4 (TRPV4) antagonism and Panx1 inhibition inhibited the hypoxia-induced [Ca2+]i increase in PASMC in an additive manner, suggesting that Panx1 regulates [Ca2+]i independently of the ATP-P2Y-TRPV4 pathway. In line with this notion, Panx1 overexpression increased the [Ca2+]i response to hypoxia in HeLa cells. CONCLUSION In the present study we identify Panx1 as novel regulator of HPV. Yet, the role of Panx1 in HPV was not attributable to ATP release and downstream signaling via P2Y receptors or TRPV4 activation, but relates to a role of Panx1 as direct or indirect modulator of the PASMC Ca2+ response to hypoxia. Panx1 did not affect the development of chronic hypoxic PH. TRANSLATIONAL PERSPECTIVE Hypoxic pulmonary vasoconstriction (HPV) optimizes lung ventilation-perfusion matching, but also contributes to pulmonary pathologies including high altitude pulmonary edema (HAPE) or chronic hypoxic pulmonary hypertension. Here, we demonstrate that pharmaceutical inhibition as well as genetic deletion of the hemichannel pannexin-1 (Panx1) in pulmonary artery smooth muscle cells attenuates the physiological HPV response. Panx1 deficiency did, however, not prevent the development of chronic hypoxic pulmonary hypertension in mice. Panx1 inhibitors such as the mineralocorticoid receptor antagonist spironolactone may thus present a putative strategy for the prevention or treatment of HAPE, yet not for chronic hypoxic lung disease.
Collapse
Affiliation(s)
- Benjamin Grimmer
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK)
| | - Adrienn Krauszman
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Xudong Hu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Golam Kabir
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Mei Li
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jana Grune
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christian Madry
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK).,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Physiology and Surgery, University of Toronto, ON, Canada
| |
Collapse
|
7
|
Suzuki T, Hirose K, Tabei F, Sugishita Y, Oka T, Ishii S, Fujiwara T, Takeda N, Komuro I, Itoh N. An Autopsy Case of Pulmonary Veno-Occlusive Disease Complicated with Chronic Obstructive Pulmonary Disease and Severe Pulmonary Hypertension. Int Heart J 2021; 62:1186-1190. [PMID: 34588408 DOI: 10.1536/ihj.21-133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease with obstructed airflow and frequently causes secondary mild-moderate pulmonary hypertension (PH). However, a low proportion (1%-5%) of COPD patients develop severe therapy-resistant PH, and it is crucial to determine whether the patient has another disease capable of causing severe PH, including pulmonary arterial hypertension.Here, we describe a case of a 71-year-old male with COPD complicated by severe PH and right heart failure. He had a history of heavy smoking and developed progressive hypoxemia on exertion. He had severe airflow limitation (forced expiratory volume % in one second, FEV 1.0% = 42.8%) with a markedly reduced diffusing capacity of the lung (predicted diffusion capacity of carbon monoxide, %DLCO = 29%), and high-resolution computed tomography (CT) demonstrated significant lung parenchymal abnormalities such as diffuse interlobular septal thickening, ground-glass opacities, and enlarged mediastinal lymph nodes. He was diagnosed with group 3 PH caused by COPD but resistant to the treatment of COPD, diuretics, and oxygen therapy. Pathohistological analysis of autopsy specimens revealed the coexistence of interstitial fibrosis and partial occlusion of the small intrapulmonary veins, which led to a conclusive diagnosis of pulmonary veno-occlusive disease (PVOD).Because of its rarity and similarity with idiopathic pulmonary arterial hypertension, PVOD is difficult to diagnose antemortem and has a poor prognosis. High-resolution CT findings (septal thickening, ground glass, and enlarged lymph nodes) and severely reduced DLCO should be carefully evaluated for the early detection and treatment of PVOD in COPD patients with severe PH.
Collapse
Affiliation(s)
- Takaaki Suzuki
- Department of Cardiovascular Medicine, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers.,Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Kimihiko Hirose
- Department of Cardiovascular Medicine, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers
| | - Fumiko Tabei
- Department of Cardiovascular Medicine, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers
| | - Yasuyuki Sugishita
- Department of Cardiovascular Medicine, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers
| | | | - Satoshi Ishii
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Takayuki Fujiwara
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Nobuhiko Itoh
- Department of Cardiovascular Medicine, Kanto Central Hospital of the Mutual Aid Association of Public School Teachers
| |
Collapse
|
8
|
Choudhury P, Bhattacharya A, Dasgupta S, Ghosh N, Senpupta S, Joshi M, Bhattacharyya P, Chaudhury K. Identification of novel metabolic signatures potentially involved in the pathogenesis of COPD associated pulmonary hypertension. Metabolomics 2021; 17:94. [PMID: 34599402 DOI: 10.1007/s11306-021-01845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) associated pulmonary hypertension (COPD-PH), one of the most prevalent forms of PH, is a major burden on the healthcare system. Although PH in COPD is usually of mild-to-moderate severity, its presence is associated with shorter survival, more frequent exacerbations and worse clinical outcomes. The pathophysiologic mechanisms responsible for PH development in COPD patients remain unclear. It is envisioned that a better understanding of the underlying mechanism will help in diagnosis and future treatment strategies. OBJECTIVES The present study aims to determine metabolomic alterations in COPD-PH patients as compared to healthy controls. Additionally, to ensure that the dysregulated metabolites arise due to the presence of PH per se, an independent COPD cohort is included for comparison purposes. METHODS Paired serum and exhaled breath condensate (EBC) samples were collected from male patients with COPD-PH (n = 60) in accordance with the 2015 European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines. Age, sex and BMI matched healthy controls (n = 57) and COPD patients (n = 59) were recruited for comparison purposes. All samples were characterized using 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS Fifteen serum and 9 EBC metabolites were found to be significantly altered in COPD-PH patients as compared to healthy controls. Lactate and pyruvate were dysregulated in both the biofluids and were further correlated with echocardiographic systolic pulmonary artery pressure (sPAP). Multivariate analysis showed distinct class separation between COPD-PH and COPD. CONCLUSIONS The findings of this study indicate an increased energy demand in patients with COPD-PH. Furthermore, both lactate and pyruvate correlate with sPAP, indicating their importance in the clinical course of the disease.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Anindita Bhattacharya
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sanjukta Dasgupta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | - Mamata Joshi
- National Facility for High-Field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
9
|
Truong L, Zheng YM, Kandhi S, Wang YX. Overview on Interactive Role of Inflammation, Reactive Oxygen Species, and Calcium Signaling in Asthma, COPD, and Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:147-164. [PMID: 34019268 DOI: 10.1007/978-3-030-68748-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Inflammatory signaling is a major component in the development and progression of many lung diseases, including asthma, chronic obstructive pulmonary disorder (COPD), and pulmonary hypertension (PH). This chapter will provide a brief overview of asthma, COPD, and PH and how inflammation plays a vital role in these diseases. Specifically, we will discuss the role of reactive oxygen species (ROS) and Ca2+ signaling in inflammatory cellular responses and how these interactive signaling pathways mediate the development of asthma, COPD, and PH. We will also deliberate the key cellular responses of pulmonary arterial (PA) smooth muscle cells (SMCs) and airway SMCs (ASMCs) in these devastating lung diseases. The analysis of the importance of inflammation will shed light on the key questions remaining in this field and highlight molecular targets that are worth exploring. The crucial findings will not only demonstrate the novel roles of essential signaling molecules such as Rieske iron-sulfur protein and ryanodine receptor in the development and progress of asthma, COPD, and PH but also offer advanced insight for creating more effective and new therapeutic targets for these devastating inflammatory lung diseases.
Collapse
Affiliation(s)
- Lillian Truong
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Sharath Kandhi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
10
|
Kim M, Lee HJ, Park JB, Kim J, Lee SP, Kim YJ, Chang SA, Kim HK. Preoperative Right Ventricular Free-Wall Longitudinal Strain as a Prognosticator in Isolated Surgery for Severe Functional Tricuspid Regurgitation. J Am Heart Assoc 2021; 10:e019856. [PMID: 33870734 PMCID: PMC8200727 DOI: 10.1161/jaha.120.019856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Severe tricuspid regurgitation (TR) should be intervened before the development of irreversible right ventricular (RV) dysfunction. However, current guidelines do not provide criterion related to RV systolic function to guide optimal surgical timing. We investigated the prognostic value of RV longitudinal strain in patients undergoing isolated surgery for severe functional TR. Methods and Results We enrolled 115 consecutive patients (aged 62±10 years; 23.5% men; 62.6% [n=72] with previous left-sided valve surgery) who underwent isolated surgery for severe functional TR at 2 tertiary centers. Preoperative clinical and echocardiographic parameters, including RV free-wall longitudinal strain (RVFWSL), were collected. The primary end point was a composite of cardiac death and unplanned readmission attributable to cardiovascular causes 5 years after surgery. Forty patients (34.8%) reached the primary end point during 333 person-years of follow-up. There were 11 cardiac deaths and 34 unplanned readmissions attributable to cardiovascular causes, with 5 patients experiencing both. An absolute preoperative RVFWSL <24% was associated with the primary end point (hazard ratio, 2.30; 95% CI, 1.22-4.36; P=0.011), independent of clinical risk factors, including European System for Cardiac Operative Risk Evaluation II and hemoglobin levels. Meanwhile, other conventional echocardiographic measures of RV systolic function were not significant. The addition of an absolute RVFWSL <24% provided incremental prognostic value to the clinical model for predicting the primary end point. Conclusions Preoperative RVFWSL as an indicator of RV dysfunction was an independent prognosticator in patients undergoing isolated surgery for severe functional TR. Thus, preoperative RVFWSL could help determine the optimal surgical timing for severe functional TR.
Collapse
Affiliation(s)
- Minkwan Kim
- From the Cardiovascular Center Seoul National University Hospital Seoul Republic of Korea.,Division of Cardiology Department of Internal Medicine Yongin Severance HospitalYonsei University College of Medicine Yongin-si Gyeonggi-do Republic of Korea
| | - Hyun-Jung Lee
- From the Cardiovascular Center Seoul National University Hospital Seoul Republic of Korea
| | - Jun-Bean Park
- From the Cardiovascular Center Seoul National University Hospital Seoul Republic of Korea
| | - Jihoon Kim
- Cardiovascular Imaging Center Heart Vascular Stroke Institute Samsung Medical CenterSungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Seung-Pyo Lee
- From the Cardiovascular Center Seoul National University Hospital Seoul Republic of Korea
| | - Yong-Jin Kim
- From the Cardiovascular Center Seoul National University Hospital Seoul Republic of Korea
| | - Sung-A Chang
- Cardiovascular Imaging Center Heart Vascular Stroke Institute Samsung Medical CenterSungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Hyung-Kwan Kim
- From the Cardiovascular Center Seoul National University Hospital Seoul Republic of Korea
| |
Collapse
|
11
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Shafuddin E, Fairweather SM, Chang CL, Tuffery C, Hancox RJ. Cardiac biomarkers and long-term outcomes of exacerbations of COPD: a long-term follow-up of two cohorts. ERJ Open Res 2021; 7:00531-2020. [PMID: 33644222 PMCID: PMC7897844 DOI: 10.1183/23120541.00531-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/26/2020] [Indexed: 11/05/2022] Open
Abstract
Background COPD patients often have cardiac comorbidities. Cardiac involvement at the time of a COPD exacerbation is associated with a high short-term mortality, but whether this influences long-term outcomes is unknown. We explored whether biomarkers of cardiac dysfunction at the time of a COPD exacerbation predict long-term outcomes. Methods Two prospective cohorts of patients admitted to Waikato Hospital for exacerbations of COPD were recruited during 2006-2007 and 2012-2013. N-terminal pro-B-type natriuretic peptide (NT-proBNP) and troponin T were measured on admission and were used to indicate cardiac stretch and myocardial injury, respectively. 5-year survival after discharge and subsequent admissions for cardiac disease and COPD exacerbations were analysed using Kaplan-Meier and Cox proportional hazards tests. Results The overall 5-year mortality was 61%. Patients with high NT-proBNP on admission had higher mortality than those with normal cardiac biomarkers (adjusted hazard ratio (aHR) 1.76, 95% CI 1.18-2.62). High NT-proBNP was also associated with a higher risk of future cardiac admissions (aHR 1.75, 95% CI 1.2-2.55). Troponin T levels were not associated with long-term survival (aHR 0.86, 95% CI 0.40-1.83) or future cardiac admissions (aHR 0.74, 95% CI 0.34-1.57). Neither biomarker predicted future COPD exacerbations. Conclusion The long-term prognosis following a hospitalisation for an exacerbation of COPD is poor with less than half of patients surviving for 5 years. Elevated NT-proBNP at the time of a COPD exacerbation is associated with higher long-term mortality and a greater likelihood of future cardiac admissions, but not future COPD exacerbations.
Collapse
Affiliation(s)
- Eskandarain Shafuddin
- Dept of Respiratory Medicine, Waikato Hospital, Hamilton, New Zealand.,These authors contributed equally
| | - Sarah M Fairweather
- Dept of Respiratory Medicine, Waikato Hospital, Hamilton, New Zealand.,These authors contributed equally
| | - Catherina L Chang
- Dept of Respiratory Medicine, Waikato Hospital, Hamilton, New Zealand
| | - Christine Tuffery
- Dept of Respiratory Medicine, Waikato Hospital, Hamilton, New Zealand
| | - Robert J Hancox
- Dept of Respiratory Medicine, Waikato Hospital, Hamilton, New Zealand.,Dept of Preventive and Social Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Fysikopoulos A, Seimetz M, Hadzic S, Knoepp F, Wu CY, Malkmus K, Wilhelm J, Pichl A, Bednorz M, Tadele Roxlau E, Ghofrani HA, Sommer N, Gierhardt M, Schermuly RT, Seeger W, Grimminger F, Weissmann N, Kraut S. Amelioration of elastase-induced lung emphysema and reversal of pulmonary hypertension by pharmacological iNOS inhibition in mice. Br J Pharmacol 2020; 178:152-171. [PMID: 32201936 DOI: 10.1111/bph.15057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic obstructive pulmonary disease, encompassing chronic airway obstruction and lung emphysema, is a major worldwide health problem and a severe socio-economic burden. Evidence previously provided by our group has shown that inhibition of inducible NOS (iNOS) prevents development of mild emphysema in a mouse model of chronic tobacco smoke exposure and can even trigger lung regeneration. Moreover, we could demonstrate that pulmonary hypertension is not only abolished in cigarette smoke-exposed iNOS-/- mice but also precedes emphysema development. Possible regenerative effects of pharmacological iNOS inhibition in more severe models of emphysema not dependent on tobacco smoke, however, are hitherto unknown. EXPERIMENTAL APPROACH We have established a mouse model using a single dose of porcine pancreatic elastase or saline, intratracheally instilled in C57BL/6J mice. Emphysema, as well as pulmonary hypertension development was determined by both structural and functional measurements. KEY RESULTS Our data revealed that (i) emphysema is fully established after 21 days, with the same degree of emphysema after 21 and 28 days post instillation, (ii) emphysema is stable for at least 12 weeks and (iii) pulmonary hypertension is evident, in contrast to smoke models, only after emphysema development. Oral treatment with the iNOS inhibitor N(6)-(1-iminoethyl)-l-lysine (L-NIL) was started after emphysema establishment and continued for 12 weeks. This resulted in significant lung regeneration, evident in the improvement of emphysema and reversal of pulmonary hypertension. CONCLUSION AND IMPLICATIONS Our data indicate that iNOS is a potential new therapeutic target to treat severe emphysema and associated pulmonary hypertension. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Athanasios Fysikopoulos
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Michael Seimetz
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Stefan Hadzic
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Fenja Knoepp
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Cheng-Yu Wu
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Kathrin Malkmus
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jochen Wilhelm
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Alexandra Pichl
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Mariola Bednorz
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Elsa Tadele Roxlau
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein A Ghofrani
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Natascha Sommer
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Mareike Gierhardt
- Max-Planck Heart and Lung Laboratory, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ralph T Schermuly
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Friedrich Grimminger
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Norbert Weissmann
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Simone Kraut
- Justus-Liebig University of Giessen (JLUG), Excellence Cluster Cardiopulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
14
|
Abstract
Patent foramen ovale (PFO), an embryonic remnant of the fetal circulation, is present in 20-25% of adults. Although recent observational studies and clinical trials have established the link between PFO-mediated right-to-left shunting with cryptogenic stroke and migraine with aura, the role of a PFO in exacerbating hypoxemic medical conditions (ie, sleep apnea, chronic obstructive pulmonary disease, pulmonary hypertension, platypnea-orthodeoxia, pulmonary arteriovenous malformation, high-altitude pulmonary edema, and exercise desaturation) remains less understood. PFO-mediated hypoxemia occurs when deoxygenated venous blood from the right atrium enters and mixes with oxygenated arterial blood in the left atrium. Patients with an intracardiac right-to-left shunt may have profound hypoxemia out of proportion to underlying primary lung disease, even in the presence of normal right-sided pressures. The presence of right-to-left cardiac shunting can exacerbate the degree of hypoxemia in patients with underlying pulmonary disorders. In a subset of these patients, percutaneous PFO closure may result in marked improvement in dyspnea and hypoxemia. This review discusses the association between PFO-mediated right-to-left shunting with medical conditions associated with hypoxemia and explores the role of percutaneous PFO closure in alleviating the hypoxemia.
Collapse
|
15
|
Perioperative Considerations for Patients Diagnosed With Pulmonary Hypertension Undergoing Noncardiac Surgery. J Perianesth Nurs 2018; 34:240-249. [PMID: 30025664 DOI: 10.1016/j.jopan.2017.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022]
Abstract
The prevalence of pulmonary hypertension (PH) has risen in adults of all races, genders, and ethnicities. PH is a fatal disease that presents many challenges to the perioperative health care team. Through increased knowledge of PH pathophysiological changes and anesthesia medications' effect on PH, perioperative health care teams can conduct a detailed preoperative evaluation to determine appropriate therapies to administer. This will assist the perioperative health care team in reducing the pulmonary vascular resistance, optimizing the matching of right ventricle and pulmonary circulations, and reduce the incidence of intraoperative and postoperative complications.
Collapse
|
16
|
Tsantikos E, Lau M, Castelino CM, Maxwell MJ, Passey SL, Hansen MJ, McGregor NE, Sims NA, Steinfort DP, Irving LB, Anderson GP, Hibbs ML. Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease. J Clin Invest 2018; 128:2406-2418. [PMID: 29708507 DOI: 10.1172/jci98224] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable inflammatory lung disease that afflicts millions of people worldwide, and it is the fourth leading cause of death. Systemic comorbidities affecting the heart, skeletal muscle, bone, and metabolism are major contributors to morbidity and mortality. Given the surprising finding in large prospective clinical biomarker studies that peripheral white blood cell count is more closely associated with disease than inflammatory biomarkers, we probed the role of blood growth factors. Using the SHIP-1-deficient COPD mouse model, which manifests a syndrome of destructive lung disease and a complex of comorbid pathologies, we have identified a critical and unexpected role for granulocyte-CSF (G-CSF) in linking these conditions. Deletion of G-CSF greatly reduced airway inflammation and lung tissue destruction, and attenuated systemic inflammation, right heart hypertrophy, loss of fat reserves, and bone osteoporosis. In human clinical translational studies, bronchoalveolar lavage fluid of patients with COPD demonstrated elevated G-CSF levels. These studies suggest that G-CSF may play a central and unforeseen pathogenic role in COPD and its complex comorbidities, and identify G-CSF and its regulators as potential therapeutic targets.
Collapse
Affiliation(s)
- Evelyn Tsantikos
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Maverick Lau
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia.,Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Cassandra Mn Castelino
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Mhairi J Maxwell
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Samantha L Passey
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle J Hansen
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Narelle E McGregor
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Daniel P Steinfort
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Louis B Irving
- Department of Respiratory and Sleep Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Gary P Anderson
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Neumann V, Knies R, Seidinger A, Simon A, Lorenz K, Matthey M, Breuer J, Wenzel D. The β
2
agonist terbutaline specifically decreases pulmonary arterial pressure under normoxia and hypoxia via a adrenoceptor antagonism. FASEB J 2018; 32:2519-2530. [DOI: 10.1096/fj.201700684rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vanessa Neumann
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Ralf Knies
- Department of Pediatric Cardiology Pediatric Heart Center University Clinic Bonn Bonn Germany
| | - Alexander Seidinger
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Annika Simon
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Kristina Lorenz
- Leibniz‐Institut für Analytische Wissenschaften (ISAS) Dortmund Germany
| | - Michaela Matthey
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| | - Johannes Breuer
- Department of Pediatric Cardiology Pediatric Heart Center University Clinic Bonn Bonn Germany
| | - Daniela Wenzel
- Life and Brain Center Institute of Physiology I Medical Faculty University of Bonn Bonn Germany
| |
Collapse
|
18
|
Jo YS, Park JH, Lee JK, Heo EY, Chung HS, Kim DK. Risk factors for pulmonary arterial hypertension in patients with tuberculosis-destroyed lungs and their clinical characteristics compared with patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2017; 12:2433-2443. [PMID: 28860738 PMCID: PMC5565253 DOI: 10.2147/copd.s136304] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVE There are limited data on pulmonary arterial hypertension (PAH) in patients with tuberculosis-destroyed lung (TDL), a sequela of pulmonary tuberculosis. We identified the risk factors for PAH and their effects on acute exacerbation and mortality in patients with TDL, as well as the clinical differences in patients with chronic obstructive pulmonary disease (COPD) and PAH. METHODS A retrospective cohort study was conducted from 2010 through 2015 in a municipal referral hospital in South Korea. PAH was defined when echocardiographic pulmonary arterial pressure (PAP) was >40 mmHg. The clinical features and course of TDL patients with or without PAH were evaluated and differences between patients with COPD and PAH were analyzed. RESULTS Among the 195 patients with TDL, echocardiographic data were available in 53 patients, and their mean PAP was 50.72±23.99 mmHg. The PAH group (n=37) had a smaller lung volume (forced vital capacity % predicted, 51.55% vs 72.37%, P<0.001) and more extensively destroyed lungs (3.27 lobes vs 2 lobes, P<0.001) than those in the non-PAH group (n=16). A higher PAP was significantly correlated with a higher frequency of acute exacerbation (r=0.32, P=0.02). Multivariate analyses did not reveal any significant risk factors contributing to PAH in patients with TDL. Compared to COPD patients with PAH, TDL patients with PAH have smaller lung volume but a less severe airflow limitation. Tricuspid regurgitation and a D-shaped left ventricle during diastole were more frequently observed in TDL patients. The risk of exacerbation was not different between patients with PAH in COPD and TDL. CONCLUSION PAH in patients with TDL was associated with severity of lung destruction but risk of exacerbation and mortality did not significantly differ between patients with PAH and without PAH.
Collapse
Affiliation(s)
- Yong Suk Jo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ju-Hee Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Heo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Soon Chung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
19
|
Fadlilah U, Hasmono D, Wibisono YA, Melinda M. ANTIBIOGRAM STUDY AND ANTIBIOTIC USE EVALUATION USING GYSSEN METHOD IN PATIENTS WITH DIABETIC FOOT. FOLIA MEDICA INDONESIANA 2017. [DOI: 10.20473/fmi.v52i3.5452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foot infection is a common and serious problem in people with diabetes, which require proper management (diagnostic and therapeutic approaches) that can be cured. Empiric antibiotic regimen should be based on clinical data and bacteria pattern that are available, but definitive therapy should be based on the results of the infected tissue culture. The selection of initial antibiotic therapy was difficult and unwise use can lead to antibiotic-resistant. Evaluation is needed for using antibiotics to benefit wisely. The aim of this research is to analyzed the pattern of bacteria in diabetic foot and to its sensitivity test to antibiotics, analyze empiric antibiotics that can be recommended, and analyzed the use of antibiotics by Gyssen method. Data was analyzed with observational studies (descriptive non-experimental), retrospectively and prospectively in patients diabetic foot infection that met inclusion criteria. Retrospective data are used to analyzed bacteria pattern and its sensitivity test, while prospective data are used to evaluated the use of antibiotics based on bacteria pattern, during the period of late March-early August 2015 at Mardi Waluyo Hospital. Evaluation was conducted by Gyssen method. The results, retrospective data samples obtained 30 infection bacteria during August 2014-March 2015. The prevalence of gram-negative bacteria as 53.33% with most types of bacteria E.coli and Klebsiella oxytoca (13.33%), and gram-positive bacteria as 46.67% with the highest bacteria are Staphylococcus spp. and Streptococcus spp. From the prospective data in inclusion criteria, 13 patients with the highest prevalence of gram-negative bacteria are Klebsiella oxytoca (28.57%), and most gram-positive Staphylococcus auerus (35.71%). While the qualitative analysis of antibiotic use was conducted on 50 types of antibiotics. The results of the qualitative analysis using Gyssens method obtained category as 62%, 2%, 14%, 2B category as 26%, 3A category as 10%, 4A category 52%, 4B category as 6%, 4C category as 8% and there are no use of antibiotics in the category V and VI. Conclusions, Gyessen method can show that the use of antibiotics in diabetic foot patients in Mardi Waluyo hospital is dominated by inaccuracy in choice of antibiotic, and inaccuracies in the interval antibiotics.
Collapse
|
20
|
Layoun ME, Aboulhosn JA, Tobis JM. Potential Role of Patent Foramen Ovale in Exacerbating Hypoxemia in Chronic Pulmonary Disease. Tex Heart Inst J 2017; 44:189-197. [PMID: 28761399 DOI: 10.14503/thij-16-6027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Patent foramen ovale has been associated with multiple pulmonary diseases, such as pulmonary hypertension, platypnea-orthodeoxia syndrome, and chronic obstructive pulmonary disease. A connection between patent foramen ovale and chronic pulmonary disease was first described more than 2 decades ago in case reports associating patent foramen ovale with more severe hypoxemia than that expected based on the severity of the primary pulmonary disease. It has been suggested that patients with both chronic pulmonary disease and patent foramen ovale are subject to severe hypoxemia because of the right-to-left shunt. Furthermore, investigators have reported improved systemic oxygenation after patent foramen ovale closure in some patients with chronic pulmonary disease. This review focuses on the association between chronic pulmonary disease and patent foramen ovale and on the dynamics of a right-to-left shunt, and it considers the potential benefit of patent foramen ovale closure in patients who have hypoxemia that is excessive in relation to the degree of their pulmonary disease.
Collapse
MESH Headings
- Coronary Circulation
- Disease Progression
- Echocardiography, Doppler, Color
- Echocardiography, Three-Dimensional
- Foramen Ovale, Patent/complications
- Foramen Ovale, Patent/diagnostic imaging
- Foramen Ovale, Patent/physiopathology
- Foramen Ovale, Patent/therapy
- Hemodynamics
- Humans
- Hypoxia/diagnosis
- Hypoxia/etiology
- Hypoxia/physiopathology
- Hypoxia/therapy
- Male
- Middle Aged
- Pulmonary Circulation
- Pulmonary Disease, Chronic Obstructive/complications
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Disease, Chronic Obstructive/therapy
- Risk Factors
- Severity of Illness Index
- Treatment Outcome
Collapse
|
21
|
Zarei S, Mirtar A, Morrow JD, Castaldi PJ, Belloni P, Hersh CP. Subtyping Chronic Obstructive Pulmonary Disease Using Peripheral Blood Proteomics. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2017; 4:97-108. [PMID: 28848918 DOI: 10.15326/jcopdf.4.2.2016.0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disorder. COPD patients may have different clinical features, imaging characteristics and natural history. Multiple studies have investigated heterogeneity using statistical methods such as unsupervised clustering to define different subgroups of COPD based largely on clinical phenotypes. Some studies have performed clustering using genetic data or limited numbers of blood biomarkers. Our primary goal was to use proteomic data to find subtypes of COPD within clinically similar individuals. In the Treatment of Emphysema with a gamma-Selective Retinoid Agonist (TESRA) study, multiplex biomarker panels were run in serum samples collected prior to randomization. After implementing an algorithm to minimize missing values, the dataset included 396 COPD individuals and 87 biomarkers. Using hierarchical clustering, we identified 3 COPD subgroups, containing 267 (67.4%), 104 (26.3%), and 25 (6.3%) individuals, respectively. The third cluster had less emphysema on quantitative analysis of chest computed tomography scans (p=0.03) and worse disease-related quality of life based on the St. George's Respiratory Questionnaire (total score cluster 1: 45.6, cluster 2: 45.4, cluster 3: 56.6; p=0.01), despite similar levels of lung function impairment (forced expiratory volume in 1 second (49.2%, 49.2%, 48.2 % predicted, respectively). Enrichment analysis showed the biomarkers distinguishing cluster 3 mapped to platelet alpha granule and cell chemotaxis pathways. Thus, we identified a subgroup which has less emphysema but may have greater inflammation, which could be potentially targeted with anti-inflammatory therapies.
Collapse
Affiliation(s)
- Sara Zarei
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | | | - Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Hoffmann J, Wilhelm J, Olschewski A, Kwapiszewska G. Microarray analysis in pulmonary hypertension. Eur Respir J 2016; 48:229-41. [PMID: 27076594 PMCID: PMC5009873 DOI: 10.1183/13993003.02030-2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. Comprehensive overview of compartment-specific microarray studies of material from pulmonary hypertension patientshttp://ow.ly/YEFO2
Collapse
Affiliation(s)
- Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jochen Wilhelm
- Dept of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
23
|
Abstract
The chronic obstructive pulmonary disease has become a disease of public health importance. Among the various risk factors, smoking remains the main culprit. In addition to airway obstruction, the presence of intrinsic positive end expiratory pressure, respiratory muscle dysfunction contributes to the symptoms of the patient. Perioperative management of these patients includes identification of modifiable risk factors and their optimisation. Use of regional anaesthesia alone or in combination with general anaesthesia improves pulmonary functions and reduces the incidence of post-operative pulmonary complications.
Collapse
Affiliation(s)
- Devika Rani Duggappa
- Department of Anaesthesiology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - G Venkateswara Rao
- Department of Anaesthesiology, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India
| | - Sudheesh Kannan
- Department of Anaesthesiology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| |
Collapse
|
24
|
Formulation, preclinical and clinical evaluation of a new submicronic arginine respiratory fluid for treatment of chronic obstructive pulmonary disorder. Saudi Pharm J 2015; 24:49-56. [PMID: 26903768 PMCID: PMC4720009 DOI: 10.1016/j.jsps.2015.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/13/2015] [Indexed: 11/21/2022] Open
Abstract
Inhalational drugs often suffer from low pulmonary deposition due to their micronized size. Aim of present study was development and evaluation of a novel submicronic L-arginine respiratory fluid formulation for treatment of cardiopulmonary complications associated with chronic obstructive pulmonary disorder (COPD). Objectives were (a) to develop and characterize submicronic L-arginine respiratory fluid formulation, (b) pre-clinical safety/toxicity study in 2-animal species, (c) in vitro and in vivo evaluation in terms of respiratory fraction, and (d) clinical study to assess safety/efficacy in healthy volunteers/COPD patients. Formulation was optimized on the basis of particle size of aerosolized medication with particle size in the range of 400–500 nm. Anderson cascade impaction (ACI) studies were performed to validate the advantage in terms of respirable fraction, which indicated a high respirable fraction (51.61 ± 3.28) for the developed formulation. In vivo pulmonary deposition pattern of optimized formulation was studied using gamma scintigraphy in human volunteers using 99mTc-arginine as radiotracer. It clearly demonstrated a significant pulmonary deposition of the submicronic formulation in various lung compartments. Efficacy of the developed formulation was further assessed in COPD patients (n = 15) by evaluating its effect on various cardiopulmonary parameters (spirometry, pulse-oxymetry, echocardiography and 6-min walk test). A marked improvement was seen in patients after inhalation of submicronic arginine in terms of their cardiopulmonary status. Results suggest that submicronic arginine respiratory fluid has the potential to be developed into an attractive therapeutic option for treating COPD associated cardiopulmonary complications.
Collapse
|
25
|
Wrobel JP, Thompson BR, Stuart-Andrews CR, Kee K, Snell GI, Buckland M, Williams TJ. Intermittent positive pressure ventilation increases diastolic pulmonary arterial pressure in advanced COPD. Heart Lung 2014; 44:50-6. [PMID: 25453391 DOI: 10.1016/j.hrtlng.2014.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To measure the impact of intermittent positive pressure ventilation (IPPV) on diastolic pulmonary arterial pressure (dPAP) and pulmonary pulse pressure in patients with advanced COPD. BACKGROUND The physiological effects of raised intrathoracic pressures upon the pulmonary circulation have not been fully established. METHODS 22 subjects with severe COPD receiving IPPV were prospectively assessed with pulmonary and radial arterial catheterization. Changes in dPAP were assessed from end-expiration to early inspiration during low and high tidal volume ventilation. RESULTS Inspiration during low tidal volume IPPV increased the median [IQR] dPAP by 3.9 [2.5-4.8] mm Hg (P < 0.001). During high tidal volume, similar changes were observed. The IPPV-associated change in dPAP was correlated with baseline measures of PaO2 (rho = 0.65, P = 0.005), pH (rho = 0.64, P = 0.006) and right atrial pressure (rho = -0.53, P = 0.011). CONCLUSIONS In severe COPD, IPPV increases dPAP and reduces pulmonary pulse pressure during inspiration.
Collapse
Affiliation(s)
- Jeremy P Wrobel
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia; Advanced Lung Disease Unit, Royal Perth Hospital, Perth, Australia.
| | - Bruce R Thompson
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia
| | | | - Kirk Kee
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia
| | - Gregory I Snell
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia
| | - Mark Buckland
- Department of Anaesthesia, The Alfred, Melbourne, Australia
| | - Trevor J Williams
- Department of Medicine, Monash University, Melbourne, Australia; Allergy, Immunology & Respiratory Medicine, The Alfred, Melbourne, Australia
| |
Collapse
|
26
|
Wright JL, Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 4:723-34. [DOI: 10.1586/ers.10.68] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
Wells JM, Dransfield MT. Pathophysiology and clinical implications of pulmonary arterial enlargement in COPD. Int J Chron Obstruct Pulmon Dis 2013; 8:509-21. [PMID: 24235822 PMCID: PMC3826513 DOI: 10.2147/copd.s52204] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex condition defined by progressive airflow limitation in response to noxious stimuli, inflammation, and vascular changes. COPD exacerbations are critical events in the natural history of the disease, accounting for the majority of disease burden, cost, and mortality. Pulmonary vascular disease is an important risk factor for disease progression and exacerbation risk. Relative pulmonary artery enlargement on computed tomography scan, defined by a pulmonary artery to aortic (PA:A) ratio >1, has been evaluated as a marker of pulmonary vascular disease. The PA:A ratio can be measured reliably independent of electrocardiographic gating or the use of contrast, and in healthy patients a PA:A ratio >0.9 is considered to be abnormal. The PA:A ratio has been compared with invasive hemodynamic parameters, primarily mean pulmonary artery pressure in various disease conditions and is more strongly correlated with mean pulmonary artery pressure in obstructive as compared with interstitial lung disease. In patients without known cardiac or pulmonary disease, the PA:A ratio is predictive of mortality, while in COPD, an elevated PA:A ratio is correlated with increased exacerbation risk, outperforming other well established predictors of these events. Future studies should be aimed at determining the stability of the metric over time and evaluating the utility of the PA:A ratio in guiding specific therapies.
Collapse
Affiliation(s)
- J Michael Wells
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama Birmingham and the Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | | |
Collapse
|
28
|
Park J, Song JH, Park DA, Lee JS, Lee SD, Oh YM. Systematic review and meta-analysis of pulmonary hypertension specific therapy for exercise capacity in chronic obstructive pulmonary disease. J Korean Med Sci 2013; 28:1200-6. [PMID: 23960448 PMCID: PMC3744709 DOI: 10.3346/jkms.2013.28.8.1200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/03/2013] [Indexed: 11/20/2022] Open
Abstract
Some patients with chronic obstructive pulmonary disease (COPD) have pulmonary hypertension (PH) that adversely affects survival. We performed a systematic review and meta-analysis to assess whether PH-specific therapies have an effect for stable COPD. Data sources were Medline, EMBASE, Cochrane Central Register of Controlled Trials, Korea med and references from relevant publications. Randomized prospective trials that compared PH specific therapy in COPD for more than 6 weeks with placebo were included. The outcomes were the exercise capacity and adverse events. Four randomized controlled trials involving 109 subjects were included in the analysis. Two trials involved bosentan, one sildenafil and one beraprost. The studies varied in duration of treatment from 3 to 18 months. In a pooled analysis of four trials, exercise-capacity was not significantly improved with PH-specific treatment for COPD (risk ratio, -5.1; 95% CI, -13.0 to 2.8). COPD with overt PH significantly improved the exercise capacity (mean difference, 111.6; 95% CI, 63.3 to 159.9) but COPD with PH unknown did not (mean difference, 26.6; 95% CI, -24.3 to 77.5). There was no significant difference in hypoxemia (mean difference, 2.6; 95% CI, -3.7 to 8.8). PH specific treatments have a significant effect in improving exercise capacity in COPD with overt PH.
Collapse
Affiliation(s)
- Jinkyeong Park
- Department of Pulmonary and Critical Care Medicine Wonkwang University, Sanbon Hospital, Gunpo, Korea
| | - Ju Hee Song
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Ah Park
- Office of Health Technology Evaluation, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Jae Seoung Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Do Lee
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Rocco M, Alessandri E, Laderchi A, Marsili S, Conti G. Respiratory failure in COPD. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2013. [DOI: 10.1016/j.tacc.2013.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Leberl M, Kratzer A, Taraseviciene-Stewart L. Tobacco smoke induced COPD/emphysema in the animal model-are we all on the same page? Front Physiol 2013; 4:91. [PMID: 23720629 PMCID: PMC3654205 DOI: 10.3389/fphys.2013.00091] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is one of the foremost causes of death worldwide. It is primarily caused by tobacco smoke, making it an easily preventable disease, but facilitated by genetic α-1 antitrypsin deficiency. In addition to active smokers, health problems also occur in people involuntarily exposed to second hand smoke (SHS). Currently, the relationship between SHS and COPD is not well established. Knowledge of pathogenic mechanisms is limited, thereby halting the advancement of new treatments for this socially and economically detrimental disease. Here, we attempt to summarize tobacco smoke studies undertaken in animal models, applying both mainstream (direct, nose only) and side stream (indirect, whole body) smoke exposures. This overview of 155 studies compares cellular and molecular mechanisms as well as proteolytic, inflammatory, and vasoreactive responses underlying COPD development. This is a difficult task, as listing of exposure parameters is limited for most experiments. We show that both mainstream and SHS studies largely present similar inflammatory cell populations dominated by macrophages as well as elevated chemokine/cytokine levels, such as TNF-α. Additionally, SHS, like mainstream smoke, has been shown to cause vascular remodeling and neutrophil elastase-mediated proteolytic matrix breakdown with failure to repair. Disease mechanisms and therapeutic interventions appear to coincide in both exposure scenarios. One of the more widely applied interventions, the anti-oxidant therapy, is successful for both mainstream and SHS. The comparison of direct with indirect smoke exposure studies in this review emphasizes that, even though there are many overlapping pathways, it is not conclusive that SHS is using exactly the same mechanisms as direct smoke in COPD pathogenesis, but should be considered a preventable health risk. Some characteristics and therapeutic alternatives uniquely exist in SHS-related COPD.
Collapse
Affiliation(s)
- Maike Leberl
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine Denver, CO, USA
| | | | | |
Collapse
|
31
|
Wright JL, Zhou S, Churg A. Pulmonary hypertension and vascular oxidative damage in cigarette smoke exposed eNOS(-/-) mice and human smokers. Inhal Toxicol 2013; 24:732-40. [PMID: 22954397 DOI: 10.3109/08958378.2012.715698] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Cigarette smoke is known to be associated with pulmonary hypertension in humans and in animal models. Although the etiology of pulmonary hypertension in smokers is not understood, recent work has suggested a role for inducible nitric oxide synthase (iNOS) in inducing oxidative stress. OBJECTIVE AND METHODS To further evaluate this question, we assessed eNOS-/- mice exposed to air or cigarette smoke for the presence of pulmonary hypertension and examined vascular remodeling and expression of nitrotyrosine, a marker of reactive nitrogen species-induced oxidative damage, using immunohistochemistry. To ascertain whether oxidants may play a role in humans, we also examined lung tissue from nonsmokers, and patients with chronic obstructive pulmonary disease (COPD) with and without pulmonary hypertension. RESULTS We found that eNOS(-/-) mice developed increased pulmonary arterial pressure after six months cigarette smoke exposure, and this was associated with vascular remodeling and increased vascular nitrotyrosine staining. iNOS gene expression was decreased in the pulmonary arteries of the smoke exposed animals, and no protein was detectable by immunohistochemistry. In humans, vascular nitrotyrosine staining intensity was increased in smokers with COPD compared to nonsmokers, and further increased in smokers with combined COPD and pulmonary hypertension. CONCLUSIONS We conclude that cigarette smoke-induced pulmonary hypertension is associated with evidence of oxidative vascular damage by reactive nitrogen species, but that iNOS does not appear to be the major contributor to such damage. Most likely the source of reactive nitrogen species is the cigarette smoke itself.
Collapse
Affiliation(s)
- J L Wright
- Department of Pathology, University of British Columbia, Vancouver, B.C. Canada.
| | | | | |
Collapse
|
32
|
Goncharova EA, Khavin IS, Goncharov DA, Krymskaya VP. Differential effects of formoterol on thrombin- and PDGF-induced proliferation of human pulmonary arterial vascular smooth muscle cells. Respir Res 2012. [PMID: 23186269 PMCID: PMC3545871 DOI: 10.1186/1465-9921-13-109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Increased pulmonary arterial vascular smooth muscle (PAVSM) cell proliferation is a key pathophysiological component of pulmonary vascular remodeling in pulmonary arterial hypertension (PH). The long-acting β2-adrenergic receptor (β2AR) agonist formoterol, a racemate comprised of (R,R)- and (S,S)-enantiomers, is commonly used as a vasodilator in chronic obstructive pulmonary disease (COPD). PH, a common complication of COPD, increases patients’ morbidity and reduces survival. Recent studies demonstrate that formoterol has anti-proliferative effects on airway smooth muscle cells and bronchial fibroblasts. The effects of formoterol and its enantiomers on PAVSM cell proliferation are not determined. The goals of this study were to examine effects of racemic formoterol and its enantiomers on PAVSM cell proliferation as it relates to COPD-associated PH. Methods Basal, thrombin-, PDGF- and chronic hypoxia-induced proliferation of primary human PAVSM cells was examined by DNA synthesis analysis using BrdU incorporation assay. ERK1/2, mTORC1 and mTORC2 activation were determined by phosphorylation levels of ERK1/2, ribosomal protein S6 and S473-Akt using immunoblot analysis. Results We found that (R,R) and racemic formoterol inhibited basal, thrombin- and chronic hypoxia-induced proliferation of human PAVSM cells while (S,S) formoterol had lesser inhibitory effect. The β2AR blocker propranolol abrogated the growth inhibitory effect of formoterol. (R,R), but not (S,S) formoterol attenuated basal, thrombin- and chronic hypoxia-induced ERK1/2 phosphorylation, but had little effect on Akt and S6 phosphorylation levels. Formoterol and its enantiomers did not significantly affect PDGF-induced DNA synthesis and PDGF-dependent ERK1/2, S473-Akt and S6 phosphorylation in human PAVSM cells. Conclusions Formoterol inhibits basal, thrombin-, and chronic hypoxia-, but not PDGF-induced human PAVSM cell proliferation and ERK1/2, but has little effect on mTORC1 and mTORC2 signaling. Anti-proliferative effects of formoterol depend predominantly on its (R,R) enantiomer and require the binding with β2AR. These data suggest that (R,R) formoterol may be considered as potential adjuvant therapy to inhibit PAVSM cell proliferation in COPD-associated PH.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
33
|
Ryan JJ, Thenappan T, Luo N, Ha T, Patel AR, Rich S, Archer SL. The WHO classification of pulmonary hypertension: A case-based imaging compendium. Pulm Circ 2012; 2:107-21. [PMID: 22558526 PMCID: PMC3342739 DOI: 10.4103/2045-8932.94843] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pulmonary hypertension (PH) is defined as a resting mean pulmonary artery pressure greater than 25 mmHg. The World Health Organization (WHO) classifies PH into five categories. The WHO nomenclature assumes shared histology and pathophysiology within categories and implies category-specific treatment. Imaging of the heart and pulmonary vasculature is critical to assigning a patient's PH syndrome to the correct WHO category and is also important in predicting outcomes. Imaging studies often reveal that the etiology of PH in a patient reflects contributions from several categories. Overlap between Categories 2 and 3 (left heart disease and lung disease) is particularly common, reflecting shared risk factors. Correct classification of PH patients requires the combination of standard imaging (chest roentgenograms, ventilation-perfusion scans, echocardiography, and the 12-lead electrocardiogram) and advanced imaging (computed tomography, cardiac magnetic resonance imaging, and positron emission tomography). Despite the value of imaging, cardiac catheterization remains the gold standard for quantification of hemodynamics and is required before initiation of PH-specific therapy. These cases illustrate the use of imaging in classifying patients into WHO PH Categories 1-5.
Collapse
Affiliation(s)
- John J Ryan
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Huh JW, Kim SY, Lee JH, Lee JS, Van Ta Q, Kim M, Oh YM, Lee YS, Lee SD. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol 2011; 301:L255-66. [PMID: 21622846 DOI: 10.1152/ajplung.00253.2010] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of stem cells in chronic obstructive pulmonary disease is not well known although stem cell therapy is effective in models of other pulmonary diseases. We tested the capacities of bone marrow cells (BMCs), mesenchymal stem cells (MSCs), and conditioned media of MSCs (MSC-CM) to repair cigarette smoke-induced emphysema. Inbred female Lewis rats were exposed to cigarette smoke for 6 mo and then received BMCs, MSCs, or MSC-CM from male Lewis rats. For 2 mo after injection, the BMC treatment gradually alleviated the cigarette smoke-induced emphysema and restored the increased mean linear intercept. The BMC treatment significantly increased cell proliferation and the number of small pulmonary vessels, reduced apoptotic cell death, attenuated the mean pulmonary arterial pressure, and inhibited muscularization in small pulmonary vessels. However, only a few male donor cells were detected from 1 day to 1 mo after BMC administration. The MSCs and cell-free MSC-CM also induced the repair of emphysema and increased the number of small pulmonary vessels. Our data show that BMC, MSCs, and MSC-CM treatment repaired cigarette smoke-induced emphysema. The repair activity of these treatments is consistent with a paracrine effect rather than stem cell engraftment because most of the donor cells disappeared and because cell-free MSC-CM also induced the repair.
Collapse
Affiliation(s)
- Jin Won Huh
- Dept. of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan Univ. School of Medicine, Suwon 440-746, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schmid K, Pascual S, Gil EG, Ortiz S, Jansat JM. Pharmacokinetics and safety of aclidinium bromide, a muscarinic antagonist, in adults with normal or impaired renal function: A phase I, open-label, single-dose clinical trial. Clin Ther 2011; 32:1798-812. [PMID: 21194604 DOI: 10.1016/j.clinthera.2010.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND Aclidinium bromide is an inhaled, long-acting muscarinic antagonist currently in development for the treatment of chronic obstructive pulmonary disease. Renal impairment may affect drug clearance. OBJECTIVE This study was conducted to evaluate the pharmacokinetic (PK) parameters, safety, and tolerability of aclidinium bromide and its metabolites in patients with normal and impaired renal function to determine whether dosing adjustments are required when renal dysfunction is present. METHODS This was a Phase I, open-label, single-center, single-dose clinical trial conducted in Munich, Germany. Adults with varying degrees of renal function were assigned to 4 groups (n = 6 for each) based on creatinine clearance, including normal renal function (>80 mL/ min), mild renal insufficiency (>50-≤80 mL/min), moderate renal insufficiency (>30-≤50 mL/min), and severe renal insufficiency (<30 mL/min). Single doses of aclidinium bromide 400 μg were administered using a multidose dry powder inhaler. Blood and urine samples were obtained before dosing and at various time points up to 48 hours after dosing to analyze the PK parameters of aclidinium bromide and its metabolites. Plasma PK Parameters were AUC₀₋(t), MJC₀₋(∞) C(max), T(max), t(½) CL/F and apparent volume of distribution during the terminal phase Xz; urinary parameters were the amount of aclidinium or acid or alcohol metabolite excreted in urine, the percentage of the dose excreted in urine (fe), and renal clearance (CL(R)). Tolerability was assessed using physical examination, vital signs, 12-lead ECG recordings, laboratory tests, and adverse-event (AE) reports. The Wilcoxon rank sum test was used to compare the median PK values between the normal and impaired renal function groups. Pearson correlation coefficients and linear regression models were used to analyze the relationship between creatinine clearance and AUC₀₋(∞) and between creatinine clearance and CL(R) for aclidinium and its metabolites. RESULTS A total of 16 men and 8 women were included in the study. All participants were white; mean (SD) age was 55 (10.7) years and weight was 70.8 (9.2) kg. Aclidinium Cmax was observed in plasma by 5 minutes after dosing (ie, median Tmax) and did not differ significantly among the renal function groups. Plasma concentrations of aclidinium declined after reaching Cmax, with median t(½) values ranging from 2.07 to 4.18 hours across all renal function groups. Most of the individual t(½) values were between 1.5 and 3.5 hours, regardless of the degree of renal insufficiency. No significant relationship between AUC₀₋(∞)) and creatinine clearance was observed (Pearson correlation coefficient = -0.0446; P = NS). Urinary excretion of aclidinium was very low, with a mean 0.090% (median 0.078%) of the dose recovered from the urine in participants with normal renal function. Eight AEs were reported in 7 participants after drug administration; all were mild to moderate in severity and resolved spontaneously. There were no serious drug-related AEs and no deaths. CONCLUSIONS The plasma PK parameters of aclidinium bromide were not significantly altered after a single inhaled dose of aclidinium bromide 400 μg in this small group of patients with various degrees of impaired renal function. The very low urinary excretion of aclidinium in all renal function groups indicates that renal function plays a minor role in aclidinium plasma clearance. Aclidinium appeared well tolerated in the population studied. These results suggest that aclidinium dose adjustment on the basis of renal function may not be necessary.
Collapse
|
36
|
Kent BD, Mitchell PD, McNicholas WT. Hypoxemia in patients with COPD: cause, effects, and disease progression. Int J Chron Obstruct Pulmon Dis 2011; 6:199-208. [PMID: 21660297 PMCID: PMC3107696 DOI: 10.2147/copd.s10611] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Indexed: 01/31/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death and disability internationally. Alveolar hypoxia and consequent hypoxemia increase in prevalence as disease severity increases. Ventilation/perfusion mismatch resulting from progressive airflow limitation and emphysema is the key driver of this hypoxia, which may be exacerbated by sleep and exercise. Uncorrected chronic hypoxemia is associated with the development of adverse sequelae of COPD, including pulmonary hypertension, secondary polycythemia, systemic inflammation, and skeletal muscle dysfunction. A combination of these factors leads to diminished quality of life, reduced exercise tolerance, increased risk of cardiovascular morbidity, and greater risk of death. Concomitant sleep-disordered breathing may place a small but significant subset of COPD patients at increased risk of these complications. Long-term oxygen therapy has been shown to improve pulmonary hemodynamics, reduce erythrocytosis, and improve survival in selected patients with severe hypoxemic respiratory failure. However, the optimal treatment for patients with exertional oxyhemoglobin desaturation, isolated nocturnal hypoxemia, or mild-to-moderate resting daytime hypoxemia remains uncertain.
Collapse
Affiliation(s)
- Brian D Kent
- Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin, Ireland.
| | | | | |
Collapse
|
37
|
KOIZUMI T, URUSHIHATA K, HANAOKA M, TSUSHIMA K, FUJIMOTO K, FUJII T, KUBO K. Iodine-123 metaiodobenzylguanidine scintigraphic assessment of pulmonary vascular status in patients with chronic obstructive pulmonary disease. Respirology 2010; 15:1215-9. [DOI: 10.1111/j.1440-1843.2010.01853.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
|
39
|
Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, Castellano RK, Ostrov DA, Oh SP, Katovich MJ, Raizada MK. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med 2009; 179:1048-54. [PMID: 19246717 DOI: 10.1164/rccm.200811-1678oc] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE It has been proposed that an activated renin angiotensin system (RAS) causes an imbalance between the vasoconstrictive and vasodilator mechanisms involving the pulmonary circulation leading to the development of pulmonary hypertension (PH). Recent studies have indicated that angiotensin-converting enzyme 2 (ACE2), a member of the vasoprotective axis of the RAS, plays a regulatory role in lung pathophysiology, including pulmonary fibrosis and acute lung disease. Based on these observations, we propose the hypothesis that activation of endogenous ACE2 can shift the balance from the vasoconstrictive, proliferative axis (ACE-Ang II-AT1R) to the vasoprotective axis [ACE2-Ang-(1-7)-Mas] of the RAS, resulting in the prevention of PH. OBJECTIVES We have taken advantage of a recently discovered synthetic activator of ACE2, XNT (1-[(2-dimethylamino) ethylamino]-4-(hydroxymethyl)-7-[(4-methylphenyl) sulfonyl oxy]-9H-xanthene-9-one), to study its effects on monocrotaline-induced PH in rats to support this hypothesis. METHODS The cardiopulmonary effects of XNT were evaluated in monocrotaline-induced PH rat model. MEASUREMENTS AND MAIN RESULTS A single subcutaneous treatment of monocrotaline in rats resulted in elevated right ventricular systolic pressure, right ventricular hypertrophy, increased pulmonary vessel wall thickness, and interstitial fibrosis. These changes were associated with increases in the mRNA levels of renin, ACE, angiotensinogen, AT1 receptors, and proinflammatory cytokines. All these features of PH were prevented in these monocrotaline-treated rats by chronic treatment with XNT. In addition, XNT caused an increase in the antiinflammatory cytokine, IL-10. CONCLUSIONS These observations provide conceptual support that activation of ACE2 by a small molecule can be a therapeutically relevant approach for treating and controlling PH.
Collapse
Affiliation(s)
- Anderson J Ferreira
- Department of Physiology and Functional Genomics, College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|