1
|
Bannon ST, Decker ST, Erol ME, Fan R, Huang YT, Chung S, Layec G. Mitochondrial free radicals contribute to cigarette smoke condensate-induced impairment of oxidative phosphorylation in the skeletal muscle in situ. Free Radic Biol Med 2024; 224:325-334. [PMID: 39178923 DOI: 10.1016/j.freeradbiomed.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Oxidative stress plays a critical role in cellular dysfunction associated with cigarette smoke exposure and aging. Some chemicals from tobacco smoke have the potential to amplify mitochondrial ROS (mROS) production, which, in turn, may impair mitochondrial respiratory function. Accordingly, the present study tested the hypothesis that a mitochondria-targeted antioxidant (MitoTEMPO, MT) would attenuate the inhibitory effects of cigarette smoke on skeletal muscle respiratory capacity of middle-aged mice. Specifically, mitochondrial oxidative phosphorylation was assessed using high-resolution respirometry in permeabilized fibers from the fast-twitch gastrocnemius muscle of middle-aged C57Bl/6J mice. Before the assessment of respiration, tissues were incubated for 1hr with a control buffer (CON), cigarette smoke condensate (2 % dilution, SMOKE), or MitoTEMPO (10 μM) combined with cigarette smoke condensate (MT + SMOKE). Cigarette smoke condensate (CSC) decreased maximal-ADP stimulated respiration (CON: 60 ± 15 pmolO2.s-1.mg-1 and SMOKE: 33 ± 8 pmolO2.s-1.mg-1; p = 0.0001), and this effect was attenuated by MT (MT + SMOKE: 41 ± 7 pmolO2.s-1.mg-1; p = 0.02 with SMOKE). Complex-I specific respiration was inhibited by CSC, with no significant effect of MT (p = 0.35). Unlike CON, the addition of glutamate (ΔGlutamate) had an additive effect on respiration in fibers exposed to CSC (CON: 0.9 ± 1.1 pmolO2.s-1.mg-1 and SMOKE: 5.4 ± 3.7 pmolO2.s-1.mg-1; p = 0.008) and MT (MT + SMOKE: 8.2 ± 3.8 pmolO2.s-1.mg-1; p ≤ 0.01). Complex-II specific respiration was inhibited by CSC but was partially restored by MT (p = 0.04 with SMOKE). Maximal uncoupled respiration induced by FCCP was inhibited by CSC, with no significant effect of MT. These findings underscore that mROS contributes to cigarette smoke condensate-induced inhibition of mitochondrial respiration in fast-twitch gastrocnemius muscle fibers of middle-aged mice thus providing a potential target for therapeutic treatment of smoke-related diseases. In addition, this study revealed that CSC largely impaired muscle respiratory capacity by decreasing metabolic flux through mitochondrial pyruvate transporter (MPC) and/or the enzymes upstream of α-ketoglutarate in the Krebs cycle.
Collapse
Affiliation(s)
- Sean T Bannon
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; Diabetes and Metabolism Research Center, University of Utah, UT, USA
| | - Muhammet Enes Erol
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA
| | - Rong Fan
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Yu-Ting Huang
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts Amherst, MA, USA
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, MA, USA; School of Health and Kinesiology, University of Nebraska Omaha, NE, USA.
| |
Collapse
|
2
|
Lin ZF, Lin HW, Liao WZ, Huang ZM, Liao XY, Wang YY, Guo XG. The Association Between Dietary Magnesium Intake with Chronic Obstructive Pulmonary Disease and Lung Function in US Population: a Cross-sectional Study. Biol Trace Elem Res 2024; 202:3062-3072. [PMID: 38273185 DOI: 10.1007/s12011-024-04073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is now considered among the top three contributors to mortality globally. There is limited understanding surrounding the contribution of magnesium to the progression of COPD. This survey aims to evaluate the connection between dietary magnesium intake and both lung function and COPD prevalence among the US population. The research comprised 4865 participants in the National Health and Nutrition Examination Survey (NHANES) program conducted from 2007 to 2012. To evaluate the association between dietary magnesium intake and lung function as well as COPD, the study conducted multiple regression analyses, stratified analyses, and smoothed curves. In this study, we explored the relationship between higher magnesium intake and higher FEV1 [β = 0.21 (95% CI 0.12, 0.30)] and FVC [β = 0.25 (95% CI 0.14, 0.36)] after accounting for all potential confounding factors. We demonstrated a relationship between increased magnesium intake and reduced odds of developing COPD [OR = 0.9993 (95% CI 0.9987, 1.0000)]. The results of stratified analyses further indicated that the relationship between magnesium intake and the risk of COPD is more pronounced in the 40-60 age group and males. The study demonstrated positive associations between the intake of dietary magnesium and both FEV1 and FVC. Additionally, an adverse relationship between magnesium intake and the prevalence of COPD was also observed, suggesting that supplementation with magnesium may be a practical approach to preventing and managing COPD.
Collapse
Affiliation(s)
- Zhi-Feng Lin
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hua-Wei Lin
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Wan-Zhe Liao
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Nanshan College of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ze-Min Huang
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiao-Yue Liao
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Yao Wang
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Sato A, Kondo Y, Ishigami A. The evidence to date: implications of l-ascorbic acid in the pathophysiology of aging. J Physiol Sci 2024; 74:29. [PMID: 38730366 PMCID: PMC11088021 DOI: 10.1186/s12576-024-00922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
L-Ascorbic acid, commonly known as vitamin C, has been used not only for disease prevention and in complementary and alternative medicine, but also for anti-aging purposes. However, the scientific evidence is not yet sufficient. Here, we review the physiological functions of vitamin C and its relationship with various pathological conditions, including our previous findings, and discuss the prospects of its application in healthy longevity. In summary, vitamin C levels are associated with lifespan in several animal models. Furthermore, clinical studies have shown that the blood vitamin C levels are lower in middle-aged and older adults than in younger adults. Lower blood vitamin C levels have also been observed in various pathological conditions such as chronic kidney disease and chronic obstructive pulmonary disease in the elderly. These observations suggest the implications of vitamin C in age-related pathological mechanisms owing to its physiological functions.
Collapse
Affiliation(s)
- Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan.
- Department of Nutritional Sciences, Faculty of Health and Sports Sciences, Toyo University, Tokyo, 115-8650, Japan.
| | - Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| |
Collapse
|
4
|
Heefner A, Simovic T, Mize K, Rodriguez-Miguelez P. The Role of Nutrition in the Development and Management of Chronic Obstructive Pulmonary Disease. Nutrients 2024; 16:1136. [PMID: 38674827 PMCID: PMC11053888 DOI: 10.3390/nu16081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent lung condition associated with significant morbidity and mortality. The management of COPD classically involves pulmonary rehabilitation, bronchodilators, and corticosteroids. An aspect of COPD management that is currently lacking in the literature is nutritional management, despite the prevalence of inadequate nutritional status in patients with COPD. In addition, certain nutritional imbalances have been reported to increase the risk of COPD development. This review summarizes the current literature on the role diet and nutrients may play in the risk and management of COPD development.
Collapse
Affiliation(s)
- Allison Heefner
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Tijana Simovic
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kasey Mize
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Paula Rodriguez-Miguelez
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
- Division of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
5
|
Li M, Zhao L, Hu C, Li Y, Yang Y, Zhang X, Li Q, Ma A, Cai J. Improvement of Lung Function by Micronutrient Supplementation in Patients with COPD: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:1028. [PMID: 38613061 PMCID: PMC11013492 DOI: 10.3390/nu16071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND A healthy, well-balanced diet plays an essential role in respiratory diseases. Since micronutrient deficiency is relatively common in patients with chronic obstructive pulmonary disease (COPD), micronutrient supplementation might have the beneficial health effects in those patients. This systematic review and meta-analysis aimed to demonstrate the impact of micronutrient supplementation on the lung function of patients with COPD. METHODS The PubMed, Cochrane Library, and Web of Science databases were searched from their corresponding creation until February 2024. Search terms included 'chronic obstructive pulmonary disease', 'COPD', 'micronutrients', 'dietary supplements', 'vitamins', 'minerals', and 'randomized controlled trials'. Meta-analysis was performed to evaluate the effects of micronutrient supplementation alone or complex on lung function in patients with COPD. RESULTS A total of 43 RCTs fulfilled the inclusion criteria of this study. Meta-analysis revealed that vitamin D supplementation could significantly improve FEV1% (WMDdifferences between baseline and post-intervention (de): 6.39, 95% CI: 4.59, 8.18, p < 0.01; WMDpost-intervention indicators (af): 7.55, 95% CI: 5.86, 9.24, p < 0.01) and FEV1/FVC% (WMDde: 6.88, 95%CI: 2.11, 11.65, WMDaf: 7.64, 95% CI: 3.18, 12.10, p < 0.001), decrease the odds of acute exacerbations, and improve the level of T-cell subsets, including CD3+%, CD4+%, CD8+%, and CD4+/CD8+% (all p < 0.01). The effects of compound nutrients intervention were effective in improving FEV1% (WMDde: 8.38, 95%CI: 1.89, 14.87, WMDaf: 7.07, 95%CI: -0.34, 14.48) and FEV1/FVC% (WMDde: 7.58, 95% CI: 4.86, 10.29, WMDaf: 6.00, 95% CI: 3.19, 8.81). However, vitamin C and vitamin E supplementation alone had no significant effects on lung function (p > 0.05). CONCLUSIONS Micronutrient supplementation, such as vitamin D alone and compound nutrients, has improved effect on the lung function of patients with COPD. Therefore, proper supplementation with micronutrients would be beneficial to stabilize the condition and restore ventilation function for COPD patients.
Collapse
Affiliation(s)
- Mingxin Li
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
| | - Liangjie Zhao
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
| | - Chenchen Hu
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
| | - Yue Li
- Endemic and Parasitic Diseases Prevention and Control Division, Binzhou Centre for Disease Prevention and Control, Binzhou 256600, China;
| | - Yang Yang
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
- Institute of Nutrition and Health, Qingdao University, Qingdao 266000, China
| | - Xiaoqi Zhang
- Department of Respiratory, Weifang No. 2 People’s Hospital, Weifang 261000, China; (X.Z.); (Q.L.)
| | - Quanguo Li
- Department of Respiratory, Weifang No. 2 People’s Hospital, Weifang 261000, China; (X.Z.); (Q.L.)
| | - Aiguo Ma
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
- Institute of Nutrition and Health, Qingdao University, Qingdao 266000, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao 266000, China; (M.L.); (L.Z.); (C.H.); (Y.Y.); (A.M.)
| |
Collapse
|
6
|
Xiang Y, Luo X. Extrapulmonary Comorbidities Associated with Chronic Obstructive Pulmonary Disease: A Review. Int J Chron Obstruct Pulmon Dis 2024; 19:567-578. [PMID: 38476124 PMCID: PMC10927883 DOI: 10.2147/copd.s447739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Most patients with chronic obstructive pulmonary disease (COPD) suffer from at least one additional, clinically relevant chronic disease. To a degree, the high global prevalence and mortality rate of COPD is closely related to its extrapulmonary effects. Moreover, the various of comorbidities of COPD and itself interact with each other, resulting in diverse clinical manifestations and individual differences, and thus further influencing the prognosis as well as healthcare burden of COPD patients. This is closely related to the common risk factors of chronic diseases (aging, smoking, inactivity, etc.). Additionally, some pathophysiological mechanisms caused by COPD, including the systemic inflammatory response, hypoxia, oxidative stress, and others, also have an impact on other systems. But comprehensive management and medical interventions have not yet been established. The clinicians should improve their knowledge and skills in diagnosing as well as treating the comorbidities of COPD, and then aim to develop more individualized, efficient diagnostic and therapeutic strategies for different patients to achieve greater clinical benefits. In this article, we will review the risk factors, mechanisms, and treatment strategies for extrapulmonary comorbidities in chronic obstructive pulmonary disease, including cardiovascular diseases, diabetes, anemia, osteoporosis, emotional disorders, and gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Yurong Xiang
- School of Medical and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610000, People’s Republic of China
| | - Xiaobin Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’s Republic of China
| |
Collapse
|
7
|
Situmorang PC, Ilyas S, Syahputra RA, Nugraha AP, Putri MSS, Rumahorbo CGP. Rhodomyrtus tomentosa (Aiton) Hassk. (haramonting) protects against allethrin-exposed pulmo damage in rats: mechanistic interleukins. Front Pharmacol 2024; 15:1343936. [PMID: 38379903 PMCID: PMC10877004 DOI: 10.3389/fphar.2024.1343936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Inhaling Allethrin (C19H26O3) may induce oxidative stress in lung cells by causing the formation of free radi-cals. Interleukins (IL) are a group of secreted cytokines or proteins and signaling molecules initially produced as an immune response by leukocytes. Rhodomyrtus tomentosa (Aiton) Hassk. (haramonting) contains antioxidants that may prevent lung damage induced by allethrin-containing electric mosquito repellents. In this study, six groups of rats were exposed to allethrin via an electric mosquito repellent, including positive, negative, and comparison control groups and three groups were administered Rhodomyrtus tomentosa (Aiton) Hassk at 100 mg/kg BW, 200 mg/kg BW, and 300 mg/kg BW. After 30 days, the pulmonary tissue and the blood were taken for immunohisto-chemical and ELISA analysis. The accumulation of inflammatory cells causes the thickening of the alveolar wall structures. Injuries were more prevalent in the A+ group than in the other groups. The connection between the alveoli and blood capillaries, which can interfere with alveolar gas exchange, is not regulated, and the lu-minal morphology is aberrant, causing damage to the alveolar epithelial cells. Exposure to electric mosquito coils containing allethrin can increase the expression of interleukin-1, interleukin-8, interleukin-9, and interleu-kin-18 in blood serum and tissues while decreasing the expression of interleukin-6 and interleukin-10. Like the Vitamin C group, Rhodomyrtus tomentosa can increase alveolar histological alterations by decreasing the ex-pression of IL-1β, IL-8, IL-9, and IL-18 while increasing IL-6 and IL-10. So that this plant can be developed in the future as a drug to prevent lung harm from exposure.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Mimmy Sari Syah Putri
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | | |
Collapse
|
8
|
Li WW, Ren KL, Yu J, Guo HS, Liu BH, Sun Y. Association of dietary niacin intake with the prevalence and incidence of chronic obstructive pulmonary disease. Sci Rep 2024; 14:2863. [PMID: 38311664 PMCID: PMC10838909 DOI: 10.1038/s41598-024-53387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Evidence regarding the association between dietary niacin intake and chronic obstructive pulmonary disease (COPD) is limited. Our study investigates the relationship between dietary niacin intake and the prevalance and incidence of COPD in the adult population of the United States, using data from the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2018. Data on niacin intake were extracted through dietary intake interviews. COPD diagnoses were based on lung function, medical history, and medication usage. We analyzed the association between niacin consumption and COPD using multiple logistic regression and restricted cubic spline models. The study included 7055 adult participants, divided into COPD (n = 243; 3.44%) and non-COPD (n = 6812; 96.56%) groups. Those with COPD had lower average niacin intake (21.39 ± 0.62 mg/day) compared to the non-COPD group (25.29 ± 0.23 mg/day, p < 0.001). In the adjusted multivariable model, the odds ratios (OR) and 95% confidence intervals (CI) for COPD in the highest versus lowest quartile of dietary niacin intake were 0.55 (0.33 to 0.89, P for trend = 0.009). Subgroup analysis, after adjustment for various variables, revealed no significant interaction effects. Dietary niacin intake was inversely associated with COPD prevalence in US adults. Participants with the highest dietary niacin intake demonstrated the lowest odds of COPD. The potential of dietary niacin supplementation as a strategy to mitigate COPD warrants further investigation.
Collapse
Affiliation(s)
- Wen-Wen Li
- Dongying People's Hospital, Shandong, Dongying, China
| | - Kun-Lun Ren
- Dongying People's Hospital, Shandong, Dongying, China
| | - Jia Yu
- Dongying People's Hospital, Shandong, Dongying, China
| | - Hai-Sheng Guo
- Dongying People's Hospital, Shandong, Dongying, China
| | - Ben-Hong Liu
- Dongying People's Hospital, Shandong, Dongying, China.
| | - Yang Sun
- Dongying People's Hospital, Shandong, Dongying, China.
| |
Collapse
|
9
|
Fekete M, Csípő T, Fazekas-Pongor V, Fehér Á, Szarvas Z, Kaposvári C, Horváth K, Lehoczki A, Tarantini S, Varga JT. The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD-A Review. Nutrients 2023; 15:2741. [PMID: 37375645 DOI: 10.3390/nu15122741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Currently, an increasing amount of evidence supports the notion that vitamins C, D and E, carotenoids, and omega-3 fatty acids may protect against the progression of chronic respiratory diseases. Although chronic obstructive pulmonary disease (COPD) primarily affects the lung, it is often accompanied by extrapulmonary manifestations such as weight loss and malnutrition, skeletal muscle dysfunction, and an excess of harmful oxidants, which can lead to a decline in quality of life and possible death. Recently, the role of various vitamins, minerals, and antioxidants in mitigating the effects of environmental pollution and smoking has received significant attention. Therefore, this review evaluates the most relevant and up-to-date evidence on this topic. We conducted a literature review between 15 May 2018 and 15 May 2023, using the electronic database PubMed. Our search keywords included COPD, chronic obstructive pulmonary disease, FEV1, supplementation: vitamin A, vitamin D, vitamin E, vitamin C, vitamin B, omega-3, minerals, antioxidants, specific nutrient supplementations, clinical trials, and randomized controlled trials (RCTs). We focused on studies that measured the serum levels of vitamins, as these are a more objective measure than patient self-reports. Our findings suggest that the role of appropriate dietary supplements needs to be reconsidered for individuals who are predisposed to or at risk of these conditions.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Ágnes Fehér
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zsófia Szarvas
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Csilla Kaposvári
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Krisztián Horváth
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Andrea Lehoczki
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097 Budapest, Hungary
| | - Stefano Tarantini
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|