1
|
Farzin M, Hajiabadi M, Rahmani M, Kolahdouzan K. Mixed malignant glioblastoma and schwannoma in spinal cord with metachronous ependymoma: A case report. Clin Case Rep 2021; 9:e04162. [PMID: 34194761 PMCID: PMC8222762 DOI: 10.1002/ccr3.4162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report a very rare case of mixed spinal tumor comprising of malignant glioblastoma and schwannoma, who was initially treated with tumor resection and adjuvant chemoradiation, but relapsed three years later with grade 3 ependymoma.
Collapse
Affiliation(s)
- Mostafa Farzin
- Brain and Spinal Cord Injury Research CenterNeuroscience InstituteTehran University of Medical SciencesTehranIran
- Radiation Oncology Research CenterCancer InstituteTehran University of Medical SciencesTehranIran
| | - Mohamadreza Hajiabadi
- Brain and Spinal Cord Injury Research CenterNeuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Mohammad Rahmani
- Department of NeurosurgerySina HospitalTehran University of Medical SciencesTehranIran
| | - Kasra Kolahdouzan
- Radiation Oncology Research CenterCancer InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Glioblastoma Break-in; Try Something New. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.109054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Context: Glioblastoma is the most invasive brain tumor with a poor prognosis and rapid progression. The standard therapy (surgical resection, adjuvant chemotherapy, and radiotherapy) ensures survival only up to 18 months. In this article, we focus on innovative types of radiotherapy, various combinations of temozolomide with novel substances, and methods of their administration and vector delivery to tumor cells. Evidence Acquisition: For a detailed study of the various options for chemotherapy and radiotherapy, Elsevier, NCBI MedLine, Scopus, Google Scholar, Embase, Web of Science, The Cochrane Library, EMBASE, Global Health, CyberLeninka, and RSCI databases were analyzed. Results: The most available method is oral or intravenous administration of temozolomide. More efficient is the combined chemotherapy of temozolomide with innovative drugs and substances such as lomustine, histone deacetylase inhibitors, and chloroquine, as well as olaparib. These combinations improve patient survival and are effective in the treatment of resistant tumors. Compared to standard fractionated radiotherapy (60 Gy, 30 fractions, 6 weeks), hypofractionated is more effective for elderly patients due to lack of toxicity; brachytherapy reduces the risk of glioblastoma recurrence, while radiosurgery with bevacizumab is more effective against recurrent or inoperable tumors. Currently, the most effective treatment is considered to be the intranasal administration of anti-Ephrin A3 (anti-EPHA3)-modified containing temozolomide butyl ester-loaded (TBE-loaded) poly lactide-co-glycolide nanoparticles (P-NPs) coated with N-trimethylated chitosan (TMC) to overcome nasociliary clearance. Conclusions: New radiotherapeutic methods significantly increase the survival rates of glioblastoma patients. With some improvement, it may lead to the elimination of all tumor cells leaving the healthy alive. New chemotherapeutic drugs show impressive results with adjuvant temozolomide. Anti-EPHA3-modified TBE-loaded P-NPs coated with TMC have high absorption specificity and kill glioblastoma cells effectively. A new “step forward” may become a medicine of the future, which reduces the specific accumulation of nanoparticles in the lungs, but simultaneously does not affect specific absorption by tumor cells.
Collapse
|
3
|
Thakkar P, Greenwald BD, Patel P. Rehabilitation of Adult Patients with Primary Brain Tumors: A Narrative Review. Brain Sci 2020; 10:brainsci10080492. [PMID: 32751074 PMCID: PMC7464729 DOI: 10.3390/brainsci10080492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 11/16/2022] Open
Abstract
Rehabilitative measures have been shown to benefit patients with primary brain tumors (PBT). To provide a high quality of care, clinicians should be aware of common challenges in this population including a variety of medical complications, symptoms, and impairments, such as headaches, seizures, cognitive deficits, fatigue, and mood changes. By taking communication and family training into consideration, clinicians can provide integrated and patient-centered care to this population. This article looks to review the current literature in outpatient and inpatient rehabilitation options for adult patients with PBTs as well as explore the role of the interdisciplinary team in providing survivorship care.
Collapse
Affiliation(s)
- Parth Thakkar
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (P.T.); (P.P.)
| | - Brian D. Greenwald
- JFK Johnson Rehabilitation Institute, Edison, NJ 08820, USA
- Correspondence:
| | - Palak Patel
- Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (P.T.); (P.P.)
| |
Collapse
|
4
|
Kong S, Fang Y, Wang B, Cao Y, He R, Zhao Z. miR-152-5p suppresses glioma progression and tumorigenesis and potentiates temozolomide sensitivity by targeting FBXL7. J Cell Mol Med 2020; 24:4569-4579. [PMID: 32150671 PMCID: PMC7176889 DOI: 10.1111/jcmm.15114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
A generally used chemotherapeutic drug for glioma, a frequently diagnosed brain tumour, is temozolomide (TMZ). Our study investigated the activity of FBXL7 and miR-152-5p in glioma. Levels of microRNA-152-5p (miR-152-5p) and the transcript and protein of FBXL7 were assessed by real-time PCR and Western blotting, respectively. The migratory and invasive properties of cells were measured by Transwell migration and invasion assay and their viability were examined using CCK-8 assay. Further, the putative interaction between FBXL7 and miR-152-5p were analysed bioinformatically and by luciferase assay. The activities of FBXL7, TMZ and miR-152-5p were analysed in vivo singly or in combination, on mouse xenografts, in glioma tumorigenesis. The expression of FBXL7 in glioma tissue is significantly up-regulated, which is related to the poor prognosis and the grade of glioma. TMZ-induced cytotoxicity, proliferation, migration and invasion in glioma cells were impeded by the knock-down of FBXL7 or overexpressed miR-152-5p. Furthermore, the expression of miR-152-5p reduced remarkably in glioma cells and it exerted its activity through targeted FBXL7. Overexpression of miR-152-5p and knock-down of FBXL7 in glioma xenograft models enhanced TMZ-mediated anti-tumour effect and impeded tumour growth. Thus, the miR-152-5p suppressed the progression of glioma and associated tumorigenesis, targeted FBXL7 and increased the effect of TMZ-induced cytotoxicity in glioma cells, further enhancing our knowledge of FBXL7 activity in glioma.
Collapse
Affiliation(s)
- Shiqi Kong
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yanwei Fang
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Bingqian Wang
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Yingxiao Cao
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Runzhi He
- Department of NeurosurgeryXingtai People's HospitalXingtaiHebeiChina
| | - Zongmao Zhao
- Department of NeurosurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
5
|
Zolotovskaia MA, Sorokin MI, Petrov IV, Poddubskaya EV, Moiseev AA, Sekacheva MI, Borisov NM, Tkachev VS, Garazha AV, Kaprin AD, Shegay PV, Giese A, Kim E, Roumiantsev SA, Buzdin AA. Disparity between Inter-Patient Molecular Heterogeneity and Repertoires of Target Drugs Used for Different Types of Cancer in Clinical Oncology. Int J Mol Sci 2020; 21:E1580. [PMID: 32111026 PMCID: PMC7084891 DOI: 10.3390/ijms21051580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Inter-patient molecular heterogeneity is the major declared driver of an expanding variety of anticancer drugs and personalizing their prescriptions. Here, we compared interpatient molecular heterogeneities of tumors and repertoires of drugs or their molecular targets currently in use in clinical oncology. We estimated molecular heterogeneity using genomic (whole exome sequencing) and transcriptomic (RNA sequencing) data for 4890 tumors taken from The Cancer Genome Atlas database. For thirteen major cancer types, we compared heterogeneities at the levels of mutations and gene expression with the repertoires of targeted therapeutics and their molecular targets accepted by the current guidelines in oncology. Totally, 85 drugs were investigated, collectively covering 82 individual molecular targets. For the first time, we showed that the repertoires of molecular targets of accepted drugs did not correlate with molecular heterogeneities of different cancer types. On the other hand, we found that the clinical recommendations for the available cancer drugs were strongly congruent with the gene expression but not gene mutation patterns. We detected the best match among the drugs usage recommendations and molecular patterns for the kidney, stomach, bladder, ovarian and endometrial cancers. In contrast, brain tumors, prostate and colorectal cancers showed the lowest match. These findings provide a theoretical basis for reconsidering usage of targeted therapeutics and intensifying drug repurposing efforts.
Collapse
Affiliation(s)
- Marianna A. Zolotovskaia
- Oncobox ltd., Moscow, 121205, Russia; (I.V.P.); (A.A.B.)
- Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, 117997, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia;
| | - Maxim I. Sorokin
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
- Omicsway Corp., Walnut, CA, 91789, USA; (V.S.T.); (A.V.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Ivan V. Petrov
- Oncobox ltd., Moscow, 121205, Russia; (I.V.P.); (A.A.B.)
| | - Elena V. Poddubskaya
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
| | - Alexey A. Moiseev
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
| | - Marina I. Sekacheva
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
| | - Nicolas M. Borisov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia;
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
- Omicsway Corp., Walnut, CA, 91789, USA; (V.S.T.); (A.V.G.)
| | | | | | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Moscow 125284, Russia;
| | - Peter V. Shegay
- Center for Innovative Radiological and Regenerative Technologies of the Ministry of Health of the Russian Federation, Obninsk 249030, Russia;
| | - Alf Giese
- Orthocentrum Hamburg, Hamburg, Germany; or
| | - Ella Kim
- Johannes Gutenberg University Mainz, Mainz, Germany;
| | - Sergey A. Roumiantsev
- Department of Oncology, Hematology and Radiotherapy of Pediatric Faculty, Pirogov Russian National Research Medical University, Moscow, 117997, Russia;
| | - Anton A. Buzdin
- Oncobox ltd., Moscow, 121205, Russia; (I.V.P.); (A.A.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia;
- I.M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia (E.V.P.); (A.A.M.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
6
|
Khazaei M, Pazhouhi M, Khazaei S. Temozolomide and tranilast synergistic antiproliferative effect on human glioblastoma multiforme cell line (U87MG). Med J Islam Repub Iran 2019; 33:39. [PMID: 31456963 PMCID: PMC6708108 DOI: 10.34171/mjiri.33.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most malignant primary brain tumor. Temozolomide (TMZ) is a chemotherapeutic agent that has been used in GBM treatment. Resistance to TMZ is a major obstacle to successful GBM treatment. The aim of the present study was to investigate the effect of TMZ and tranilast on human GBM cell line (U87MG). Methods: In this in vitro experimental study, the effect of TMZ and tranilast on cell proliferation was measured using the MTT assay. Median effect analysis was performed to determine the TMZ and tranilast interaction. Lactate dehydrogenase assay was used to determine TMZ and tranilast cytotoxicity. Cell fluorescent staining and real-time PCR were used for apoptosis evaluation. The effect of TMZ and tranilast on U87MG nitric oxide (NO) production was evaluated by Griess assay. Results: TMZ and tranilast had a significant dose- and time-dependent inhibitory effect on cell proliferation. The mean combination index values represented a synergistic effect, and dose reduction index values suggested the advantages of reducing the toxicity, adverse effects, and drug resistance in combination of TMZ and tranilast. Apoptosis cell death was induced by TMZ and/or tranilast in cells. TMZ and tranilast reduced NO. production in cells. Conclusion: TMZ and tranilast combination inhibited the GBM cells growth effectively.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Pazhouhi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saber Khazaei
- Department of Endodontics, Dental Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
GARP as an Immune Regulatory Molecule in the Tumor Microenvironment of Glioblastoma Multiforme. Int J Mol Sci 2019; 20:ijms20153676. [PMID: 31357555 PMCID: PMC6695992 DOI: 10.3390/ijms20153676] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Glycoprotein A repetition predominant (GARP), a specific surface molecule of activated regulatory T cells, has been demonstrated to significantly contribute to tolerance in humans by induction of peripheral Treg and regulatory M2-macrophages and by inhibition of (tumorantigen-specific) T effector cells. Previous work identified GARP on Treg, and also GARP on the surface of several malignant tumors, as well as in a soluble form being shedded from their surface, contributing to tumor immune escape. Preliminary results also showed GARP expression on brain metastases of malignant melanoma. On the basis of these findings, we investigated whether GARP is also expressed on primary brain tumors. We showed GARP expression on glioblastoma (GB) cell lines and primary GB tissue, as well as on low-grade glioma, suggesting an important influence on the tumor micromilieu and the regulation of immune responses also in primary cerebral tumors. This was supported by the finding that GB cells led to a reduced, in part GARP-dependent effector T cell function (reduced proliferation and reduced cytokine secretion) in coculture experiments. Interestingly, GARP was localized not only on the cell surface but also in the cytoplasmatic, as well as nuclear compartments in tumor cells. Our findings reveal that GARP, as an immunoregulatory molecule, is located on, as well as in, tumor cells of GB and low-grade glioma, inhibiting effector T cell function, and thus contributing to the immunosuppressive tumor microenvironment of primary brain tumors. As GARP is expressed on activated Treg, as well as on brain tumors, it may be an interesting target for new immunotherapeutic approaches using antibody-based strategies as this indication.
Collapse
|
8
|
Golán I, Rodríguez de la Fuente L, Costoya JA. NK Cell-Based Glioblastoma Immunotherapy. Cancers (Basel) 2018; 10:E522. [PMID: 30567306 PMCID: PMC6315402 DOI: 10.3390/cancers10120522] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/01/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and most common malignant primary brain tumor diagnosed in adults. GB shows a poor prognosis and, unfortunately, current therapies are unable to improve its clinical outcome, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor mass and its high capacity for invading healthy tissues. Moreover, the glioblastoma microenvironment is capable of suppressing the action of the immune system through several mechanisms such as recruitment of cell modulators. Development of new therapies that avoid this immune evasion could improve the response to the current treatments for this pathology. Natural Killer (NK) cells are cellular components of the immune system more difficult to deceive by tumor cells and with greater cytotoxic activity. Their use in immunotherapy gains strength because they are a less toxic alternative to existing therapy, but the current research focuses on mimicking the NK attack strategy. Here, we summarize the most recent studies regarding molecular mechanisms involved in the GB and immune cells interaction and highlight the relevance of NK cells in the new therapeutic challenges.
Collapse
Affiliation(s)
- Irene Golán
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| | - Laura Rodríguez de la Fuente
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| | - Jose A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxia, CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, IDIS, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Przystal JM, Hajji N, Khozoie C, Renziehausen A, Zeng Q, Abaitua F, Hajitou A, Suwan K, Want E, Bomalaski J, Szlosarek P, O'Neill K, Crook T, Syed N. Efficacy of arginine depletion by ADI-PEG20 in an intracranial model of GBM. Cell Death Dis 2018; 9:1192. [PMID: 30546006 PMCID: PMC6294248 DOI: 10.1038/s41419-018-1195-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
Glioblastoma multiforme (GBM) remains a cancer with a poor prognosis and few effective therapeutic options. Successful medical management of GBM is limited by the restricted access of drugs to the central nervous system (CNS) caused by the blood brain barrier (BBB). We previously showed that a subset of GBM are arginine auxotrophic because of transcriptional silencing of ASS1 and/or ASL and are sensitive to pegylated arginine deiminase (ADI-PEG20). However, it is unknown whether depletion of arginine in peripheral blood in vivo has therapeutic activity against intracranial disease. In the present work, we describe the efficacy of ADI-PEG20 in an intracranial model of human GBM in which tumour growth and regression are assessed in real time by measurement of luciferase activity. Animals bearing intracranial human GBM tumours of varying ASS status were treated with ADI-PEG20 alone or in combination with temozolomide and monitored for tumour growth and regression. Monotherapy ADI-PEG20 significantly reduces the intracranial growth of ASS1 negative GBM and extends survival of mice carrying ASS1 negative GBM without obvious toxicity. The combination of ADI-PEG20 with temozolomide (TMZ) demonstrates enhanced effects in both ASS1 negative and ASS1 positive backgrounds.Our data provide proof of principle for a therapeutic strategy for GBM using peripheral blood arginine depletion that does not require BBB passage of drug and is well tolerated. The ability of ADI-PEG20 to cytoreduce GBM and enhance the effects of temozolomide argues strongly for its early clinical evaluation in the treatment of GBM.
Collapse
Affiliation(s)
- Justyna Magdalena Przystal
- Phage Therapy Group, Division of Brain Sciences, Imperial College London, London, UK
- John Fulcher Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | - Nabil Hajji
- John Fulcher Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | - Combiz Khozoie
- John Fulcher Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | - Alexander Renziehausen
- John Fulcher Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | - Qingyu Zeng
- John Fulcher Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | - Fernando Abaitua
- John Fulcher Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | - Amin Hajitou
- Phage Therapy Group, Division of Brain Sciences, Imperial College London, London, UK
| | - Keittisak Suwan
- Phage Therapy Group, Division of Brain Sciences, Imperial College London, London, UK
| | - Elizabeth Want
- Department of Cancer and Surgery, Imperial College, London, UK
| | - John Bomalaski
- Polaris Pharmaceuticals Inc., San Diego, California, USA
| | - Peter Szlosarek
- Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Kevin O'Neill
- John Fulcher Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK
| | - Tim Crook
- St Luke's Cancer Centre, Egerton Road, Guildford, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
10
|
Svec RL, Furiassi L, Skibinski CG, Fan TM, Riggins GJ, Hergenrother PJ. Tunable Stability of Imidazotetrazines Leads to a Potent Compound for Glioblastoma. ACS Chem Biol 2018; 13:3206-3216. [PMID: 30296373 PMCID: PMC6243397 DOI: 10.1021/acschembio.8b00864] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Even
in the era of personalized medicine and immunotherapy, temozolomide
(TMZ), a small molecule DNA alkylating agent, remains the standard-of-care
for glioblastoma (GBM). TMZ has an unusual mode-of-action, spontaneously
converting to its active component via hydrolysis in vivo. While TMZ has been FDA approved for two decades, it provides little
benefit to patients whose tumors express the resistance enzyme MGMT
and gives rise to systemic toxicity through myelosuppression. TMZ
was first synthesized in 1984, but certain key derivatives have been
inaccessible due to the chemical sensitivity of TMZ, precluding broad
exploration of the link between imidazotetrazine structure and biological
activity. Here, we sought to discern the relationship between the
hydrolytic stability and anticancer activity of imidazotetrazines,
with the objectives of identifying optimal timing for prodrug activation
and developing suitable compounds with enhanced efficacy via increased
blood-brain barrier penetrance. This work necessitated the development
of new synthetic methods to provide access to previously unexplored
functionality (such as aliphatic, ketone, halogen, and aryl groups)
at the C8 position of imidazotetrazines. Through synthesis and evaluation
of a suite of compounds with a range of aqueous stabilities (from
0.5 to 40 h), we derive a predictive model for imidazotetrazine hydrolytic
stability based on the Hammett constant of the C8 substituent. Promising
compounds were identified that possess activity against a panel of
GBM cell lines, appropriate hydrolytic and metabolic stability, and
brain-to-serum ratios dramatically elevated relative to TMZ, leading
to lower hematological toxicity profiles and superior activity to
TMZ in a mouse model of GBM. This work points a clear path forward
for the development of novel and effective anticancer imidazotetrazines.
Collapse
Affiliation(s)
| | | | - Christine G. Skibinski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | | | - Gregory J. Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | | |
Collapse
|
11
|
Aptamers and Glioblastoma: Their Potential Use for Imaging and Therapeutic Applications. Int J Mol Sci 2017; 18:ijms18122576. [PMID: 29189740 PMCID: PMC5751179 DOI: 10.3390/ijms18122576] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is a highly aggressive primary brain tumour, renowned for its infiltrative growth and varied genetic profiles. The current treatment options are insufficient, and their off-target effects greatly reduce patient quality of life. The major challenge in improving glioblastoma diagnosis and treatment involves the development of a targeted imaging and drug delivery platform, capable of circumventing the blood brain barrier and specifically targeting glioblastoma tumours. The unique properties of aptamers demonstrate their capability of bridging the gap to the development of successful diagnosis and treatment options, where antibodies have previously failed. Aptamers possess many characteristics that make them an ideal novel imaging and therapeutic agent for the treatment of glioblastoma and other brain malignancies, and are likely to provide patients with a better standard of care and improved quality of life. Their target sensitivity, selective nature, ease of modification and low immunogenicity make them an ideal drug-delivery platform. This review article summarises the aptamers previously generated against glioblastoma cells or its identified biomarkers, and their potential application in diagnosis and therapeutic targeting of glioblastoma tumours.
Collapse
|
12
|
Huang SP, Chang YC, Low QH, Wu ATH, Chen CL, Lin YF, Hsiao M. BICD1 expression, as a potential biomarker for prognosis and predicting response to therapy in patients with glioblastomas. Oncotarget 2017; 8:113766-113791. [PMID: 29371945 PMCID: PMC5768362 DOI: 10.18632/oncotarget.22667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
There is variation in the survival and therapeutic outcome of patients with glioblastomas (GBMs). Therapy resistance is an important challenge in the treatment of GBM patients. The aim of this study was to identify Temozolomide (TMZ) related genes and confirm their clinical relevance. The TMZ-related genes were discovered by analysis of the gene-expression profiling in our cell-based microarray. Their clinical relevance was verified by in silico meta-analysis of the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets. Our results demonstrated that BICD1 expression could predict both prognosis and response to therapy in GBM patients. First, high BICD1 expression was correlated with poor prognosis in the TCGA GBM cohort (n=523) and in the CGGA glioma cohort (n=220). Second, high BICD1 expression predicted poor outcome in patients with TMZ treatment (n=301) and radiation therapy (n=405). Third, multivariable Cox regression analysis confirmed BICD1 expression as an independent factor affecting the prognosis and therapeutic response of TMZ and radiation in GBM patients. Additionally, age, MGMT and BICD1 expression were combinedly utilized to stratify GBM patients into more distinct risk groups, which may provide better outcome assessment. Finally, we observed a strong correlation between BICD1 expression and epithelial-mesenchymal transition (EMT) in GBMs, and proposed a possible mechanism of BICD1-associated survival or therapeutic resistance in GBMs accordingly. In conclusion, our study suggests that high BICD1 expression may result in worse prognosis and could be a predictor of poor response to TMZ and radiation therapies in GBM patients.
Collapse
Affiliation(s)
- Shang-Pen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, PoJen General Hospital, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chan Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Qie Hua Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Chi-Long Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
13
|
O-6-Methylguanine-DNA methyltransferase expression is associated with pituitary adenoma tumor recurrence: a systematic meta-analysis. Oncotarget 2017; 8:19674-19683. [PMID: 28152515 PMCID: PMC5386713 DOI: 10.18632/oncotarget.14936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/01/2016] [Indexed: 11/25/2022] Open
Abstract
O-6-methylguanine-DNA methyltransferase (MGMT) reportedly counteracts the cytotoxic effects of the alkylating agent temozolomide. MGMT expression is often low in aggressive pituitary adenomas (PAs) and recurrent PAs. However, because these associations are controversial, we performed this meta-analysis to clarify the involvement of MGMT in the prognosis and clinicopathology of PA. We searched for relevant studies in electronic databases (MEDLINE, the Cochrane Library Database, EMBASE, CINAHL, Web of Science and the Chinese Biomedical Database (CBD)) and calculated/pooled the odds ratios (ORs) or standard mean differences (SMDs) with 95% confidence intervals (95% CIs). Eleven case-control studies with a total of 454 PA patients were included. Our meta-analysis revealed that lower expression of MGMT was associated with PA recurrence (OR=2.09, 95% CI=1.09-4.02; p=0.026). On the other hand, MGMT expression was not associated with PA invasiveness (OR=1.112, 95% CI=0.706-1.753; p=0.646), Unexpectedly, MGMT expression could not be used to distinguish functional from non-functional PA patients (OR=1.766, 95% CI=0.938-3.324; p=0.078). The MGMT expression was not found to be related to other clinicopathological indicators of PA including age, gender or tumor size. No publication bias was detected in this meta-analysis (p>0.05). This meta-analysis suggests that MGMT expression may be associated with PA tumor recurrence, but not be related to invasiveness or other clinicopathological indicators. Thus, detection of MGMT expression may facilitate outcome prediction and guide clinical therapy for PA patients.
Collapse
|
14
|
Feng E, Sui C, Wang T, Sun G. Temozolomide with or without Radiotherapy in Patients with Newly Diagnosed Glioblastoma Multiforme: A Meta-Analysis. Eur Neurol 2017; 77:201-210. [PMID: 28192785 DOI: 10.1159/000455842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIM The current meta-analysis evaluated the survival outcomes of newly diagnosed glioblastoma patients treated with radiotherapy (RT) alone and with RT + temozolomide (TMZ). METHODS Relevant studies were identified by an extensive literature search in Medline, Current Contents and Cochrane databases by 2 independent reviewers using the terms "glioblastoma multiforme/glioblastoma, TMZ, radiation therapy/RT and survival." RESULTS Results revealed a median survival of 13.41-19 months in the combined treatment group, as opposed to 7.7-17.1 months in the RT-alone group. Progression-free survival (PFS) was also significantly different between the 2 groups (RT + TMZ, 6.3-13 months; RT-alone, 5-7.6 months). While there was no significant difference in the 6-month survival and 6-month PFS rates between the RT + TMZ and RT groups (pooled OR 0.690; p = 0.057 and OR 0.429, p = 0.052, respectively), the 1-year survival and 1-year PFS rates showed significant difference (OR 0.469; p = 0.030 and OR 0.245, p < 0.001, respectively). CONCLUSIONS Concomitant RT + TMZ is more effective and improves the overall survival and PFS in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Enshan Feng
- Department of Neurosurgery, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
15
|
Lobanova NV, Shishkina LV, Ryzhova MV, Kobyakov GL, Sycheva RV, Burov SA, Lukyanov AV, Omarova ZR. [Clinical, immunohistochemical, and molecular genetic prognostic factors in adult patients with glioblastoma]. Arkh Patol 2017; 78:10-19. [PMID: 27600777 DOI: 10.17116/patol201678410-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED Glioblastoma is the most common primary malignant glial tumor of the brain in adult patients. AIM to define the prognostic value of isocitrate dehydrogenase-1 (IDH-1) mutation and methylguanine-DNA methyltransferase (MGMT) methylation status in patients with glioblastoma (GB) and to analyze the impact of clinical data (gender, age, and tumor site), histological variants of the tumor structure, and time to development of recurrences on the course of the disease. SUBJECTS AND METHODS The investigation enrolled 63 GB patients aged 18 to 71 years who had received combined treatment (surgery, chemo- and radiotherapy) at the N.I. Burdenko Research Institute of Neurosurgery, Ministry of Health of the Russian Federation, in the period 2008 to 2011. The investigators performed a morphological examination of all tumor tissue samples and an immunohistochemical examination using anti-IDH-1 R-132 antibody clone («Dianova», Germany) and defined MGMT methylation status by a polymerase chain reaction using the CpGenome DNA Modification Kit («Chemicon International», USA). The data were statistically processed using a package of Statistica 6.0 programs. RESULTS Patient age, time to development of recurrent glioblastoma, mutations in the IDH-1 gene and MGMT were found to be prognostic factors for overall survival among adult patients in this category. CONCLUSION Analysis of clinical findings and identification of molecular genetic aberrations in the tumor cells will be able to elaborate an individual approach to treating patients with glioblastoma in order to increase their survival rates and to improve quality of life.
Collapse
Affiliation(s)
- N V Lobanova
- Central Clinical Military Hospital, Federal Security Service of Russia, Moscow
| | - L V Shishkina
- N.N. Burdenko Research Institute of Neurosurgery, Ministry of Health of Russia, Moscow, Russia
| | - M V Ryzhova
- N.N. Burdenko Research Institute of Neurosurgery, Ministry of Health of Russia, Moscow, Russia
| | - G L Kobyakov
- N.N. Burdenko Research Institute of Neurosurgery, Ministry of Health of Russia, Moscow, Russia
| | - R V Sycheva
- N.N. Burdenko Research Institute of Neurosurgery, Ministry of Health of Russia, Moscow, Russia
| | - S A Burov
- Central Clinical Military Hospital, Federal Security Service of Russia, Moscow
| | - A V Lukyanov
- Central Clinical Military Hospital, Federal Security Service of Russia, Moscow
| | - Zh R Omarova
- Central Clinical Military Hospital, Federal Security Service of Russia, Moscow
| |
Collapse
|
16
|
Thomas A, Tanaka M, Trepel J, Reinhold WC, Rajapakse VN, Pommier Y. Temozolomide in the Era of Precision Medicine. Cancer Res 2017; 77:823-826. [PMID: 28159862 DOI: 10.1158/0008-5472.can-16-2983] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 11/16/2022]
Abstract
In the January 1, 2017, issue of Cancer Research, Nagel and colleagues demonstrate the value of assays that determine the DNA repair capacity of cancers in predicting response to temozolomide. Using a fluorescence-based multiplex flow cytometric host cell reactivation assay that provides simultaneous readout of DNA repair capacity across multiple pathways, they show that the multivariate drug response models derived from cell line data were applicable to patient-derived xenograft models of glioblastoma. In this commentary, we first outline the mechanism of activity and current clinical application of temozolomide, which, until now, has been largely limited to glioblastoma. Given the challenges of clinical application of functional assays, we argue that functional readouts be approximated by genomic signatures. In this context, a combination of MGMT activity and mismatch repair (MMR) status of the tumor are important parameters that determine sensitivity to temozolomide. More reliable methods are needed to determine MGMT activity as DNA methylation, the current standard, does not accurately reflect the expression of MGMT. Also, genomics for MMR are warranted. Furthermore, based on patterns of MGMT expression across different solid tumors, we make a case for revisiting temozolomide use in a broader spectrum of cancers based on our current understanding of its molecular basis of activity. Cancer Res; 77(4); 823-6. ©2017 AACR.
Collapse
Affiliation(s)
- Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.
| | - Mamoru Tanaka
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jane Trepel
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - William C Reinhold
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, Bethesda, Maryland.
| |
Collapse
|
17
|
Lee CY, Ooi IH. Preparation of Temozolomide-Loaded Nanoparticles for Glioblastoma Multiforme Targeting-Ideal Versus Reality. Pharmaceuticals (Basel) 2016; 9:ph9030054. [PMID: 27618068 PMCID: PMC5039507 DOI: 10.3390/ph9030054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 12/13/2022] Open
Abstract
Temozolomide (TMZ) is one of the most effective chemotherapeutic agents for glioblastoma multiforme, but the required high administration dose is accompanied by side effects. To overcome this problem and to further improve TMZ’s efficacy, targeted delivery of TMZ by using polymeric nanoparticles has been explored. We synthesised the PLGA-PEG-FOL copolymer and attempted encapsulation of TMZ into PLGA-PEG-FOL nanoparticles using the emulsion solvent evaporation method and the nanoprecipitation method. Conjugation of PEG and FOL to PLGA has been reported to be able to increase the delivery of TMZ to the brain as well as targeting the glioma cells. However, despite making numerous modifications to these methods, the loading of TMZ in the nanoparticles only ranged between 0.2% and 2%, and the nanoparticles were between 400 nm and 600 nm in size after freeze-drying. We proceed with determining the release profile of TMZ in phosphate buffered saline (PBS). Our initial data indicated that TMZ was slowly released from the nanoparticles. The metabolite of TMZ rather than the parent compound was detected in PBS. Our study suggests that while PLGA-PEG-FOL can be used as a polymeric or encapsulation material for central delivery of TMZ, a practical and cost effective formulation method is still far from reach.
Collapse
Affiliation(s)
- Chooi Yeng Lee
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia.
| | - Ing Hong Ooi
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
18
|
Castro GN, Cayado-Gutiérrez N, Zoppino FCM, Fanelli MA, Cuello-Carrión FD, Sottile M, Nadin SB, Ciocca DR. Effects of temozolomide (TMZ) on the expression and interaction of heat shock proteins (HSPs) and DNA repair proteins in human malignant glioma cells. Cell Stress Chaperones 2015; 20:253-65. [PMID: 25155585 PMCID: PMC4326375 DOI: 10.1007/s12192-014-0537-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/30/2014] [Accepted: 08/10/2014] [Indexed: 12/21/2022] Open
Abstract
We previously reported the association of HSPA1A and HSPB1 with high-grade astrocytomas, suggesting that these proteins might be involved in disease outcome and response to treatment. With the aim to better understand the resistance/susceptibility processes associated to temozolomide (TMZ) treatment, the current study was performed in three human malignant glioma cell lines by focusing on several levels: (a) apoptotic index and senescence, (b) DNA damage, and (c) interaction of HSPB1 with players of the DNA damage response. Three human glioma cell lines, Gli36, U87, and DBTRG, were treated with TMZ evaluating cell viability and survival, apoptosis, senescence, and comets (comet assay). The expression of HSPA (HSPA1A and HSPA8), HSPB1, O6-methylguanine-DNA methyltransferase (MGMT), MLH1, and MSH2 was determined by immunocytochemistry, immunofluorescence, and Western blot. Immunoprecipitation was used to analyze protein interaction. The cell lines exhibited differences in viability, apoptosis, and senescence after TMZ administration. We then focused on Gli36 cells (relatively unstudied) which showed very low recovery capacity following TMZ treatment, and this was related to high DNA damage levels; however, the cells maintained their viability. In these cells, MGMT, MSH2, HSPA, and HSPB1 levels increased significantly after TMZ administration. In addition, MSH2 and HSPB1 proteins appeared co-localized by confocal microscopy. This co-localization increased after TMZ treatment, and in immunoprecipitation analysis, MSH2 and HSPB1 appeared interacting. In contrast, HSPB1 did not interact with MGMT. We show in glioma cells the biological effects of TMZ and how this drug affects the expression levels of heat shock proteins (HSPs), MGMT, MSH2, and MLH1. In Gli36 cells, the results suggest that interactions between HSPB1 and MSH2, including co-nuclear localization, may be important in determining cell sensitivity to TMZ.
Collapse
Affiliation(s)
- Gisela Natalia Castro
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Niubys Cayado-Gutiérrez
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Felipe Carlos Martín Zoppino
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Mariel Andrea Fanelli
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Mayra Sottile
- />Tumor Biology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Silvina Beatriz Nadin
- />Tumor Biology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| | - Daniel Ramón Ciocca
- />Oncology Laboratory, IMBECU-CCT, CONICET, National Research Council, Av. Dr. Ruiz Leal s/n, Parque General San Martín, CP 5500 Mendoza, Argentina
| |
Collapse
|
19
|
Progression of O⁶-methylguanine-DNA methyltransferase and temozolomide resistance in cancer research. Mol Biol Rep 2014; 41:6659-65. [PMID: 24990698 DOI: 10.1007/s11033-014-3549-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/20/2014] [Indexed: 12/12/2022]
Abstract
Temozolomide (TMZ) is an alkylating agent that is widely used in chemotherapy for cancer. A key mechanism of resistance to TMZ is the overexpression of O(6)-methylguanine-DNA methyltransferase (MGMT). MGMT specifically repairs the DNA O(6)-methylation damage induced by TMZ and irreversibly inactivates TMZ. Regulation of MGMT expression and research regarding the mechanism of TMZ resistance will help rationalize the clinical use of TMZ. In this review, we provide an overview of recent advances in the field, with particular emphasis on MGMT structure, function, expression regulation, and the association between MGMT and resistance to TMZ.
Collapse
|
20
|
Bai Y, Lathia JD, Zhang P, Flavahan W, Rich JN, Mattson MP. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells. Glia 2014; 62:1687-98. [PMID: 24909307 DOI: 10.1002/glia.22708] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 12/23/2022]
Abstract
Glioblastoma is the most prevalent primary brain tumor and is essentially universally fatal within 2 years of diagnosis. Glioblastomas contain cellular hierarchies with self-renewing glioblastoma stem cells (GSCs) that are often resistant to chemotherapy and radiation therapy. GSCs express high amounts of repressor element 1 silencing transcription factor (REST), which may contribute to their resistance to standard therapies. Telomere repeat-binding factor 2 (TRF2) stablizes telomeres and REST to maintain self-renewal of neural stem cells and tumor cells. Here we show viral vector-mediated delivery of shRNAs targeting TRF2 mRNA depletes TRF2 and REST from GSCs isolated from patient specimens. As a result, GSC proliferation is reduced and the level of proteins normally expressed by postmitotic neurons (L1CAM and β3-tubulin) is increased, suggesting that loss of TRF2 engages a cell differentiation program in the GSCs. Depletion of TRF2 also sensitizes GSCs to temozolomide, a DNA-alkylating agent currently used to treat glioblastoma. Targeting TRF2 significantly increased the survival of mice bearing GSC xenografts. These findings reveal a role for TRF2 in the maintenance of REST-associated proliferation and chemotherapy resistance of GSCs, suggesting that TRF2 is a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Yun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
21
|
Li XQ, Ouyang ZG, Zhang SH, Liu H, Shang Y, Li Y, Zhen YS. Synergy of enediyne antibiotic lidamycin and temozolomide in suppressing glioma growth with potentiated apoptosis induction. J Neurooncol 2014; 119:91-100. [PMID: 24842385 DOI: 10.1007/s11060-014-1477-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 04/30/2014] [Indexed: 12/15/2022]
Abstract
The present work evaluated the synergistic efficacy of an enediyne antibiotic lidamycin (LDM) plus temozolomide (TMZ) against glioma in vitro and in vivo. LDM plus TMZ inhibited the proliferations of rat glioma C6 cells and human glioma U87 cells more efficiently than the single usage of LDM or TMZ. In addition, LDM also potentiated the apoptosis inductions by TMZ in rat C6 cells and human U87 cells. Meanwhile, the results of TdT-mediated dUTP Nick End Labeling assay for subcutaneous U87 tumor sections indicated an enhanced apoptosis induction in vivo by LDM plus TMZ, which confirmed the high potency of the combination for glioma therapy. As determined by Western blot, apoptosis signal pathways in C6 cells and U87 cells were markedly affected by the synergistic alteration of P53, bax, procaspase 3, and bcd-2 expression. In both subcutaneous U87 xenograft and C6 intracerebral orthotopic implant model, TMZ-induced glioma growth suppression was dramatically potentiated by LDM. As shown, the combination therapy efficiently reduced the tumor volumes and tumor weights of the human glioma U87 xenograft. Kaplan-Meier assay revealed that LDM plus TMZ dramatically prolonged the life span of C6 intracerebral tumor-bearing rats with decreased tumor size. This study indicates that the combination of LDM with TMZ might be a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Xing-Qi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | | | | | | | | | | | | |
Collapse
|
22
|
In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci U S A 2014; 111:4542-7. [PMID: 24616497 DOI: 10.1073/pnas.1323855111] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma multiforme (GBM), which account for more than 50% of all gliomas, is among the deadliest of all human cancers. Given the dismal prognosis of GBM, it would be advantageous to identify early biomarkers of a response to therapy to avoid continuing ineffective treatments and to initiate other therapeutic strategies. The present in vivo longitudinal study in an orthotopic mouse model demonstrates quantitative assessment of early treatment response during short-term chemotherapy with temozolomide (TMZ) by amide proton transfer (APT) imaging. In a GBM line, only one course of TMZ (3 d exposure and 4 d rest) at a dose of 80 mg/kg resulted in substantial reduction in APT signal compared with untreated control animals, in which the APT signal continued to increase. Although there were no detectable differences in tumor volume, cell density, or apoptosis rate between groups, levels of Ki67 (index of cell proliferation) were substantially reduced in treated tumors. In another TMZ-resistant GBM line, the APT signal and levels of Ki67 increased despite the same course of TMZ treatment. As metabolite changes are known to occur early in the time course of chemotherapy and precede morphologic changes, these results suggest that the APT signal in glioma may be a useful functional biomarker of treatment response or degree of tumor progression. Thus, APT imaging may serve as a sensitive biomarker of early treatment response and could potentially replace invasive biopsies to provide a definitive diagnosis. This would have a major impact on the clinical management of patients with glioma.
Collapse
|
23
|
New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:126586. [PMID: 24527434 PMCID: PMC3909978 DOI: 10.1155/2014/126586] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
Despite relevant progress obtained by multimodal treatment, glioblastoma (GBM), the most aggressive primary brain tumor, is still incurable. The most encouraging advancement of GBM drug research derives from the identification of cancer stem cells (CSCs), since these cells appear to represent the determinants of resistance to current standard therapies. The goal of most ongoing studies is to identify drugs able to affect CSCs biology, either inducing selective toxicity or differentiating this tumor cell population into nontumorigenic cells. Moreover, the therapeutic approach for GBM could be improved interfering with chemo- or radioresistance mechanisms, microenvironment signals, and the neoangiogenic process. During the last years, molecular targeted compounds such as sorafenib and old drugs, like metformin, displayed interesting efficacy in preclinical studies towards several tumors, including GBM, preferentially affecting CSC viability. In this review, the latest experimental results, controversies, and prospective application concerning these promising anticancer drugs will be discussed.
Collapse
|
24
|
Cattaneo M, Baronchelli S, Schiffer D, Mellai M, Caldera V, Saccani GJ, Dalpra L, Daga A, Orlandi R, DeBlasio P, Biunno I. Down-modulation of SEL1L, an unfolded protein response and endoplasmic reticulum-associated degradation protein, sensitizes glioma stem cells to the cytotoxic effect of valproic acid. J Biol Chem 2013; 289:2826-38. [PMID: 24311781 DOI: 10.1074/jbc.m113.527754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Valproic acid (VPA), an histone deacetylase inhibitor, is emerging as a promising therapeutic agent for the treatments of gliomas by virtue of its ability to reactivate the expression of epigenetically silenced genes. VPA induces the unfolded protein response (UPR), an adaptive pathway displaying a dichotomic yin yang characteristic; it initially contributes in safeguarding the malignant cell survival, whereas long-lasting activation favors a proapoptotic response. By triggering UPR, VPA might tip the balance between cellular adaptation and programmed cell death via the deregulation of protein homeostasis and induction of proteotoxicity. Here we aimed to investigate the impact of proteostasis on glioma stem cells (GSC) using VPA treatment combined with subversion of SEL1L, a crucial protein involved in homeostatic pathways, cancer aggressiveness, and stem cell state maintenance. We investigated the global expression of GSC lines untreated and treated with VPA, SEL1L interference, and GSC line response to VPA treatment by analyzing cell viability via MTT assay, neurosphere formation, and endoplasmic reticulum stress/UPR-responsive proteins. Moreover, SEL1L immunohistochemistry was performed on primary glial tumors. The results show that (i) VPA affects GSC lines viability and anchorage-dependent growth by inducing differentiative programs and cell cycle progression, (ii) SEL1L down-modulation synergy enhances VPA cytotoxic effects by influencing GSCs proliferation and self-renewal properties, and (iii) SEL1L expression is indicative of glioma proliferation rate, malignancy, and endoplasmic reticulum stress statuses. Targeting the proteostasis network in association to VPA treatment may provide an alternative approach to deplete GSC and improve glioma treatments.
Collapse
Affiliation(s)
- Monica Cattaneo
- From the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thon N, Kreth S, Kreth FW. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Ther 2013; 6:1363-72. [PMID: 24109190 PMCID: PMC3792931 DOI: 10.2147/ott.s50208] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The identification of molecular genetic biomarkers considerably increased our current understanding of glioma genesis, prognostic evaluation, and treatment planning. In glioblastoma, the most malignant intrinsic brain tumor entity in adults, the promoter methylation status of the gene encoding for the repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) indicates increased efficacy of current standard of care, which is concomitant and adjuvant chemoradiotherapy with the alkylating agent temozolomide. In the elderly, MGMT promoter methylation status has recently been introduced to be a predictive biomarker that can be used for stratification of treatment regimes. This review gives a short summery of epidemiological, clinical, diagnostic, and treatment aspects of patients who are currently diagnosed with glioblastoma. The most important molecular genetic markers and epigenetic alterations in glioblastoma are summarized. Special focus is given to the physiological function of DNA methylation-in particular, of the MGMT gene promoter, its clinical relevance, technical aspects of status assessment, its correlation with MGMT mRNA and protein expressions, and its place within the management cascade of glioblastoma patients.
Collapse
Affiliation(s)
- Niklas Thon
- Department of Neurosurgery, Hospital of the University of Munich, Campus Grosshadern, Munich, Germany
| | | | | |
Collapse
|
26
|
Lukiw WJ. Antagonism of NF-κB-up-regulated micro RNAs (miRNAs) in sporadic Alzheimer's disease (AD)-anti-NF-κB vs. anti-miRNA strategies. Front Genet 2013; 4:77. [PMID: 23641256 PMCID: PMC3640190 DOI: 10.3389/fgene.2013.00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Walter J Lukiw
- Department of Neuroscience and Ophthalmology, LSU Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|