1
|
Datsyuk JK, De Rubis G, Paudel KR, Kokkinis S, Oliver BGG, Dua K. Cellular probing using phytoceuticals encapsulated advanced delivery systems in ameliorating lung diseases: Current trends and future prospects. Int Immunopharmacol 2024; 141:112913. [PMID: 39137633 DOI: 10.1016/j.intimp.2024.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Chronic respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma have posed a significant healthcare and economic cost over a prolonged duration worldwide. At present, available treatments are limited to a range of preventive medicines, such as mono- or multiple-drug therapy, which necessitates daily use and are not considered as viable treatments to reverse the inflammatory processes of airway remodelling which is inclusive of the alteration of intra and extracellular matrix of the airway tract, death of epithelial cells, the increase in smooth muscle cell and the activation of fibroblasts. Hence, with the problem in mind a considerable body of study has been dedicated to comprehending the underlying factors that contribute to inflammation within the framework of these disorders. Hence, adequate literature that has unveiled the necessary cellular probing to reduce inflammation in the respiratory tract by improving the selectivity and precision of a novel treatment. However, through cellular probing cellular mechanisms such as the downregulation of various markers, interleukin 8, (IL-8), Interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) have been uncovered. Hence, to target such cellular probes implementation of phytoceuticals encapsulated in an advanced drug delivery system has shown potential to be a solution with in vitro and in vivo studies highlighting their anti-inflammatory and antioxidant effects. However, the high costs associated with advanced drug delivery systems and the limited literature focused exclusively on nanoparticles pose significant challenges. Additionally, the biochemical characteristics of phytoceuticals due to poor solubility, limited bioavailability, and difficulties in mass production makes it difficult to implement this product as a treatment for COPD and asthma. This study aims to examine the integration of many critical features in the context of their application for the treatment of chronic inflammation in respiratory disorders.
Collapse
Affiliation(s)
- Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
2
|
Jakobsson J, Burtin C, Hedlund M, Boraxbekk CJ, Westman J, Karalija N, Stål P, Sandström T, Ruttens D, Gosker HR, De Brandt J, Nyberg A. Effects and mechanisms of supramaximal high-intensity interval training on extrapulmonary manifestations in people with and without chronic obstructive pulmonary disease (COPD-HIIT): study protocol for a multi-centre, randomized controlled trial. Trials 2024; 25:664. [PMID: 39375781 PMCID: PMC11460198 DOI: 10.1186/s13063-024-08481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Beyond being a pulmonary disease, chronic obstructive pulmonary disease (COPD) presents with extrapulmonary manifestations including reduced cognitive, cardiovascular, and muscle function. While exercise training is the cornerstone in the non-pharmacological treatment of COPD, there is a need for new exercise training methods due to suboptimal adaptations when following traditional exercise guidelines, often applying moderate-intensity continuous training (MICT). In people with COPD, short-duration high-intensity interval training (HIIT) holds the potential to induce a more optimal stimulus for training adaptations while circumventing the ventilatory burden often associated with MICT in people with COPD. We aim to determine the effects of supramaximal HIIT and MICT on extrapulmonary manifestations in people with COPD compared to matched healthy controls. METHODS COPD-HIIT is a prospective, multi-centre, randomized, controlled trial with blinded assessors and data analysts, employing a parallel-group designed trial. In phase 1, we will investigate the effects and mechanisms of a 12-week intervention of supramaximal HIIT compared to MICT in people with COPD (n = 92) and matched healthy controls (n = 70). Participants will perform watt-based cycling two to three times weekly. In phase 2, we will determine how exercise training and inflammation impact the trajectories of neurodegeneration, in people with COPD, over 24 months. In addition to the 92 participants with COPD performing HIIT or MICT, a usual care group (n = 46) is included in phase 2. In both phases, the primary outcomes are a change from baseline in cognitive function, cardiorespiratory fitness, and muscle power. Key secondary outcomes include change from baseline exercise tolerance, brain structure, and function measured by MRI, neuroinflammation measured by PET/CT, systemic inflammation, and intramuscular adaptations. Feasibility of the interventions will be comprehensively investigated. DISCUSSION The COPD-HIIT trial will determine the effects of supramaximal HIIT compared to MICT in people with COPD and healthy controls. We will provide evidence for a novel exercise modality that might overcome the barriers associated with MICT in people with COPD. We will also shed light on the impact of exercise at different intensities to reduce neurodegeneration. The goal of the COPD-HIIT trial is to improve the treatment of extrapulmonary manifestations of the disease. TRIAL REGISTRATION Clinicaltrials.gov: NCT06068322. Prospectively registered on 2023-09-28.
Collapse
Affiliation(s)
- Johan Jakobsson
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden.
| | - Chris Burtin
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Hasselt University, Diepenbeek, 3590, Belgium
| | - Mattias Hedlund
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, 901 87, Sweden
- Diagnostic Radiology, Department of Radiation Sciences, Umeå University, Umeå, 901 87, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, 2400, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jonas Westman
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| | - Nina Karalija
- Umeå Centre for Functional Brain Imaging (UFBI), Umeå University, Umeå, 901 87, Sweden
- Department of Medical and Translational Biology, Umeå University, Umeå, 901 87, Sweden
| | - Per Stål
- Department of Medical and Translational Biology, Umeå University, Umeå, 901 87, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, 901 87, Sweden
| | - David Ruttens
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Genk, 3600, Belgium
- Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Harry R Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jana De Brandt
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| | - André Nyberg
- Section of Physiotherapy, Department of Community Medicine and Rehabilitation, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
3
|
Gu KM, Jung JW, Kang MJ, Kim DK, Choi H, Cho YJ, Jang SH, Lee CH, Oh YM, Park JS, Kim JY. Eosinophilia Is a Favorable Marker for Pneumonia in Chronic Obstructive Pulmonary Disease. Tuberc Respir Dis (Seoul) 2024; 87:465-472. [PMID: 38710525 PMCID: PMC11468446 DOI: 10.4046/trd.2023.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/10/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) expressing eosinophilia experience slightly fewer episodes of community-acquired pneumonia (CAP), than those without eosinophilia. However, the severity and burden of hospitalized pneumonia patients with COPD involving eosinophilia have not been assessed. METHODS We evaluated the differences in clinical characteristics between patients with CAP and COPD with or without eosinophilia by a post hoc analysis of a prospective, multi-center, cohort study data. RESULTS Of 349 CAP patients with COPD, 45 (12.9%) had eosinophilia (blood eosinophil ≥300 cells/μL). Patients with eosinophilia had a lower sputum culture percentile (8.1% vs. 23.4%, p<0.05), a lower percentile of neutrophils (70.3% vs. 80.2%, p<0.05), reduced C-reactive protein levels (30.6 mg/L vs. 86.6 mg/L, p<0.05), and a lower pneumonia severity index score (82.5 vs. 90.0, p<0.05), than those without eosinophilia. The duration of antibiotic treatment (8.0 days vs. 10.0 days, p<0.05) and hospitalization (7.0 days vs. 9.0 days, p<0.05) were shorter in eosinophilic patients. The cost of medical care per day (256.4 US$ vs. 291.0 US$, p<0.05), cost for the medication (276.4 US$ vs. 349.9 US$, p<0.05), and cost for examination (685.5 US$ vs. 958.1 US$, p<0.05) were lower in patients with eosinophilia than those without eosinophilia. CONCLUSION Eosinophilia serves as a favorable marker for the severity of pneumonia, health-care consumption, and cost of medical care in patients with CAP and COPD.
Collapse
Affiliation(s)
- Kang-Mo Gu
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jae-Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Deog Kyeom Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hayoung Choi
- Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Seung Hun Jang
- Division of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Chang-Hoon Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Sook Park
- Department of Software Convergence, Seoul Women’s University College of Interdisciplinary Studies for Emerging Industries, Seoul, Republic of Korea
| | - Jae Yeol Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Wechsler ME, Wells JM. What every clinician should know about inflammation in COPD. ERJ Open Res 2024; 10:00177-2024. [PMID: 39319045 PMCID: PMC11417604 DOI: 10.1183/23120541.00177-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 09/26/2024] Open
Abstract
Inflammation drives COPD pathogenesis and exacerbations. Although the conceptual framework and major players in the inflammatory milieu of COPD have been long established, the nuances of cellular interactions and the etiological differences that create heterogeneity in inflammatory profiles and treatment response continue to be revealed. This wealth of data and understanding is not only a boon to the researcher but also provides guidance to the clinician, moving the field closer to precision medicine. It is through this lens that this review seeks to describe the inflammatory processes at play in COPD, relating inflammation to pathological and functional changes, identifying patient-specific and disease-related factors that may influence clinical observations, and providing current insights on existing and emerging anti-inflammatory treatments and treatment targets, including biological therapies and phosphodiesterase (PDE) inhibitors.
Collapse
Affiliation(s)
- Michael E. Wechsler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
| | - J. Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Rodríguez Parejo G, Carmona González M, Montero-Peña C, Murillo García D. [Assessment of blood eosinophil count in respiratory disease from primary care]. Semergen 2024; 50:102193. [PMID: 38484418 DOI: 10.1016/j.semerg.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 09/06/2024]
Abstract
Most physicians in general, and family physicians in particular, are familiar with certain parameters when ordering a hematological study, such as hemoglobin (including hematocrit and its features), leukocytes (including lymphocytes) and platelets. Nevertheless, there are two values that we use to overlook which are eosinophils and basophils. Specifically, eosinophils have a tendency to increase with allergic pathology. This article focuses on this type of cells, helping to interpret the values obtained and highlighting their importance in two of the most frequent respiratory pathologies in primary care: asthma and COPD. In addition to observing how the increase or normality of these parameters condition the diagnosis, phenotype and even the treatment.
Collapse
Affiliation(s)
- G Rodríguez Parejo
- Medicina Familiar y Comunitaria, Centro de Salud Don Benito Oeste, Badajoz, España
| | - M Carmona González
- Medicina Familiar y Comunitaria, Centro de Salud Don Benito Oeste, Badajoz, España
| | - C Montero-Peña
- Medicina Familiar y Comunitaria, Centro de Salud Don Benito Oeste, Badajoz, España.
| | - D Murillo García
- Medicina Familiar y Comunitaria, Centro de Salud Pueblonuevo del Guadiana, Badajoz, España
| |
Collapse
|
6
|
Akdeniz YS, Özkan S. New markers in chronic obstructive pulmonary disease. Adv Clin Chem 2024; 123:1-63. [PMID: 39181619 DOI: 10.1016/bs.acc.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), a global healthcare and socioeconomic burden, is a multifaceted respiratory disorder that results in substantial decline in health status and life quality. Acute exacerbations of the disease contribute significantly to increased morbidity and mortality. Consequently, the identification of reliable and effective biomarkers for rapid diagnosis, prediction, and prognosis of exacerbations is imperative. In addition, biomarkers play a crucial role in monitoring responses to therapeutic interventions and exploring innovative treatment strategies. Although established markers such as CRP, fibrinogen and neutrophil count are routinely used, a universal marker is lacking. Fortunately, an increasing number of studies based on next generation analytics have explored potential biomarkers in COPD. Here we review those advances and the need for standardized validation studies in the appropriate clinical setting.
Collapse
Affiliation(s)
- Yonca Senem Akdeniz
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Seda Özkan
- Department of Emergency Medicine, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
7
|
Hong YS, Park HY, Ryu S, Shin SH, Zhao D, Singh D, Guallar E, Cho J, Chang Y, Lim SY. The association of blood eosinophil counts and FEV 1 decline: a cohort study. Eur Respir J 2024; 63:2301037. [PMID: 38636990 DOI: 10.1183/13993003.01037-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Accelerated lung function decline is characteristic of COPD. However, the association between blood eosinophil counts and lung function decline, accounting for current smoking status, in young individuals without prevalent lung disease is not fully understood. METHODS This is a cohort study of 629 784 Korean adults without COPD or a history of asthma at baseline who participated in health screening examinations including spirometry and differential white blood cell counts. We used a linear mixed-effects model to estimate the annual change in forced expiratory volume in 1 s (FEV1) (mL) by baseline blood eosinophil count, adjusting for covariates including smoking status. In addition, we performed a stratified analysis by baseline and time-varying smoking status. RESULTS During a mean follow-up of 6.5 years (maximum 17.8 years), the annual change in FEV1 (95% CI) in participants with eosinophil counts <100, 100-199, 200-299, 300-499 and ≥500 cells·µL-1 in the fully adjusted model were -23.3 (-23.9--22.7) mL, -24.3 (-24.9--23.7) mL, -24.8 (-25.5--24.2) mL, -25.5 (-26.2--24.8) mL and -26.8 (-27.7--25.9) mL, respectively. When stratified by smoking status, participants with higher eosinophil count had a faster decline in FEV1 than those with lower eosinophil count in both never- and ever-smokers, which persisted when time-varying smoking status was used. CONCLUSIONS Higher blood eosinophil counts were associated with a faster lung function decline among healthy individuals without lung disease, independent of smoking status. The findings suggest that higher blood eosinophil counts contribute to the risk of faster lung function decline, particularly among younger adults without a history of lung disease.
Collapse
Affiliation(s)
- Yun Soo Hong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Y.S. Hong and H.Y. Park contributed equally as co-first authors
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Y.S. Hong and H.Y. Park contributed equally as co-first authors
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Clinical Research and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Sun Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Di Zhao
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Clinical Research and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Eliseo Guallar
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Clinical Research and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Juhee Cho
- Departments of Epidemiology and Medicine, and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Clinical Research and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Clinical Research and Evaluation, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Y. Chang and S.Y. Lim contributed equally to this article as lead authors and supervised the work
| | - Seong Yong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Y. Chang and S.Y. Lim contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
8
|
Pang X, Liu X. Immune Dysregulation in Chronic Obstructive Pulmonary Disease. Immunol Invest 2024; 53:652-694. [PMID: 38573590 DOI: 10.1080/08820139.2024.2334296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease whose incidence increase with age and is characterised by chronic inflammation and significant immune dysregulation. Inhalation of toxic substances cause oxidative stress in the lung tissue as well as airway inflammation, under the recruitment of chemokines, immune cells gathered and are activated to play a defensive role. However, persistent inflammation damages the immune system and leads to immune dysregulation, which is mainly manifested in the reduction of the body's immune response to antigens, and immune cells function are impaired, further destroy the respiratory defensive system, leading to recurrent lower respiratory infections and progressive exacerbation of the disease, thus immune dysregulation play an important role in the pathogenesis of COPD. This review summarizes the changes of innate and adaptive immune-related cells during the pathogenesis of COPD, aiming to control COPD airway inflammation and improve lung tissue remodelling by regulating immune dysregulation, for further reducing the risk of COPD progression and opening new avenues of therapeutic intervention in COPD.
Collapse
Affiliation(s)
- Xichen Pang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Athanazio RA, Bernal Villada L, Avdeev SN, Wang HC, Ramírez-Venegas A, Sivori M, Dreyse J, Pacheco M, Man SK, Noriega-Aguirre L, Farouk H. Rate of severe exacerbations, healthcare resource utilisation and clinical outcomes in patients with COPD in low-income and middle-income countries: results from the EXACOS International Study. BMJ Open Respir Res 2024; 11:e002101. [PMID: 38637115 PMCID: PMC11029392 DOI: 10.1136/bmjresp-2023-002101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/16/2024] [Indexed: 04/20/2024] Open
Abstract
INTRODUCTION The EXAcerbations of Chronic obstructive lung disease (COPD) and their OutcomeS (EXACOS) International Study aimed to quantify the rate of severe exacerbations and examine healthcare resource utilisation (HCRU) and clinical outcomes in patients with COPD from low-income and middle-income countries. METHODS EXACOS International was an observational, cross-sectional study with retrospective data collection from medical records for a period of up to 5 years. Data were collected from 12 countries: Argentina, Brazil, Chile, Colombia, Costa Rica, Dominican Republic, Guatemala, Hong Kong, Mexico, Panama, Russia and Taiwan. The study population comprised patients ≥40 years of age with COPD. Outcomes/variables included the prevalence of severe exacerbations, the annual rate of severe exacerbations and time between severe exacerbations; change in lung function over time (measured by the forced expiratory volume in 1 s (FEV1)); peripheral blood eosinophil counts (BECs) and the prevalence of comorbidities; treatment patterns; and HCRU. RESULTS In total, 1702 patients were included in the study. The study population had a mean age of 69.7 years, with 69.4% males, and a mean body mass index of 26.4 kg/m2. The mean annual prevalence of severe exacerbations was 20.1%, and 48.4% of patients experienced ≥1 severe exacerbation during the 5-year study period. As the number of severe exacerbations increased, the interval between successive exacerbations decreased. A statistically significant decrease in mean (SD) FEV1 from baseline to post-baseline was observed in patients with ≥1 severe exacerbation (1.23 (0.51) to 1.13 (0.52) L; p=0.0000). Mean BEC was 0.198 x109 cells/L, with 64.7% of patients having a BEC ≥0.1 x109 cells/L and 21.3% having a BEC ≥0.3 x109 cells/L. The most common comorbidity was hypertension (58.3%). An increasing number of severe exacerbations per year was associated with greater HCRU. DISCUSSION The findings presented here indicate that effective treatment strategies to prevent severe exacerbations in patients with COPD remain a significant unmet need in low-income and middle-income countries.
Collapse
Affiliation(s)
- Rodrigo Abensur Athanazio
- Pulmonology Division, Heart Institute-InCor-Clinical Hospital, Faculty of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sergey N Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Martín Sivori
- Pneumology Unit, Dr J M Ramos Mejía Pulmonology University Center, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Jorge Dreyse
- Department of Internal Medicine and Critical Care Center, Clínica Las Condes and School of Medicine Universidad Finis Terrae, Santiago, Chile
| | - Manuel Pacheco
- Internal Medicine Research Group, Universidad Tecnológica de Pereira, Pereira, Colombia
- Fundación Universitaria Visión de las Américas y Respiremos Unidad de Neumología, Pereira, Colombia
| | - Sin Kit Man
- Department of Medicine and Geriatrics, Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong Special Administrative Region (HKSAR), Tuen Mun, People's Republic of China
| | - Lorena Noriega-Aguirre
- Center for Diagnosis and Treatment of Respiratory Diseases (CEDITER), Panama City, Panama
| | | |
Collapse
|
10
|
Hegde M, Raj S, Pattanshetti AS, Nyamagoud SB. Gaining insights into chronic obstructive pulmonary disease exacerbation through emerging biomarkers and the chronic obstructive pulmonary disease assessment test score. Monaldi Arch Chest Dis 2024. [PMID: 38497202 DOI: 10.4081/monaldi.2024.2955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a leading cause of mortality and morbidity, presents significant challenges, particularly with exacerbations, which drastically impact patients' health and healthcare costs. The Global Initiative for Chronic Obstructive Lung Disease guidelines recommend comprehensive assessments beyond spirometry, with the COPD assessment test (CAT) emerging as a pivotal tool. Despite its utility, the relationship between CAT scores and specific biomarkers during exacerbations remains unclear. Hence, this study aims to assess the correlation between the CAT score and specific circulating biomarkers. A cross-sectional study from August 2023 to January 2024 included 59 COPD patients with exacerbations who underwent pulmonary function tests and completed the CAT score assessment. The CAT score cut-off point was set at 20, where a CAT score <20 indicated a low impact on health status and a CAT score ≥20 indicated a high impact on health status. On the same day, measurements of neutrophils, leukocytes, eosinophils, C-reactive protein, and procalcitonin were conducted. Patients with CAT scores ≥20 had significantly higher levels of neutrophils (p=0.001), leukocytes (p=0.006), procalcitonin (p=0.010), and forced expiratory volume in the first second/forced vital capacity (p=0.002), but lower eosinophil levels (p=0.025). A positive correlation existed between total CAT score and neutrophils (p=0.001), leukocytes (p=0.000), and procalcitonin (p=0.010), while eosinophil levels showed a negative correlation (p=0.025). The spirometry parameters showed no correlation with the total CAT score. This study highlights the link between CAT and key inflammatory biomarkers, supporting the use of blood biomarkers to identify COPD patients at risk of exacerbations.
Collapse
Affiliation(s)
- Megha Hegde
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| | - Saurav Raj
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| | | | | |
Collapse
|
11
|
Marriott E, Singanayagam A, El-Awaisi J. Inflammation as the nexus: exploring the link between acute myocardial infarction and chronic obstructive pulmonary disease. Front Cardiovasc Med 2024; 11:1362564. [PMID: 38450367 PMCID: PMC10915015 DOI: 10.3389/fcvm.2024.1362564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), particularly following acute exacerbations (AE-COPD), significantly heightens the risks and mortality associated with acute myocardial infarction (AMI). The intersection of COPD and AMI is characterised by a considerable overlap in inflammatory mechanisms, which play a crucial role in the development of both conditions. Although extensive research has been conducted on individual inflammatory pathways in AMI and COPD, the understanding of thrombo-inflammatory crosstalk in comorbid settings remains limited. The effectiveness of various inflammatory components in reducing AMI infarct size or slowing COPD progression has shown promise, yet their efficacy in the context of comorbidity with COPD and AMI is not established. This review focuses on the critical importance of both local and systemic inflammation, highlighting it as a key pathophysiological connection between AMI and COPD/AE-COPD.
Collapse
Affiliation(s)
- Eloise Marriott
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Aran Singanayagam
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Juma El-Awaisi
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Voulgareli I, Semitekolou M, Morianos I, Blizou M, Sfika M, Hillas G, Bakakos P, Loukides S. Endotyping Eosinophilic Inflammation in COPD with ELAVL1, ZfP36 and HNRNPD mRNA Genes. J Clin Med 2024; 13:854. [PMID: 38337546 PMCID: PMC10856681 DOI: 10.3390/jcm13030854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a common disease characterized by progressive airflow obstruction, influenced by genetic and environmental factors. Eosinophils have been implicated in COPD pathogenesis, prompting the categorization into eosinophilic and non-eosinophilic endotypes. This study explores the association between eosinophilic inflammation and mRNA expression of ELAVL1, ZfP36, and HNRNPD genes, which encode HuR, TTP and AUF-1 proteins, respectively. Additionally, it investigates the expression of IL-9 and IL-33 in COPD patients with distinct eosinophilic profiles. Understanding these molecular associations could offer insights into COPD heterogeneity and provide potential therapeutic targets. Methods: We investigated 50 COPD patients, of whom 21 had eosinophilic inflammation and 29 had non-eosinophilic inflammation. Epidemiological data, comorbidities, and pulmonary function tests were recorded. Peripheral blood mononuclear cells were isolated for mRNA analysis of ELAVL1, ZfP36, and HNRNPD genes and serum cytokines (IL-9, IL-33) were measured using ELISA kits. Results: The study comprised 50 participants, with 66% being male and a mean age of 68 years (SD: 8.9 years). Analysis of ELAVL1 gene expression revealed a 0.45-fold increase in non-eosinophilic and a 3.93-fold increase in eosinophilic inflammation (p = 0.11). For the ZfP36 gene, expression was 6.19-fold higher in non-eosinophilic and 119.4-fold higher in eosinophilic groups (p = 0.07). Similarly, HNRNPD gene expression was 0.23-fold higher in non-eosinophilic and 0.72-fold higher in eosinophilic inflammation (p = 0.06). Furthermore, serum levels of IL-9 showed no statistically significant difference between the eosinophilic and non-eosinophilic group (58.03 pg/mL vs. 52.55 pg/mL, p = 0.98). Additionally, there was no significant difference in IL-33 serum levels between COPD patients with eosinophilic inflammation and those with non-eosinophilic inflammation (39.61 pg/mL vs. 37.94 pg/mL, p = 0.72). Conclusions: The data suggest a notable trend, lacking statistical significance, towards higher mRNA expression for the ZfP36 and HNRNPD genes for COPD patients with eosinophilic inflammation compared to those with non-eosinophilic inflammation.
Collapse
Affiliation(s)
- Ilektra Voulgareli
- 2nd Respiratory Medicine Department, “Attikon” University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (I.V.); (M.B.); (M.S.)
| | - Maria Semitekolou
- School of Medicine, Institute of Molecular Biology and Biotechnology, University of Crete, Foundation for Research and Technology—Hellas Voutes, 71110 Heraklion, Crete, Greece; (M.S.); (I.M.)
| | - Ioannis Morianos
- School of Medicine, Institute of Molecular Biology and Biotechnology, University of Crete, Foundation for Research and Technology—Hellas Voutes, 71110 Heraklion, Crete, Greece; (M.S.); (I.M.)
| | - Myrto Blizou
- 2nd Respiratory Medicine Department, “Attikon” University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (I.V.); (M.B.); (M.S.)
| | - Maria Sfika
- 2nd Respiratory Medicine Department, “Attikon” University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (I.V.); (M.B.); (M.S.)
| | - Georgios Hillas
- 5th Respiratory Medicine Department, “Sotiria” Chest Hospital, 11527 Athens, Greece;
| | - Petros Bakakos
- 1st Respiratory Medicine Department, “Sotiria” Chest Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Stelios Loukides
- 2nd Respiratory Medicine Department, “Attikon” University Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (I.V.); (M.B.); (M.S.)
| |
Collapse
|
13
|
Ware SA, Kliment CR, Giordano L, Redding KM, Rumsey WL, Bates S, Zhang Y, Sciurba FC, Nouraie SM, Kaufman BA. Cell-free DNA levels associate with COPD exacerbations and mortality. Respir Res 2024; 25:42. [PMID: 38238743 PMCID: PMC10797855 DOI: 10.1186/s12931-023-02658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
THE QUESTION ADDRESSED BY THE STUDY Good biological indicators capable of predicting chronic obstructive pulmonary disease (COPD) phenotypes and clinical trajectories are lacking. Because nuclear and mitochondrial genomes are damaged and released by cigarette smoke exposure, plasma cell-free mitochondrial and nuclear DNA (cf-mtDNA and cf-nDNA) levels could potentially integrate disease physiology and clinical phenotypes in COPD. This study aimed to determine whether plasma cf-mtDNA and cf-nDNA levels are associated with COPD disease severity, exacerbations, and mortality risk. MATERIALS AND METHODS We quantified mtDNA and nDNA copy numbers in plasma from participants enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE, n = 2,702) study and determined associations with relevant clinical parameters. RESULTS Of the 2,128 participants with COPD, 65% were male and the median age was 64 (interquartile range, 59-69) years. During the baseline visit, cf-mtDNA levels positively correlated with future exacerbation rates in subjects with mild/moderate and severe disease (Global Initiative for Obstructive Lung Disease [GOLD] I/II and III, respectively) or with high eosinophil count (≥ 300). cf-nDNA positively associated with an increased mortality risk (hazard ratio, 1.33 [95% confidence interval, 1.01-1.74] per each natural log of cf-nDNA copy number). Additional analysis revealed that individuals with low cf-mtDNA and high cf-nDNA abundance further increased the mortality risk (hazard ratio, 1.62 [95% confidence interval, 1.16-2.25] per each natural log of cf-nDNA copy number). ANSWER TO THE QUESTION Plasma cf-mtDNA and cf-nDNA, when integrated into quantitative clinical measurements, may aid in improving COPD severity and progression assessment.
Collapse
Affiliation(s)
- Sarah A Ware
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST W1044, Pittsburgh, PA, 15261, USA
| | - Corrine R Kliment
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Luca Giordano
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST W1044, Pittsburgh, PA, 15261, USA
| | - Kevin M Redding
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST W1044, Pittsburgh, PA, 15261, USA
| | - William L Rumsey
- GlaxoSmithKline Respiratory Therapeutic Area Unit, Collegeville, PA, USA
| | - Stewart Bates
- GlaxoSmithKline Respiratory Therapeutic Area Unit, Stevenage, UK
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Mehdi Nouraie
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- UPMC Montefiore Hospital, NW628 3459 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| | - Brett A Kaufman
- Department of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, 200 Lothrop Street BST W1044, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
14
|
Pfanzagl V, Gruber-Grünwald C, Leitgeb U, Furtmüller PG, Obinger C. Posttranslational modification and heme cavity architecture of human eosinophil peroxidase-insights from first crystal structure and biochemical characterization. J Biol Chem 2023; 299:105402. [PMID: 38229400 PMCID: PMC10679500 DOI: 10.1016/j.jbc.2023.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 01/18/2024] Open
Abstract
Eosinophil peroxidase (EPO) is the most abundant granule protein exocytosed by eosinophils, specialized human phagocytes. Released EPO catalyzes the formation of reactive oxidants from bromide, thiocyanate, and nitrite that kill tissue-invading parasites. However, EPO also plays a deleterious role in inflammatory diseases, making it a potential pharmacological target. A major hurdle is the high similarity to the homologous myeloperoxidase (MPO), which requires a detailed understanding of the small structural differences that can be used to increase the specificity of the inhibitors. Here, we present the first crystal structure of mature leukocyte EPO at 1.6 Å resolution together with analyses of its posttranslational modifications and biochemical properties. EPO has an exceptionally high number of positively charged surface patches but only two occupied glycosylation sites. The crystal structure further revealed the existence of a light (L) and heavy (H) chain as a result of proteolytic cleavage. Detailed comparison with the structure of human MPO allows us to identify differences that may contribute to the known divergent enzymatic properties. The crystal structure revealed fully established ester links between the prosthetic group and the protein, the comparably weak imidazolate character of the proximal histidine, and the conserved structure of the catalytic amino acids and Ca2+-binding site. Prediction of the structure of unprocessed proeosinophil peroxidase allows further structural analysis of the three protease cleavage sites and the potential pro-convertase recognition site in the propeptide. Finally, EPO biosynthesis and its biochemical and biophysical properties are discussed with respect to the available data from the well-studied MPO.
Collapse
Affiliation(s)
- Vera Pfanzagl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Clemens Gruber-Grünwald
- BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Urban Leitgeb
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
15
|
Xie J, Wu Y, Tao Q, Liu H, Wang J, Zhang C, Zhou Y, Wei C, Chang Y, Jin Y, Ding Z. The role of lncRNA in the pathogenesis of chronic obstructive pulmonary disease. Heliyon 2023; 9:e22460. [PMID: 38034626 PMCID: PMC10687241 DOI: 10.1016/j.heliyon.2023.e22460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by progressive and irreversible airflow obstruction with abnormal lung function. Because its pathogenesis involves multiple aspects of oxidative stress, immunity and inflammation, apoptosis, airway and lung repair and destruction, the clinical approach to COPD treatment is not further updated. Therefore, it is crucial to discover a new means of COPD diagnosis and treatment. COPD etiology is associated with complex interactions between environmental and genetic determinants. Numerous genes are involved in the pathogenic process of this illness in research samples exposed to hazardous environmental conditions. Among them, Long non-coding RNAs (lncRNAs) have been reported to be involved in the molecular mechanisms of COPD development induced by different environmental exposures and genetic susceptibility encounters, and some potential lncRNA biomarkers have been identified as early diagnostic, disease course determination, and therapeutic targets for COPD. In this review, we summarize the expression profiles of the reported lncRNAs that have been reported in COPD studies related to environmental risk factors such as smoking and air pollution exposure and provided an overview of the roles of those lncRNAs in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hua Liu
- Anhui Institute for Food and Drug Control, Hefei, Anhui, China
| | - Jingjing Wang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chunwei Zhang
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yuanzhi Zhou
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengyan Wei
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui, China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Zhen Ding
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Department of Respiratory, The Third Affiliated Hospital of Anhui Medical University (The Binhu Hospital of Hefei), School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, Anhui, China
| |
Collapse
|
16
|
Fachri M, Hatta M, Lestari FI, Akaputra R, Fatimah F, Wahab A, Arliniy Y, Dwiyanti R, Syukri A, Junita AR, Febrianti A, Primaguna MR, Azhar A. Eosinophil values in exacerbation and stable chronic obstructive pulmonary disease and its relationship to maintenance therapy in stable chronic obstructive pulmonary disease patients. Ann Med Surg (Lond) 2023; 85:4799-4805. [PMID: 37811025 PMCID: PMC10553057 DOI: 10.1097/ms9.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/12/2023] [Indexed: 10/10/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterised by persistent and progressive airflow limitations. The study aimed to determine the relationship between eosinophil values in patients with stable and exacerbated COPD, and the relationship of eosinophil values with two drug regimens used as maintenance therapy in stable COPD. Materials and methods This cross-sectional study and the variables used in this study were eosinophil counts in stable and exacerbated COPD patients. Results Eighty-three patients with stable and exacerbated COPD were included. Stable COPD (63.9%) was predominant, with the highest degree of symptoms in group A 18 patients (34%) and Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2; 35 patients (66%). The degree of COPD exacerbation was dominated by Type II COPD 15 patients (50%). Eosinophil counts in patients with stable COPD were less than 100 cells/mm3 37 patients (44.6%), while in patients with COPD exacerbation, it was greater than 100 cells/mm3 with a total of 30 patients (36.1%). Long acting muscarinic antagonist class of drugs was the most used treatment as maintenance therapy in stable COPD 34 patients (64.2%). Conclusion The eosinophil counts in patients with COPD exacerbation were significantly higher than those in patients with stable COPD. The provision of maintenance therapy in the long acting β-2 agonist + inhaled glucocorticosteroid group of stable COPD patients was generally provided to COPD patients with eosinophil values greater than 100 cells/mm3, and the provision of long-term maintenance therapy in stable COPD patients was generally given to COPD patients with eosinophil values less than 100 cells/mm3.
Collapse
Affiliation(s)
| | | | | | | | - Fatimah Fatimah
- Faculty of Medicine and Health, Universitas Muhammadiyah Jakarta, Jakarta
| | - Athariq Wahab
- Faculty of Medicine and Health, Universitas Muhammadiyah Jakarta, Jakarta
| | - Yunita Arliniy
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Syiah Kuala University, Banda Aceh
| | - Ressy Dwiyanti
- Forensic and Medicolegal
- Department of Medical Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - Ahmad Syukri
- Departments of Molecular Biology and Immunology
- Postgraduate School, Faculty of Medicine, Hasanuddin University
- Department of Cardiology and Vascular Medicine, Dr. Tadjuddin Chalid Central General Hospital, Makassar
| | - Ade Rifka Junita
- Departments of Molecular Biology and Immunology
- Postgraduate School, Faculty of Medicine, Hasanuddin University
| | | | | | - Azhar Azhar
- Pulmonology and Respiratory Medicine, Faculty of Medicine
| |
Collapse
|
17
|
Cui Y, Chen Y. Blood eosinophils in chronic obstructive pulmonary disease: A potential biomarker. J Transl Int Med 2023; 11:193-197. [PMID: 37662887 PMCID: PMC10474882 DOI: 10.2478/jtim-2023-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Affiliation(s)
- Yanan Cui
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha410011, Hunan Province, China
| |
Collapse
|
18
|
Ma R, Su H, Jiao K, Liu J. Association Between IL-17 and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2023; 18:1681-1690. [PMID: 37551391 PMCID: PMC10404405 DOI: 10.2147/copd.s412626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease characterized by neutrophils airway infiltration. It is currently known that Interleukin-17 (IL-17) is an important pro-inflammatory factor. It can promote the accumulation of neutrophils and participate in the chronic inflammatory process of COPD. However, the value of IL-17 levels in the diagnosis and assessment of COPD remains controversial. In view of this, we conducted a systematic review and meta-analysis to assess its relevance. Methods We searched databases such as PubMed, Web of Science, Cochrane Library and Embase to extract original research. Results A total of 10 studies with 2268 participants were included in this meta-analysis. The results showed that the level of serum IL-17 in patients with stable COPD was significantly higher than that in healthy controls (standard mean difference SMD, 1.59, 95% CI 0.84-2.34; p<0.001). Compared with the stable COPD group, the serum IL-17 level in acute exacerbation (AECOPD) was significantly higher (SMD, 1.78, 95% CI 1.22-2.33; p<0.001). The level of IL-17 in sputum of COPD patients was also higher than that of healthy controls (SMD, 2.03, 95% CI 0.74-3.31; p<0.001). Conclusion Our results showed that IL-17 levels were elevated in serum and sputum in COPD patients compared with healthy controls, and IL-17 levels increased with disease progression. IL-17 serves as a potential biomarker to indicate the persistence of neutrophilic inflammation and exacerbation of COPD.
Collapse
Affiliation(s)
- Ru Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial People’s Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Hongling Su
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial People’s Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Keping Jiao
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Gansu Provincial People’s Hospital, Lanzhou, Gansu Province, People’s Republic of China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
- Lanzhou University, Lanzhou City, Gansu Province, People’s Republic of China
| |
Collapse
|
19
|
Macchia I, La Sorsa V, Urbani F, Moretti S, Antonucci C, Afferni C, Schiavoni G. Eosinophils as potential biomarkers in respiratory viral infections. Front Immunol 2023; 14:1170035. [PMID: 37483591 PMCID: PMC10358847 DOI: 10.3389/fimmu.2023.1170035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Eosinophils are bone marrow-derived granulocytes that, under homeostatic conditions, account for as much as 1-3% of peripheral blood leukocytes. During inflammation, eosinophils can rapidly expand and infiltrate inflamed tissues, guided by cytokines and alarmins (such as IL-33), adhesion molecules and chemokines. Eosinophils play a prominent role in allergic asthma and parasitic infections. Nonetheless, they participate in the immune response against respiratory viruses such as respiratory syncytial virus and influenza. Notably, respiratory viruses are associated with asthma exacerbation. Eosinophils release several molecules endowed with antiviral activity, including cationic proteins, RNases and reactive oxygen and nitrogen species. On the other hand, eosinophils release several cytokines involved in homeostasis maintenance and Th2-related inflammation. In the context of SARS-CoV-2 infection, emerging evidence indicates that eosinophils can represent possible blood-based biomarkers for diagnosis, prognosis, and severity prediction of disease. In particular, eosinopenia seems to be an indicator of severity among patients with COVID-19, whereas an increased eosinophil count is associated with a better prognosis, including a lower incidence of complications and mortality. In the present review, we provide an overview of the role and plasticity of eosinophils focusing on various respiratory viral infections and in the context of viral and allergic disease comorbidities. We will discuss the potential utility of eosinophils as prognostic/predictive immune biomarkers in emerging respiratory viral diseases, particularly COVID-19. Finally, we will revisit some of the relevant methods and tools that have contributed to the advances in the dissection of various eosinophil subsets in different pathological settings for future biomarker definition.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Antonucci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
20
|
de Carvalho IM, de Souza ABF, Castro TDF, Machado-Júnior PA, Menezes TP, Dias ADS, Oliveira LAM, Nogueira KDOPC, Talvani A, Cangussú SD, Arízaga GGC, Bezerra FS. Effects of a lycopene-layered double hydroxide composite administration in cells and lungs of adult mice: Effects of a lycopene-layered double hydroxide in cells and mice. Int Immunopharmacol 2023; 121:110454. [PMID: 37301124 DOI: 10.1016/j.intimp.2023.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Lycopene is a natural compound with one of the highest antioxidant activities. Its consumption is associated with lower risks in lung cancer and chronic obstructive pulmonary disease, for example. Experimentally, a murine model demonstrated the ingestion of lycopene, which reduced the damage in lungs caused by cigarette smoke. Since lycopene is highly hydrophobic, its formulations in supplements and preparations for laboratory assays are based on oils, additionally, bioavailavility is low. We developed a lycopene layered double hydroxide (Lyc-LDH) composite, which is capable of transporting lycopene aqueous media. Our objective was to evaluate the cytotoxicity of Lyc-LDH and the intra-cellular production of reactive oxygen species (ROS) in J774A.1 cells. Also, in vivo assays were conducted with 50 male C57BL/6 mice intranasally treated with Lyc-LDH 10 mg/kg (LG10), Lyc-LDH 25 mg/kg (LG25) and Lyc-LDH 50 mg/kg (LG50) during five days compared against a vehicle (VG) and control (CG) group. The blood, bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed. The results revealed that Lyc-LDH composite attenuated intracellular ROS production stimulated with lipopolysacharide. In BALF, the highest doses of Lyc-LDH (LG25 and LG50) promoted influx of macrophages, lymphocytes, neutrophils and eosinophils compared to CG and VG. Also, LG50 increased the levels of IL-6 and IL-13, and promoted the redox imbalance in the pulmonary tissue. On the contrary, low concentrations did not produce significative effects. In conclusion, our results suggest that intranasal administration of high concentrations of Lyc-LDH induces inflammation as well as redox status changes in the lungs of healthy mice, however, results with low concentrations open a promising way to study LDH composites as vehicles for intranasal administration of antioxidant coadjuvants.
Collapse
Affiliation(s)
- Iriane Marques de Carvalho
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Thalles de Feitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Andreia da Silva Dias
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Laser Antônio Machado Oliveira
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Katiane de Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | | | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
21
|
Ali A, Abdelhafiz AS, Saleh MM, Salem H, Rakha MA, Ezzat S. Monocyte to eosinophil ratio as a diagnostic biomarker for overlap syndrome and predictor of disease exacerbation. Int J Immunopathol Pharmacol 2023; 37:3946320231216321. [PMID: 37977558 PMCID: PMC10657538 DOI: 10.1177/03946320231216321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Objectives: Chronic Obstructive Pulmonary Disease (COPD) is one of the most common pulmonary diseases. The concomitant association of Obstructive Sleep Apnea (OSA) and COPD is known as the Overlap Syndrome (OS). This study aimed to identify markers for predicting OS, among routine laboratory tests, including differential blood counts.Methods: One hundred twenty-five patients with exacerbated COPD were enrolled in the study and screened for OSA using the Epworth Sleepiness Scale (ESS). Those with a positive ESS score underwent polysomnography (PSG) for confirmation. All patients were followed for 90 days to monitor for subsequent exacerbations.Results: Out of the 125 patients with exacerbated COPD, 25 were confirmed to have OSA. Those with OS had a significantly higher body mass index (BMI) (p < 0.001). The monocyte to eosinophil ratio (MER) was significantly higher in the OS group, while the neutrophil to monocyte (NMR) ratio and platelets to monocyte (PMR) ratio were significantly lower. Younger age, male sex, and higher body mass index (BMI) were all associated with OS. During the 90-day follow-up period after hospital discharge, 60% of patients with OS were re-admitted due to acute exacerbations. The hazard ratio for a second exacerbation increased by two-fold for every one-unit increase MER. The MER demonstrated excellent utility in predicting a second exacerbation, with an area under the curve (AUC) of 83% and a p-value of .005.Conclusion: The monocyte to eosinophil ratio (MER) was independent predictors of OS among exacerbated COPD patients and had a very good prognostic utility for predicting the next exacerbation episodes. Long term follow up is recommended to evaluate the severity of exacerbations and the effect of complications of OS on the morbidity and mortality of these patients.
Collapse
Affiliation(s)
- Asmaa Ali
- Department of Pulmonary Medicine, Abbassia Chest Hospital, Egypt Ministry of Health and Population, Cairo, Egypt
| | - Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mai M Saleh
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba Salem
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohammed A Rakha
- Department of Chest Disease, Faculty of Medicine, Alazhar University, Cairo, Egypt
| | - Seham Ezzat
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Chen M, Xu K, He Y, Jin J, Mao R, Gao L, Zhang Y, Wang G, Gao P, Xie M, Liu C, Chen Z. CC16 as an Inflammatory Biomarker in Induced Sputum Reflects Chronic Obstructive Pulmonary Disease (COPD) Severity. Int J Chron Obstruct Pulmon Dis 2023; 18:705-717. [PMID: 37139166 PMCID: PMC10150740 DOI: 10.2147/copd.s400999] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose The progression of an abnormal inflammatory response plays a crucial role in the lung function decline of chronic obstructive pulmonary disease (COPD) patients. Compared to serum biomarkers, inflammatory biomarkers in induced sputum would be a more reliable reflection of inflammatory processes in the airways. Patients and Methods A total of 102 COPD participants were divided into a mild-to-moderate group (FEV1%pred≥ 50%, n=57) and a severe-to-very-severe group (FEV1%pred<50%, n=45). We measured a series of inflammatory biomarkers in induced sputum and analyzed their association with lung function and SGRQ in COPD patients. To evaluate the relationship between inflammatory biomarkers and the inflammatory phenotype, we also analyzed the correlation between biomarkers and airway eosinophilic phenotype. Results We found increased mRNA levels of MMP9, LTB4R, and A1AR and decreased levels of CC16 mRNA in induced sputum in the severe-to-very-severe group. After adjustment for age, sex and other biomarkers, CC16 mRNA expression was positively associated with FEV1%pred (r=0.516, p=0.004) and negatively correlated with SGRQ scores (r=-0.3538, p=0.043). As previously known, decreased CC16 was related to the migration and aggregation of eosinophils in airway. It was also found that CC16 had a moderate negative correlation with the eosinophilic inflammation in airway (r=-0.363, p=0.045) in our COPD patients. Conclusion Low CC16 mRNA expression levels in induced sputum were associated with low FEV1%pred and a high SGRQ score in COPD patients. Sputum CC16 as a potential biomarker for predicting COPD severity in clinical practice might attribute to the involvement of CC16 in airway eosinophilic inflammation.
Collapse
Affiliation(s)
- Mengjie Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Kan Xu
- Geriatric Department of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Yuting He
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Jianjun Jin
- Research Center of Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Ruolin Mao
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Lei Gao
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
| | - Yi Zhang
- Air Liquide Holding Co., Ltd, Shanghai, People’s Republic of China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jilin University, Changchun, People’s Republic of China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical 10 College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Chunfang Liu, Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12# Wlmq Road, Shanghai, People’s Republic of China, Email
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People’s Republic of China
- Correspondence: Zhihong Chen, Department of Respiratory and Critical Care Medicine of Zhongshan Hospital, No. 180 Fenglin Road, Shanghai, People’s Republic of China, Tel +86-21-64041990-2445, Fax +86-21-64187165, Email
| |
Collapse
|
23
|
Ferrari M, Pizzini M, Cazzoletti L, Ermon V, Spelta F, De Marchi S, Carbonare LGD, Crisafulli E. Circulating eosinophil levels and lung function decline in stable chronic obstructive pulmonary disease: a retrospective longitudinal study. J Bras Pneumol 2022; 48:e20220183. [PMID: 36477172 PMCID: PMC9720888 DOI: 10.36416/1806-3756/e20220183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Whether blood eosinophils (bEOS) in chronic obstructive pulmonary disease (COPD) are associated with disease progression is a topic of debate. We aimed to evaluate whether the differential white blood cell (WBC) count, symptoms and treatment may predict lung function decline and exacerbations in COPD patients. METHODS We retrospectively examined stable COPD patients with a minimum follow-up of 3 years at our outpatients' clinic. We collected information about lung volumes (FEV1, FVC), the total and differential WBC count, acute exacerbations of COPD (number in the 12 months before the beginning of the study=AE-COPD-B, and during the follow-up=AE-COPD-F), smoking status and treatment. FEV1 decline and AE-COPD-F were described by using a generalized linear model and a 2-level random intercept negative binomial regression, respectively. The models included eosinophil and neutrophil counts as potential predictors and were adjusted by sex, age, smoking status, AE-COPD-B, treatment with bronchodilators and inhaled corticosteroids (ICS). RESULTS Sixty-eight patients were considered, 36 bEOS- (<170 cells/μL, the median value) and 32 bEOS+ (≥170 cells/μL). ∆FEV1 was higher in bEOS+ than bEOS- (34.86 mL/yr vs 4.49 mL/yr, p=0.029). After adjusting for potential confounders, the eosinophil count was positively (β=19.4; CI 95% 2.8, 36.1; p=0.022) and ICS negatively (β=-57.7; CI 95% -91.5,-23.9; p=0.001) associated with lung function decline. bEOS were not found to be associated with the number of AE-COPD-F. CONCLUSION In stable COPD patients, a higher level of blood eosinophils (albeit in the normal range) predicts a greater FEV1 decline, while ICS are associated with a slower progression of airflow obstruction.
Collapse
Affiliation(s)
- Marcello Ferrari
- Dipartimento di Medicina, Unità di Medicina Interna e Medicina Respiratoria, Università di Verona, Verona (VR), Italia.
| | - Michela Pizzini
- Dipartimento di Medicina, Unità di Medicina Interna e Medicina Respiratoria, Università di Verona, Verona (VR), Italia.
| | - Lucia Cazzoletti
- Dipartimento di Diagnostica e Sanità Pubblica, Università di Verona, Verona (VR), Italia.
| | - Valentina Ermon
- Dipartimento di Medicina, Unità di Medicina Interna e Medicina Respiratoria, Università di Verona, Verona (VR), Italia.
| | - Francesco Spelta
- Dipartimento di Medicina, Unità di Medicina Interna e Medicina Respiratoria, Università di Verona, Verona (VR), Italia.
| | - Sergio De Marchi
- Dipartimento di Medicina, Unità di Medicina Interna e Medicina Respiratoria, Università di Verona, Verona (VR), Italia.
| | - Luca Giuseppe Dalle Carbonare
- Dipartimento di Medicina, Unità di Medicina Interna e Medicina Respiratoria, Università di Verona, Verona (VR), Italia.
| | - Ernesto Crisafulli
- Dipartimento di Medicina, Unità di Medicina Interna e Medicina Respiratoria, Università di Verona, Verona (VR), Italia.
| |
Collapse
|
24
|
Helala LA, AbdelFattah EB, Elsalam HMA. Blood and sputum eosinophilia in COPD exacerbation. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2022. [DOI: 10.1186/s43168-022-00151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Exacerbations in chronic obstructive pulmonary disease (COPD) are major contributors to worsening lung function, impaired quality of life, emergency healthcare use, and COPD-related mortality. COPD exacerbations are heterogeneous in terms of airway inflammation and etiology.
Objectives
To assess the relation between blood and sputum eosinophils and COPD exacerbation.
Subjects and methods
Prospective cohort study, conducted on 100 COPD patients presented in outpatient clinic. All patients were subjected to medical history including: occupational history, smoking history, comorbidity, number of exacerbations in last year and their degree, history of admission in the last year and treatment taken for COPD. Modified Medical Research Council scale of dyspnea, peak expiratory flow rate, oxygen saturation using pulse oximetry. Complete blood count with differential eosinophilic count. Sputum sample differential cell count was done.
Results
The eosinophil level in blood before and after treatment showed a significant positive correlation with the number of hospital admission in the last year (r = 0.29; P = 0.003 and r = 0.3; P = 0.002, respectively). Regarding the eosinophil level either in blood or in sputum, it showed significant statistical elevation in patients not using steroid treatment in comparison to patients who used systemic or inhaled steroid treatments (P < 0.001 and 0.004, respectively).
Conclusion
Blood eosinophil count can be used as a severity marker of COPD exacerbations. The eosinophil levels, either in blood or sputum, were significantly correlated with the degree of exacerbation. Sputum eosinophilia can also predict the risk of hospitalization. In addition, blood eosinophil count can direct the use of oral corticosteroids in exacerbation.
Collapse
|
25
|
Han Z, Hu H, Yang P, Li B, Liu G, Pang J, Zhao H, Wang J, Wang C. White blood cell count and chronic obstructive pulmonary disease: A Mendelian Randomization study. Comput Biol Med 2022; 151:106187. [PMID: 36327882 DOI: 10.1016/j.compbiomed.2022.106187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/18/2022] [Accepted: 10/08/2022] [Indexed: 12/27/2022]
Abstract
Blood leukocyte counts (e.g., eosinophil count) are important biomarkers for the onset, classification, and exacerbation of chronic obstructive pulmonary disease (COPD). The causal relationships between them are necessary for the development of COPD treatment strategy, but remain unclear. Here, we implement two-sample bi-directional univariable Mendelian Randomization (MR) and multivariable MR to investigate the causal relationships. Univariable MR find that elevated blood eosinophil count significantly increases the risk of COPD (odds ratio (OR) = 1.22, 95% confidence interval (CI): 1.14-1.30, P = 1.54 × 10-09) and COPD-related hospitalization (OR = 1.44, 95% CI: 1.15-1.80, P = 1.36 × 10-03). Besides, it also significantly decreases the ratio of forced expiratory volume in the first second over forced vital capacity (FEV1/FVC ratio) (OR = 0.942, 95% CI: 0.914-0.971, P = 1.02 × 10-04). These findings are fully supported by multivariate MR results. Interestingly, univariable MR reveals a weak causal relationship between elevated blood eosinophil count and COPD risk in younger people (<65 years) (OR = 1.39, 95% CI: 1.10-1.75, P = 5.52 × 10-03), but not older individuals (OR = 1.20, 95% CI: 0.926-1.55, P = 0.17). Finally, reverse univariable MR reveals the onset of COPD and the decreased FEV1/FVC ratio both lead to increased blood neutrophil count (OR = 1.03, 95% CI: 1.01-1.05, P = 3.40 × 10-03 and OR = 0.947, 95% CI: 0.91-0.986, P = 8.75 × 10-03 respectively). In summary, this MR study demonstrates that high blood eosinophil count is an independent causal mediator of COPD risk, FEV1/FVC decline, and COPD-related hospitalization. The increase in neutrophil count is induced by COPD onset or FEV1/FVC decline. This suggests eosinophil, but not neutrophil, may be used as a therapeutic target for preventing the onset and exacerbation of COPD and FEV1/FVC decline. Therefore, a non-neutrophil-targeted therapeutic strategy for neutrophilic COPD is required in the future.
Collapse
Affiliation(s)
- Zhifa Han
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Huiyuan Hu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China; First Clinical College, Xi'an Jiaotong University, Yanta West Road No.76, Xi'an, ShaanXi, 710061, China
| | - Peiran Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Baicun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Guiyou Liu
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Junling Pang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| | - Chen Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China
| |
Collapse
|
26
|
Peng J, Wang M, Wu Y, Shen Y, Chen L. Clinical Indicators for Asthma-COPD Overlap: A Systematic Review and Meta-Analysis. Int J Chron Obstruct Pulmon Dis 2022; 17:2567-2575. [PMID: 36259043 PMCID: PMC9572492 DOI: 10.2147/copd.s374079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022] Open
Abstract
Background Some clinical indicators have been reported to be useful in differentiating asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) from pure asthma/COPD, but the results were inconsistent. This study aims to evaluate the diagnostic value of these indicators for ACO. Methods Databases of PubMed, EMBASE, Ovid and Web of Science were retrieved. Pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated in random-effects models. Results 48 eligible studies were included. The pooled results indicated, compared with pure asthma, ACO patients had lower levels of forced expiratory volume in the first second (FEV1)% predicted (pred) (SMD=−1.09, 95% CI −1.3 to −0.87), diffusion lung capacity for carbon monoxide (DLCO)% pred (SMD=−0.83, 95% CI −1.24 to −0.42), fractional exhaled nitric oxide (FeNO) (SMD=−0.23, 95% CI −0.36 to −0.11), and higher levels of induced sputum neutrophil (SMD = 0.51, 95% CI 0.21 to 0.81), circulating YKL-40 (SMD = 0.96, 95% CI 0.27 to 1.64). However, relative to COPD alone, ACO patients had higher levels of FEV1% pred (SMD = 0.15, 95% CI 0.05 to 0.26), DLCO% pred (SMD = 0.38, 95% CI 0.16 to 0.6), FeNO (SMD = 0.59, 95% CI 0.40 to 0.78), serum total immunoglobulin (Ig)E (SMD = 0.42, 95% CI 0.1 to 0.75), blood eosinophil (SMD = 0.44, 95% CI 0.29 to 0.59), induced sputum eosinophil (SMD = 0.62, 95% CI 0.42 to 0.83), and lower levels of induced sputum neutrophil (SMD=−0.48, 95% CI −0.7 to −0.27), circulating YKL-40 (SMD=−1.09, 95% CI −1.92 to −0.26). Conclusion Compared with pure asthma/COPD, ACO patients have different levels of FEV1% pred, DLCO% pred, FeNO, serum total IgE, blood eosinophil, induced sputum eosinophil/neutrophil, and circulating YKL-40, which could be helpful to establish a clinical diagnosis of ACO.
Collapse
Affiliation(s)
- Junjie Peng
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China,Correspondence: Lei Chen; Yongchun Shen, Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, People’s Republic of China, Email ;
| |
Collapse
|
27
|
The Acari Hypothesis, III: Atopic Dermatitis. Pathogens 2022; 11:pathogens11101083. [DOI: 10.3390/pathogens11101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Atopic dermatitis is a chronic relapsing dermatopathology involving IgE against allergenic materials present on mammalian epithelial surfaces. Allergens are as diverse as pet danders, and polypeptides expressed by microbes of the mammalian microbiome, e.g., Malassezia spp. The Acari Hypothesis posits that the mammalian innate immune system utilizes pathogen-bound acarian immune effectors to protect against the vectorial threat posed by mites and ticks. Per The Hypothesis, IgE-mediated allergic disease is a specious consequence of the pairing of acarian gastrointestinal materials, e.g., allergenic foodstuffs, with acarian innate immune effectors that have interspecies operability. In keeping with The Hypothesis, the IgE profile of atopic patients should include both anti-acarian antibodies and specious antibodies responsible for specific allergy. Further, the profile should inform on the diet and/or environment of the acarian vector. In this regard, the prevalence of Demodex and Dermatophagoides on the skin of persons suffering from atopic dermatitis is increased. Importantly, the diets of these mites correspond well with the allergens of affected patients. In this report, roles for these specific acarians in the pathogenesis of atopic dermatitis are proposed and elaborated.
Collapse
|
28
|
Pokharel P, Lamichhane P, Pant P, Shrestha AB. Factors affecting length of hospital stay in chronic obstructive pulmonary disease patients in a tertiary hospital of Nepal: A retrospective cross-sectional study. Ann Med Surg (Lond) 2022; 80:104246. [PMID: 36045760 PMCID: PMC9422293 DOI: 10.1016/j.amsu.2022.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Despite the increasing burden of chronic obstructive pulmonary disease in Nepal, studies analyzing the factors associated with inpatient length of hospital stay are lacking. Methods This is a retrospective, cross-sectional hospital-based study conducted between July 2020 and July 2021 on patients admitted to the inpatient ward of Pulmonary and Critical Care Medicine of Tribhuvan University Teaching Hospital with a primary diagnosis of acute exacerbation of chronic obstructive pulmonary disease. The sample size of our study was 90. Clinical and demographic factors, blood investigation parameters, and treatment received were analyzed via univariate and multivariate analysis to find the factors associated with length of stay. Results The mean age of chronic obstructive pulmonary disease patients was 68.84 ± 10.22 years, with 42.2% of males and 43.3% of current smokers. The length of hospital stay ranged from 2 to 25 days, with an average stay of 6.69 ± 4.02 days. Factors associated with length of stay are the number of comorbidities (p = 0.007), blood eosinophils at admission (p = 0.022), and use of mechanical ventilatory support (p < 0.001). Conclusions Proper management of comorbidities and eosinophilic exacerbations as well as careful use of mechanical ventilatory support are required to further reduce the duration of hospital stay in chronic obstructive pulmonary disease patients.
Collapse
Affiliation(s)
- Pashupati Pokharel
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Pratik Lamichhane
- Maharajgunj Medical Campus, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Pankaj Pant
- Department of Pulmonology and Critical Care Medicine, Tribhuvan University Teaching Hospital, Kathmandu, Nepal
| | | |
Collapse
|
29
|
Sharma P, Dhanjal DS, Chopra C, Tambuwala MM, Sohal SS, van der Spek PJ, Sharma HS, Satija S. Targeting eosinophils in chronic respiratory diseases using nanotechnology-based drug delivery. Chem Biol Interact 2022; 365:110050. [DOI: 10.1016/j.cbi.2022.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
|
30
|
Dalin DA, Løkke A, Kristiansen P, Jensen C, Birkefoss K, Christensen HR, Godtfredsen NS, Hilberg O, Rohde JF, Ussing A, Vermehren C, Handel MN. A systematic review of blood eosinophils and continued treatment with inhaled corticosteroids in patients with COPD. Respir Med 2022; 198:106880. [DOI: 10.1016/j.rmed.2022.106880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
|
31
|
Kadushkin AG, Tahanovich AD, Movchan LV, Dziadzichkina VV, Levandovskaya OV, Shman TV. Nortriptyline overcomes corticosteroid resistance in NK and NKT-like cells from peripheral blood of patients with chronic obstructive pulmonary disease. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.75467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: An antidepressant nortriptyline potentiates glucocorticoid (GC) action with synergistic suppression of inflammatory mediator release, but the precise molecular mechanism is unknown.
Materials and methods: Peripheral blood cells from patients with chronic obstructive pulmonary disease (COPD) (n = 21) were incubated with nortriptyline (1 µM or 10 µM), budesonide (10 nM), or their combinations, followed by stimulation with phorbol myristate acetate (PMA) and ionomycin. Cytokine production, glucocorticoid receptor β (GRβ), histone deacetylase 2 (HDAC2) and histone H4 acetylation of K8 (HAT) expression, p65 NF-kB and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation in NK (CD3-CD56+) and NKT-like (CD3+CD56+) cells were analyzed by flow cytometry.
Results: We observed that nortriptyline (10 µM) significantly attenuated the effects of PMA/ionomycin on the synthesis of interferon γ (IFNγ), interleukin 4 (IL-4), and IL-8, expression of GRβ and HAT, as well as p65 NF-kB and p38 MAPK phosphorylation in NK and NKT-like cells, whereas nortriptyline (1 µM) only inhibited IL-4 production by NK and NKT-like cells.
Discussion: The combination of nortriptyline (10 µM) and budesonide decreased IFNγ, tumor necrosis factor α, IL-4, IL-8, and GRβ expression, as well as phosphorylated p38 MAPK and p65 NF-κB levels by NK and NKT-like cells above that of budesonide alone. Furthermore, the same association of drugs enhanced HDAC2 expression in NK and NKT-like cells.
Conclusion: Collectively, our results show that nortriptyline might enhance GC function through modulation of HAT, HDAC2, GRβ, phospho-p38 MAPK expression. These data provide a strong rationale for combining nortriptyline with budesonide to treat COPD.
Collapse
|
32
|
Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci (Lond) 2022; 136:405-423. [PMID: 35319068 PMCID: PMC8968302 DOI: 10.1042/cs20210835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and atherosclerosis are chronic irreversible diseases, that share a number of common causative factors including cigarette smoking. Atherosclerosis drastically impairs blood flow and oxygen availability to tissues, leading to life-threatening outcomes including myocardial infarction (MI) and stroke. Patients with COPD are most likely to die as a result of a cardiovascular event, with 30% of all COPD-related deaths being attributed to cardiovascular disease (CVD). Both atherosclerosis and COPD involve significant local (i.e. lung, vasculature) and systemic inflammation and oxidative stress, of which current pharmacological treatments have limited efficacy, hence the urgency for the development of novel life-saving therapeutics. Currently these diseases must be treated individually, with no therapies available that can effectively reduce the likelihood of comorbid CVD other than cessation of cigarette smoking. In this review, the important mechanisms that drive atherosclerosis and CVD in people with COPD are explained and we propose that modulation of both the oxidative stress and the inflammatory burden will provide a novel therapeutic strategy to treat both the pulmonary and systemic manifestations related to these diseases.
Collapse
|
33
|
Ye SC, Desai S, Karlsen E, Kwong E, Wilcox PG, Quon BS. Association between elevated peripheral blood eosinophil count and respiratory outcomes in adults with cystic fibrosis. J Cyst Fibros 2022; 21:1048-1052. [DOI: 10.1016/j.jcf.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
|
34
|
Hwang D, Ryu HW, Park JW, Kim JH, Kim DY, Oh JH, Kwon OK, Han SB, Ahn KS. Effects of 3'-isovaleryl-4'-senecioylkhellactone from Peucedanum japonicum Thunberg on PMA-Stimulated Inflammatory Response in A549 Human Lung Epithelial Cells. J Microbiol Biotechnol 2022; 32:81-90. [PMID: 34818666 PMCID: PMC9628833 DOI: 10.4014/jmb.2107.07001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
Peucedanum japonicum Thunberg (PJT) has been used in traditional medicine to treat colds, coughs, fevers, and other inflammatory diseases. The goal of this study was to investigate whether 3'-isovaleryl-4'-senecioylkhellactone (IVSK) from PJT has anti-inflammatory effects on lung epithelial cells. The anti-inflammatory effects of IVSK were evaluated using phorbol 12-myristate 13-acetate (PMA)-stimulated A549 cells and regular human lung epithelial cells as a reference. IVSK reduced the secretion of the inflammatory mediators interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1), and the mRNA expression of IL-6, IL-8, MCP-1, and IL-1β. Additionally, it inhibited the phosphorylation of IκB kinase (IKK), p65, Iκ-Bα, and mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK in A549 cells stimulated with PMA. Moreover, the binding affinity of activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) was significantly reduced in the luciferase assay, while nuclear translocation was markedly inhibited by IVSK in the immunocytochemistry. These findings indicate that IVSK can protect against inflammation through the AP-1 and NF-κB pathway and could possibly be used as a lead compound for the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Daseul Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea,College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jung-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Hoon Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea,College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea,
O.K. Kwon E-mail:
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea,Corresponding authors S.B. Han E-mail:
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea,
K.S. Ahn E-mail: Phone: +82-43-240-6134 Fax: +82-43-240-6129
| |
Collapse
|
35
|
Roche N, Devillier P, Berger P, Bourdin A, Dusser D, Muir JF, Martinat Y, Terrioux P, Housset B. Individual trajectory-based care for COPD: getting closer, but not there yet. ERJ Open Res 2021; 7:00451-2021. [PMID: 34912881 PMCID: PMC8666575 DOI: 10.1183/23120541.00451-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a main cause of death due to interplaying factors, including comorbidities that interfere with symptoms and response to therapy. It is now admitted that COPD management should be based on clinical symptoms and health status and should consider the heterogeneity of patients' phenotypes and treatable traits. This precision medicine approach involves a regular assessment of the patient's status and of the expected benefits and risks of therapy. The cornerstone of COPD pharmacological therapy is inhaled long-acting bronchodilation. In patients with persistent or worsened symptoms, factors likely to interfere with treatment efficacy include the patient's non-adherence to therapy, treatment preference, inhaler misuse and/or comorbidities, which should be systematically investigated before escalation is considered. Several comorbidities are known to impact symptoms, physical and social activity and lung function. The possible long-term side-effects of inhaled corticosteroids contrasting with their over-prescription in COPD patients justify the regular assessment of their benefits and risks, and de-escalation under close monitoring after a sufficient period of stability is to be considered. While commonly used in clinical trials, the relevance of routine blood eosinophil counts to guide therapy adjustment is not fully clear. Patients' characteristics, which define phenotypes and treatable traits and thus guide therapy, often change during life, forming the basis of the concept of clinical trajectory. The application of individual trajectory-based management of COPD in clinical practice therefore implies that the benefit:risk ratio is regularly reviewed according to the evolution of the patient's traits over time to allow optimised therapy adjustments.
Collapse
Affiliation(s)
- Nicolas Roche
- Pneumologie, Hôpital Cochin, AP-HP. Centre - Université de Paris, Institut Cochin (UMR1016), Paris, France
| | - Philippe Devillier
- UPRES EA 220, Université Versailles Saint-Quentin, Pôle des Maladies des Voies Respiratoires, Hôpital Foch, Suresnes, France
| | - Patrick Berger
- Service d'exploration fonctionnelle respiratoire, CIC 1401, CHU de Bordeaux, Pessac, France
| | - Arnaud Bourdin
- Département de Pneumologie et Addictologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Daniel Dusser
- Pneumologie, Hôpital Cochin, AP-HP. Centre - Université de Paris, Institut Cochin (UMR1016), Paris, France
| | - Jean-François Muir
- Service de Pneumologie, Oncologie Thoracique et Soins Intensifs Respiratoires, Centre Hospitalier Universitaire de Rouen, Rouen, France
| | | | | | - Bruno Housset
- Service de Pneumologie, Hôpital Intercommunal de Créteil, Créteil, France
| |
Collapse
|
36
|
Martin A, Shah D, Ndirangu K, Anley GA, Okorogheye G, Schroeder M, Risebrough N, Ismaila AS. Is single-inhaler triple therapy for COPD cost-effective in the UK? The IMPACT trial. ERJ Open Res 2021; 8:00333-2021. [PMID: 35198630 PMCID: PMC8859506 DOI: 10.1183/23120541.00333-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
Background The IMPACT trial demonstrated superior outcomes following 52 weeks of once-daily single-inhaler treatment with fluticasone furoate (FF)/umeclidinium (UMEC)/vilanterol (VI) (100/62.5/25 μg) compared with once-daily FF/VI (100/25 μg) or UMEC/VI (62.5/25 μg). This study evaluated the cost-effectiveness of FF/UMEC/VI compared with FF/VI or UMEC/VI for the treatment of chronic obstructive pulmonary disease (COPD) from a UK National Health Service perspective. Methods Patient characteristics and treatment effects from IMPACT were populated into a hybrid decision tree/Markov economic model. Costs (GB£ inflated to 2018 equivalents) and health outcomes were modelled over a lifetime horizon, with a discount rate of 3.5% per annum applied to both. Sensitivity analyses were performed to test the robustness of key assumptions and input parameters. Results Compared with FF/VI and UMEC/VI, FF/UMEC/VI provided an additional 0.296 and 0.145 life years (LYs) (discounted) and 0.275 and 0.118 quality-adjusted life years (QALYs), at an additional cost of £1129 and £760, respectively. Incremental cost-effectiveness ratios (ICERs) for FF/UMEC/VI were £4104/QALY and £3809/LY gained versus FF/VI and £6418/QALY and £5225/LY gained versus UMEC/VI. At a willingness-to-pay threshold of £20 000/QALY, the probability that FF/UMEC/VI was cost-effective was 96% versus FF/VI and 74% versus UMEC/VI. Results were similar in a subgroup of patients recommended triple therapy in the 2019 National Institute for Health and Care Excellence COPD guideline. Conclusions FF/UMEC/VI single-inhaler triple therapy improved health outcomes and was a cost-effective option compared with FF/VI or UMEC/VI for patients with symptomatic COPD and a history of exacerbations in the UK at recognised cost-effectiveness threshold levels. This analysis demonstrates that fluticasone furoate (FF)/umeclidinium (UMEC)/vilanterol (VI) provides a cost-effective treatment option versus FF/VI or UMEC/VI for patients with symptomatic COPD in the UKhttps://bit.ly/3w7vQj9
Collapse
|
37
|
Facchinetti F, Civelli M, Singh D, Papi A, Emirova A, Govoni M. Tanimilast, A Novel Inhaled Pde4 Inhibitor for the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. Front Pharmacol 2021; 12:740803. [PMID: 34887752 PMCID: PMC8650159 DOI: 10.3389/fphar.2021.740803] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic respiratory diseases are the third leading cause of death, behind cardiovascular diseases and cancer, affecting approximately 550 million of people all over the world. Most of the chronic respiratory diseases are attributable to asthma and chronic obstructive pulmonary disease (COPD) with this latter being the major cause of deaths. Despite differences in etiology and symptoms, a common feature of asthma and COPD is an underlying degree of airways inflammation. The nature and severity of this inflammation might differ between and within different respiratory conditions and pharmacological anti-inflammatory treatments are unlikely to be effective in all patients. A precision medicine approach is needed to selectively target patients to increase the chance of therapeutic success. Inhibitors of the phosphodiesterase 4 (PDE4) enzyme like the oral PDE4 inhibitor roflumilast have shown a potential to reduce inflammatory-mediated processes and the frequency of exacerbations in certain groups of COPD patients with a chronic bronchitis phenotype. However, roflumilast use is dampened by class related side effects as nausea, diarrhea, weight loss and abdominal pain, resulting in both substantial treatment discontinuation in clinical practice and withdrawal from clinical trials. This has prompted the search for PDE4 inhibitors to be given by inhalation to reduce the systemic exposure (and thus optimize the systemic safety) and maximize the therapeutic effect in the lung. Tanimilast (international non-proprietary name of CHF6001) is a novel highly potent and selective inhaled PDE4 inhibitor with proven anti-inflammatory properties in various inflammatory cells, including leukocytes derived from asthma and COPD patients, as well as in experimental rodent models of pulmonary inflammation. Inhaled tanimilast has reached phase III clinical development by showing promising pharmacodynamic results associated with a good tolerability and safety profile, with no evidence of PDE4 inhibitors class-related side effects. In this review we will discuss the main outcomes of preclinical and clinical studies conducted during tanimilast development, with particular emphasis on the characterization of the pharmacodynamic profile that led to the identification of target populations with increased therapeutic potential in inflammatory respiratory diseases.
Collapse
Affiliation(s)
| | | | - Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Hospital Trust, Manchester, United Kingdom
| | - Alberto Papi
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Aida Emirova
- Global Clinical Development, Chiesi, Parma, Italy
| | - Mirco Govoni
- Global Clinical Development, Chiesi, Parma, Italy
| |
Collapse
|
38
|
Sandelowsky H, Weinreich UM, Aarli BB, Sundh J, Høines K, Stratelis G, Løkke A, Janson C, Jensen C, Larsson K. COPD - do the right thing. BMC FAMILY PRACTICE 2021; 22:244. [PMID: 34895164 PMCID: PMC8666021 DOI: 10.1186/s12875-021-01583-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022]
Abstract
A gap exists between guidelines and real-world clinical practice for the management and treatment of chronic obstructive pulmonary disease (COPD). Although this has narrowed in the last decade, there is room for improvement in detection rates, treatment choices and disease monitoring. In practical terms, primary care practitioners need to become aware of the huge impact of COPD on patients, have non-judgemental views of smoking and of COPD as a chronic disease, use a holistic consultation approach and actively motivate patients to adhere to treatment.This article is based on discussions at a virtual meeting of leading Nordic experts in COPD (the authors) who were developing an educational programme for COPD primary care in the Nordic region. The article aims to describe the diagnosis and lifelong management cycle of COPD, with a strong focus on providing a hands-on, practical approach for medical professionals to optimise patient outcomes in COPD primary care.
Collapse
Affiliation(s)
- Hanna Sandelowsky
- Department of Medicine, Clinical Epidemiology Division T2, Karolinska University Hospital, Karolinska Institutet, Solna, SE-171 76, Stockholm, Sweden.
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
- Academic Primary Healthcare Centre, Stockholm County, Stockholm, Sweden.
| | - Ulla Møller Weinreich
- Department of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark
- The Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Bernt B Aarli
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, Bergen, Norway
| | - Josefin Sundh
- Department of Respiratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Georgios Stratelis
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
- AstraZeneca Nordic, Södertälje, Sweden
| | - Anders Løkke
- Department of Medicine, Little Belt Hospital, Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | | | - Kjell Larsson
- Integrative Toxicology, National Institute of Environmental Medicine, IMM, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Papaporfyriou A, Bakakos P, Hillas G, Papaioannou AI, Loukides S. Blood eosinophils in COPD: friend or foe? Expert Rev Respir Med 2021; 16:35-41. [PMID: 34821191 DOI: 10.1080/17476348.2021.2011219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The pathogenesis of chronic obstructive pulmonary disease (COPD) is highly complex and the underlying cellular and molecular mechanisms remain poorly understood. AREAS COVERED COPD has been traditionally associated with neutrophilic inflammation of the bronchi, but in the last decade, studies have demonstrated that eosinophils may also migrate into the lower airways of patients with COPD and their increased numbers can be noticed during exacerbations as well as stable disease. In this review, we present clinical characteristics of eosinophilic COPD, as well as the role of eosinophils as a biomarker-guided therapy in COPD. A systematic research using the database of Pubmed up to February 2021 was performed. The terms we searched were eosinophilic inflammation, COPD, COPD phenotypes, COPD exacerbations, corticosteroids in COPD, and monoclonal antibodies in COPD. EXPERT OPINION Blood eosinophil levels show strong potential as a prognostic and theragnostic biomarker in the clinical management of COPD being at the moment the most reliable biomarker. The lack of a certain cutoff value of blood eosinophils as guidance for treatment with ICS and biologic therapies and the uncertainty regarding the stability of eosinophilia and eosinophilic phenotype through the course of COPD remain as unmet dilemmas and problems.
Collapse
Affiliation(s)
| | - Petros Bakakos
- 1st Respiratory Medicine Department, University of Athens Medical School Sotiria' Chest Hospital,'Athens, Greece
| | - Georgios Hillas
- 5th Pulmonary Department, "Sotiria" Chest Diseases Hospital, Athens, Greece
| | - Andriana I Papaioannou
- 2nd Respiratory Medicine Department, University of Athens Medical School 'Attikon' Hospital, Athens, Greece
| | - Stelios Loukides
- 2nd Respiratory Medicine Department, University of Athens Medical School 'Attikon' Hospital, Athens, Greece
| |
Collapse
|
40
|
Hoseinynejad K, Radan M, Dianat M, Nejaddehbashi F. Adipose-derived mesenchymal stem cells protects renal function in a rat model of emphysema. Tissue Cell 2021; 73:101613. [PMID: 34364156 DOI: 10.1016/j.tice.2021.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE The link between lung disease and kidney disorders has already been confirmed. Previous studies have documented that obstructive pulmonary disease is an independent predictor of decreased renal function, which reduces glomerular filtration rate. Recently, mesenchymal stem cells are the most important cell used in cell therapy. Accordingly, the present experiment was designed to evaluate the efficacy of adipose-derived mesenchymal stem cells (AMSCs) on improvement of renal function in elastase induced-pulmonary emphysema rats. MATERIALS AND METHODS Thirty male Sprague-Dawley rats divided into the 3 groups. Following intra-tracheal administration of elastase, the in vivo emphysema model established and confirmed according to the specific markers. Subsequently, systemic AMSCs injection was developed. the kidney injuries markers such as Blood urea nitrogen (BUN), creatinine, sodium and potassium as well as the kidney histopathologic parameters were assessed in all groups. Moreover, the oxidative stress markers levels including Malondialdehyde (MDA), Total antioxidant capacity (TAC), Catalase (CAT) and Glutathione peroxidase (GPx) were measured in kidney tissue and also inflammatory cytokines including IL-10, IL-6, and IFN-Ƴ were assessed in serum samples. RESULTS The marked rise in kidney injuries markers were observed which showed by enhancement of BUN and Creatinine levels in emphysema rats compared to the control. Furthermore, the results demonstrated increases in MDA levels and decreases in antioxidant activity which was in line with increases in inflammation cytokines in renal tissue. Conversely, AMSCs treatment improved renal function as shown by the decreases BUN, Creatinine and proteinuria. Furthermore, renal histological assay demonstrate improvement in glomerular and tubular damage and inflammatory cells accumulation. CONCLUSIONS Our results documented the promising kidney-protective properties of Adipose-Derived Mesenchymal Stem Cells in the kidney injuries induced by emphysema.
Collapse
Affiliation(s)
- Khojasteh Hoseinynejad
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Radan
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
Wang HH, Cheng SL. From Biomarkers to Novel Therapeutic Approaches in Chronic Obstructive Pulmonary Disease. Biomedicines 2021; 9:biomedicines9111638. [PMID: 34829866 PMCID: PMC8615492 DOI: 10.3390/biomedicines9111638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous and complex disorder. In this review, we provided a comprehensive overview of biomarkers involved in COPD, and potential novel biological therapies that may provide additional therapeutic options for COPD. The complex characteristics of COPD have made the recommendation of a generalized therapy challenging, suggesting that a tailored, personalized strategy may lead to better outcomes. Existing and unmet needs for COPD treatment support the continued development of biological therapies, including additional investigations into the potential clinical applications of this approach.
Collapse
Affiliation(s)
- Hsu-Hui Wang
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 10042, Taiwan;
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 10042, Taiwan;
- Department of Chemical Engineering and Materials Science, Yuan-Ze University, Taoyuan City 320315, Taiwan
- Correspondence: ; Tel.: +886-2-8966-7000 (ext. 2160); Fax: +886-2-7738-0708
| |
Collapse
|
42
|
Abstract
Recent therapeutic advances in the management of asthma have underscored the importance of eosinophilia and the role of pro-eosinophilic mediators such as IL-5 in asthma. Given that a subset of patients with COPD may display peripheral eosinophilia similar to what is observed in asthma, a number of recent studies have implied that eosinophilic COPD is a distinct entity. This review will seek to contrast the mechanisms of eosinophilia in asthma and COPD, the implications of eosinophilia for disease outcome, and review current data regarding the utility of peripheral blood eosinophilia in the management of COPD patients.
Collapse
|
43
|
Air Pollution Exposure and Daily Lung Function in COPD: Effect Modification by Eosinophilia. Ann Am Thorac Soc 2021; 19:728-736. [PMID: 34678126 PMCID: PMC9116346 DOI: 10.1513/annalsats.202107-846oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Few studies have assessed personal exposure to pollutants and lung function among adults with COPD. Blood eosinophilia may be a biomarker of airway inflammation and pollution susceptibility. OBJECTIVES To evaluate if daily pollutant exposures are associated with lung function and if associations are modified by eosinophilia in COPD. METHODS We recruited 30 former smokers with moderate-to-severe COPD living in the Boston area and followed them up to 4 non-consecutive months in different seasons. Participants measured morning lung function and carried a portable air quality monitor daily. Previous-day exposure to pollutants (PM2.5, NO2, and ozone) were measured by portable and community monitors. We constructed multi-level linear mixed-effects models with random intercepts for person and observation month, adjusted for temperature, humidity, age, sex, race, height, weight, income, and season, to assess associations of previous-day pollutant exposure with lung function and effect modification by eosinophilia (< vs > 150 cells/µL). RESULTS A total of 3,314 observations with exposure and lung function data were collected. Each IQR (5.1 ppb) higher previous-day personal exposure to NO2 was associated with a 11.3 mL (95% CI: -18.7, -4.0) lower FEV1 and a 18.0 mL (95% CI: -32.0, -4.2) lower FVC. Personal and community-level exposure to PM2.5 and community-level NO2 were negatively associated with FEV1 among the 55.2% of participants with eosinophilia (Pinteraction <0.05). CONCLUSIONS Our study highlights the need to address air pollution exposure among COPD patients. Future research is needed to verify if eosinophilia is a biomarker for susceptibility to air pollution in COPD.
Collapse
|
44
|
Bartziokas K, Gogali A, Kostikas K. The Role of Blood Eosinophils in the Management of COPD: An Attempt to Answer the Important Clinical Questions. COPD 2021; 18:690-699. [PMID: 34657541 DOI: 10.1080/15412555.2021.1985989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Blood eosinophils have been proposed as a surrogate biomarker of airway eosinophilia that can be used for treatment decisions in patients with COPD, mainly for the identification of candidates for the initiation or withdrawal of therapy with inhaled corticosteroids, as well as for the identification of patients at future risk of exacerbations. In this manuscript we review the recent literature on blood eosinophils in the management of patients with COPD, in an attempt to answer the major questions that are relevant for the practicing clinician. A growing body of evidence suggests that eosinophilic COPD may constitute a separate phenotype of the disease with distinct clinical features and blood eosinophils may represent a potential candidate surrogate marker for specific COPD patients. Several points still need to be clarified, including the role of eosinophils for the identification of candidates for future COPD therapies, yet blood eosinophils plausibly represent the most dependable and promising biomarker for the precision management of COPD today.
Collapse
Affiliation(s)
| | - Athena Gogali
- Respiratory Medicine Department, University of Ioannina, Ioannina, Greece
| | | |
Collapse
|
45
|
Dobric A, De Luca SN, Spencer SJ, Bozinovski S, Saling MM, McDonald CF, Vlahos R. Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease. Pharmacol Ther 2021; 233:108017. [PMID: 34626675 DOI: 10.1016/j.pharmthera.2021.108017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.
Collapse
Affiliation(s)
- Aleksandar Dobric
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Simone N De Luca
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Michael M Saling
- Clinical Neuropsychology, The University of Melbourne and Austin Health, VIC, Australia
| | - Christine F McDonald
- Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia; Department of Respiratory & Sleep Medicine, The University of Melbourne and Austin Health, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
46
|
Yang M, Yang T, Li X, Li D, Liao Z, Shen Y, Xu D, Chen L, Wen F. Clinical Predictors of High Blood Eosinophils in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2467-2474. [PMID: 34483658 PMCID: PMC8409512 DOI: 10.2147/copd.s324511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Elevated blood eosinophils have been implicated in chronic obstructive pulmonary disease (COPD) progression and exacerbation. We aim to investigate clinical predictors of high blood eosinophils in a Chinese COPD cohort. Patients and Methods We conducted a retrospective cohort study in Sichuan province, a Southwest province with high prevalence of COPD in China. All patients in this cohort were extracted from the Chinese Pulmonary Health study, a large cross-sectional study on COPD epidemiology in China. Demographics, personal and family history, living condition, spirometry and blood eosinophil counts were obtained. Univariate and multiple linear regression analyses were performed to determine predictors of high blood eosinophils. Results A total of 375 COPD patients were included in this cohort. The median absolute blood eosinophil count was 138.8 cells/μL, and the prevalence of COPD with high blood eosinophils was 66.7% and 14.7% when using the thresholds of 100 cells/μL and 300 cells/μL, respectively. Univariate analyses indicated that male gender, lower body mass index, high-density lipoprotein (HDL), lower family income, raising pets and biomass use were significantly associated with high blood eosinophils (p < 0.05). Multiple linear regression model further revealed male gender (unstandardized coefficient (B)=66.125, 95% confidence intervals (CI) 16.350 to 115.900, p=0.009), age (B=2.819, 95% CI 0.639 to 5.000, p=0.012) predicted high blood eosinophil level, whereas HDL (B=−64.682, 95% CI −123.451 to −5.914, p=0.031) was a negative predictor for high blood eosinophils. Conclusion This retrospective cohort study suggests male gender, oldness and lower HDL could be clinical predictors of high blood eosinophils in Chinese COPD patients.
Collapse
Affiliation(s)
- Mei Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiaoou Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Diandian Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zenglin Liao
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Dan Xu
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
47
|
Hosking L, Yeo A, Hoffman J, Chiano M, Fraser D, Ghosh S, Lipson DA, Martin N, Condreay LD, Cox C, St Jean P. Genetics plays a limited role in predicting chronic obstructive pulmonary disease treatment response and exacerbation. Respir Med 2021; 187:106573. [PMID: 34428673 DOI: 10.1016/j.rmed.2021.106573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Combination treatments, targeting multiple disease processes, benefit subjects with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, predicting treatment response and exacerbation risk remain challenging. OBJECTIVE To identify genetic associations with AECOPD risk and response to combination therapy (fluticasone furoate, umeclidinium bromide and vilanterol). METHODS The genetic basis of AECOPD disease was investigated in 19,841 subjects from 23 clinical studies and 2 disease cohorts to identify exacerbation disease targets. AECOPD pharmacogenetic effects were examined in 8439 moderate to severe COPD patients with exacerbation rate, lung function and quality of life endpoints; results were followed up in an additional 2201 subjects. RESULTS We did not identify significant associations in the AECOPD disease analysis. In the AECOPD pharmacogenetics analysis, rs56195836 (MAPK8) was significantly associated with moderate to severe exacerbation rate in subjects on fluticasone furoate with baseline blood eosinophils ≥150 cells/μl (P = 1.8 × 10-8). Post-hoc, one variant was associated with on-treatment moderate to severe exacerbation rate stratifying by exacerbation history. AZU1 rs1962343 was significantly associated in subjects with frequent moderate exacerbation history when treated with fluticasone furoate/vilanterol (P = 1.1 × 10-8). Neither of these signals was supported in independent follow-up. CONCLUSION Common genetic variants do not play major roles in AECOPD disease nor predict response to triple therapy or its components in moderate to very severe COPD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David A Lipson
- GSK, Collegeville, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Neil Martin
- GSK, Brentford, Middlesex, UK; University of Leicester, Leicester, Leicestershire, UK.
| | | | | | | |
Collapse
|
48
|
Sivapalan P, Jensen JU. Biomarkers in Chronic Obstructive Pulmonary Disease: Emerging Roles of Eosinophils and Procalcitonin. J Innate Immun 2021; 14:89-97. [PMID: 34428766 PMCID: PMC9082212 DOI: 10.1159/000517161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
Antibiotics can improve the prognosis in patients with exacerbation of chronic obstructive pulmonary disease. However, the overuse of antibiotics can carry serious adverse effects for patients (gastrointestinal infections) and for society (bacterial resistance). Likewise, systemic corticosteroids may also help these patients, but also carries severe adverse effects like osteoporosis, muscle loss, and diabetes, in many patients. Whenever safe methods exist to reduce these two treatment modalities, they should be implemented. The blood biomarkers procalcitonin and the fraction of leukocytes known as eosinophil granulocytes have been proven in randomized controlled trials (RCTs), to effectively, significantly, and substantially assist in reducing the use of these two potent, yet toxic medication types. In this review, the background and main clinical results are discussed, explaining the rationale for biomarker-guided clinical decisions. Also, the main expected effects, their sizes, and importantly the limitations to such a strategy are described. Clinical evidence is prioritized with main weight on RCTs and meta-analyses of these and regarding outcomes, and focus is set on the safety of such a biomarker-guided strategy, as well as the effects on medicine reduction. In an epoch of increasing demands to physicians from patients and politicians to cure and reduce symptoms, the Hippocratic phrase of "primum non nocere" or "first, do no harm" seems more than ever of contemporary importance.
Collapse
Affiliation(s)
- Pradeesh Sivapalan
- Department of Internal Medicine, Respiratory Medicine Section, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Jens-Ulrik Jensen
- Department of Internal Medicine, Respiratory Medicine Section, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
49
|
Annangi S, Nutalapati S, Sturgill J, Flenaugh E, Foreman M. Eosinophilia and fractional exhaled nitric oxide levels in chronic obstructive lung disease. Thorax 2021; 77:351-356. [PMID: 34417353 PMCID: PMC8938670 DOI: 10.1136/thoraxjnl-2020-214644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/19/2021] [Indexed: 11/25/2022]
Abstract
Introduction COPD is a heterogeneous disorder with varied phenotypes. We aimed to determine the prevalence of asthma history, peripheral eosinophilia and elevated FeNO levels along with the diagnostic utility of peripheral eosinophilia in identifying airway eosinophilic inflammation. Methods National Health and Nutrition Examination Survey data were analysed for the study period 2007–2010. Subjects aged ≥40 years with postbronchodilator FEV1/FVC ratio <0.70 were included. Receiver operator curve analysis was performed for sensitivity analysis. A p value of <0.001 is considered statistically significant. Results A total of 3 110 617 weighted COPD cases were identified; predominantly male (64.4%) and non-Hispanic whites (86.1%). Among our COPD subjects, 14.6% had a history of doctor diagnosed asthma, highest among females and other race Americans. The overall prevalence of peripheral eosinophilia is 36%, 38.3% among COPD subjects with asthma history, and 35.6% among COPD without asthma history. The overall prevalence of elevated FeNO ≥25 ppb is 14.3%; 28.7% among COPD subjects with asthma history and 13.0% among COPD without asthma history. Discussion The prevalence of FeNO levels ≥25 ppb and peripheral eosinophilia was significantly higher among COPD subjects with asthma compared with COPD without asthma history. Not all COPD subjects with peripheral eosinophilia and elevated FeNO levels have a reported history of asthma. Our study supports clinically phenotyping COPD subjects with eosinophilic inflammation be independent of their asthma history and peripheral eosinophilia can be used as a surrogate marker in resource-limited settings.
Collapse
Affiliation(s)
- Srinadh Annangi
- Department of Pulmonary Critical Care and Sleep Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Snigdha Nutalapati
- Department of Hematology and Oncology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jamie Sturgill
- Department of Pulmonary Critical Care and Sleep Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Eric Flenaugh
- Department of Pulmonary and Critical Care Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Marilyn Foreman
- Department of Pulmonary and Critical Care Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
50
|
Baker JR, Donnelly LE. Leukocyte Function in COPD: Clinical Relevance and Potential for Drug Therapy. Int J Chron Obstruct Pulmon Dis 2021; 16:2227-2242. [PMID: 34354348 PMCID: PMC8331105 DOI: 10.2147/copd.s266394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung condition affecting 10% of the global population over 45 years. Currently, there are no disease-modifying treatments, with current therapies treating only the symptoms of the disease. COPD is an inflammatory disease, with a high infiltration of leukocytes being found within the lung of COPD patients. These leukocytes, if not kept in check, damage the lung, leading to the pathophysiology associated with the disease. In this review, we focus on the main leukocytes found within the COPD lung, describing how the release of chemokines from the damaged epithelial lining recruits these cells into the lung. Once present, these cells become active and may be driven towards a more pro-inflammatory phenotype. These cells release their own subtypes of inflammatory mediators, growth factors and proteases which can all lead to airway remodeling, mucus hypersecretion and emphysema. Finally, we describe some of the current therapies and potential new targets that could be utilized to target aberrant leukocyte function in the COPD lung. Here, we focus on old therapies such as statins and corticosteroids, but also look at the emerging field of biologics describing those which have been tested in COPD already and potential new monoclonal antibodies which are under review.
Collapse
Affiliation(s)
- Jonathan R Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|