1
|
Ahmadzadeh AM, Aliabadi MM, Mirheidari SB, Hamedi-Asil M, Garousi S, Mottahedi M, Sahebkar A. Beneficial effects of resveratrol on diabetes mellitus and its complications: focus on mechanisms of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03527-4. [PMID: 39446148 DOI: 10.1007/s00210-024-03527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Diabetes mellitus (DM) is a significant global health issue, associated with various microvascular and macrovascular complications that significantly impair patients' quality of life as well as healthspan and lifespan. Despite the availability of several anti-diabetic medications with different mechanisms of action, there remains no definite curative treatment. Hence, discovering new efficient complementary therapies is essential. Natural products have received significant attention due to their advantages in various pathological conditions. Resveratrol is a natural polyphenol that possesses antioxidant and anti-inflammatory properties, and its efficacy has been previously investigated in several diseases, including DM. Herein, we aimed to provide a holistic view of the signaling pathways and mechanisms of action through which resveratrol exerts its effects against DM and its complications.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahdie Hamedi-Asil
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Mehran Mottahedi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Tang Q, Buonfiglio F, Böhm EW, Zhang L, Pfeiffer N, Korb CA, Gericke A. Diabetic Retinopathy: New Treatment Approaches Targeting Redox and Immune Mechanisms. Antioxidants (Basel) 2024; 13:594. [PMID: 38790699 PMCID: PMC11117924 DOI: 10.3390/antiox13050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, characterized by irreversible visual impairment resulting from microvascular abnormalities. Since the global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research interest. The development and progression of DR encompass a complex interplay of pathological and physiological mechanisms, such as high glucose-induced oxidative stress, immune responses, vascular endothelial dysfunction, as well as damage to retinal neurons. Recent years have unveiled the involvement of genomic and epigenetic factors in the formation of DR mechanisms. At present, extensive research explores the potential of biomarkers such as cytokines, molecular and cell therapies, antioxidant interventions, and gene therapy for DR treatment. Notably, certain drugs, such as anti-VEGF agents, antioxidants, inhibitors of inflammatory responses, and protein kinase C (PKC)-β inhibitors, have demonstrated promising outcomes in clinical trials. Within this context, this review article aims to introduce the recent molecular research on DR and highlight the current progress in the field, with a particular focus on the emerging and experimental treatment strategies targeting the immune and redox signaling pathways.
Collapse
Affiliation(s)
- Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| | | | | | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| |
Collapse
|
4
|
Jun JH, Kim JS, Palomera LF, Jo DG. Dysregulation of histone deacetylases in ocular diseases. Arch Pharm Res 2024; 47:20-39. [PMID: 38151648 DOI: 10.1007/s12272-023-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.
Collapse
Affiliation(s)
- Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin, 16995, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Leon F Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
5
|
Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023; 185:106250. [PMID: 37536385 DOI: 10.1016/j.nbd.2023.106250] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-β (TGF-β)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
6
|
Gao AY, Haak AJ, Bakri SJ. In vitro laboratory models of proliferative vitreoretinopathy. Surv Ophthalmol 2023; 68:861-874. [PMID: 37209723 DOI: 10.1016/j.survophthal.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR), the most common cause of recurrent retinal detachment, is characterized by the formation and contraction of fibrotic membranes on the surface of the retina. There are no Food and Drug Administration (FDA)-approved drugs to prevent or treat PVR. Therefore, it is necessary to develop accurate in vitro models of the disease that will enable researchers to screen drug candidates and prioritize the most promising candidates for clinical studies. We provide a summary of recent in vitro PVR models, as well as avenues for model improvement. Several in vitro PVR models were identified, including various types of cell cultures. Additionally, novel techniques that have not been used to model PVR were identified, including organoids, hydrogels, and organ-on-a-chip models. Novel ideas for improving in vitro PVR models are highlighted. Researchers may consult this review to help design in vitro models of PVR, which will aid in the development of therapies to treat the disease.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA.
| |
Collapse
|
7
|
Carpineto P, Licata AM, Ciancaglini M. Proliferative Vitreoretinopathy: A Reappraisal. J Clin Med 2023; 12:5287. [PMID: 37629329 PMCID: PMC10455099 DOI: 10.3390/jcm12165287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) remains the main cause of failure after retinal detachment (RD) surgery. Despite the development of modern technologies and sophisticated techniques for the management of RD, the growth of fibrocellular membranes within the vitreous cavity and on both sides of the retinal surface, as well as intraretinal fibrosis, can compromise surgical outcomes. Since 1983, when the term PVR was coined by the Retina Society, a lot of knowledge has been obtained about the physiopathology and risk factors of PVR, but, despite the proposal of a lot of therapeutic challenges, surgical skills seem to be the only effective way to manage PVR complications.
Collapse
Affiliation(s)
- Paolo Carpineto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Arturo Maria Licata
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Ciancaglini
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
8
|
Tersi N, Kassumeh S, Ohlmann A, Strehle L, Priglinger SG, Hartmann D, Wolf A, Wertheimer CM. Pharmacological Therapy of Proliferative Vitreoretinopathy: Systematic In Vitro Comparison of 36 Pharmacological Agents. J Ocul Pharmacol Ther 2023; 39:148-158. [PMID: 36867160 DOI: 10.1089/jop.2022.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Purpose: Proliferative vitreoretinopathy (PVR) is currently treated surgically. Reliable pharmaceutical options would be desirable, and numerous drugs have been proposed. This in vitro study is intended to systematically compare and determine the most promising candidates for the treatment of PVR. Methods: A structured literature review was conducted in the "PubMed" database to identify previously published agents proposed for medical treatment of PVR -36 substances that met the inclusion criteria. Toxicity and antiproliferative effects were evaluated on primary human retinal pigment epithelial (hRPE) using colorimetric viability assays. The seven substances with the widest therapeutic range between toxicity and no longer detectable antiproliferative effect were then validated with a bromodeoxyuridine assay and a scratch wound healing assay using primary cells derived from surgically excised human PVR membranes (hPVR). Results: Among 36 substances, 12 showed no effect on hRPE at all. Seventeen substances had a significant (P < 0.05) toxic effect of which nine did not have an antiproliferative effect. Fifteen substances significantly reduced hRPE proliferation (P < 0.05). The seven most promising drugs with the highest difference between toxicity and antiproliferative effects on hRPE were dasatinib, methotrexate, resveratrol, retinoic acid, simvastatin, tacrolimus, and tranilast. Whereof resveratrol, simvastatin, and tranilast additionally showed antiproliferative and dasatinib, resveratrol, and tranilast antimigratory effects on hPVR (P < 0.05). Conclusion: This study presents a systematic comparison of drugs that have been proposed for PVR treatment in a human disease model. Dasatinib, resveratrol, simvastatin, and tranilast seem to be promising and are well-characterized in human use.
Collapse
Affiliation(s)
- Natalie Tersi
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
| | - Stefan Kassumeh
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
| | - Laura Strehle
- Department of Ophthalmology, University Hospital, Ulm University, Ulm, Germany
| | | | - Daniela Hartmann
- Department of Dermatology and Allergology, University Hospital, LMU Munich, Munich, Germany
| | - Armin Wolf
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, Ulm University, Ulm, Germany
| | - Christian M Wertheimer
- Department of Ophthalmology and University Hospital, LMU Munich, Munich, Germany
- Department of Ophthalmology, University Hospital, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Zhang Q, Guo Y, Kang M, Lin WH, Wu JC, Yu Y, Li LC, Sang A. p21CIP/WAF1 saRNA inhibits proliferative vitreoretinopathy in a rabbit model. PLoS One 2023; 18:e0282063. [PMID: 36821623 PMCID: PMC9949646 DOI: 10.1371/journal.pone.0282063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
PURPOSE Proliferative vitreoretinopathy (PVR) is a disease process resulting from proliferation of retinal pigment epithelial (RPE) cells in the vitreous and periretinal area, leading to periretinal membrane formation and traction and eventually to postoperative failure after vitreo-retinal surgery for primary rhegmatogenous retinal detachment (RRD). The present study was designed to test the therapeutic potential of a p21CIP/WAF1 (p21) inducing saRNA for PVR. METHODS A chemically modified p21 saRNA (RAG1-40-53) was tested in cultured human RPE cells for p21 induction and for the inhibition of cell proliferation, migration and cell cycle progression. RAG1-40-53 was further conjugated to a cholesterol moiety and tested for pharmacokinetics and pharmacodynamics in rabbit eyes and for therapeutic effects after intravitreal administration in a rabbit PVR model established by injecting human RPE cells. RESULTS RAG1-40-53 (0.3 mg, 1 mg) significantly induced p21 expression in RPE cells and inhibited cell proliferation, the progression of cell cycle at the G0/G1 phase and TGF-β1 induced migration. After a single intravitreal injection into rabbit eyes, cholesterol-conjugated RAG1-40-53 exhibited sustained concentration in the vitreal humor beyond at least 8 days and prevented the progression of established PVR. CONCLUSION p21 saRNA could represent a novel therapeutics for PVR by exerting a antiproliferation and antimigration effect on RPE cells.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- Dalian Medical University, Lvshunkou District, Dalian City, Liaoning Province, China
| | - Yangchen Guo
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- Nantong University, Nantong City, Jiangsu Province, China
| | - Moorim Kang
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
| | - Wei-Hsiang Lin
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
| | - Jian-Cheng Wu
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
| | - Ying Yu
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- * E-mail: (LCL); (YY); (AS)
| | - Long-Cheng Li
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
- Institute of Reproductive Medicine, Nantong University, Nantong City, Jiangsu Province, China
- * E-mail: (LCL); (YY); (AS)
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- * E-mail: (LCL); (YY); (AS)
| |
Collapse
|
10
|
Fan J, Wei S, Zhang X, Chen L, Zhang X, Jiang Y, Sheng M, Chen Y. Resveratrol inhibits TGF-β1-induced fibrotic effects in human pterygium fibroblasts. Environ Health Prev Med 2023; 28:59. [PMID: 37866886 PMCID: PMC10613557 DOI: 10.1265/ehpm.23-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/02/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Resveratrol is a polyphenolic phytoalexin which has the properties of anti-oxidant, anti-inflammatory and anti-fibrotic effects. The aim of this study was to investigate the anti-fibrotic effects of resveratrol in primary human pterygium fibroblasts (HPFs) and elucidate the underlying mechanisms. METHOD Profibrotic activation was induced by transforming growth factor-beta1 (TGF-β1). The expression of profibrotic markers, including type 1 collagen (COL1), α-smooth muscle actin (α-SMA), and fibronectin, were detected by western blot and quantitative real-time-PCR after treatment with various concentrations of resveratrol in HPFs to investigate the anti-fibrotic effects. Relative signaling pathways downstream of TGF-β1 were detected by Western blot to assess the underlying mechanism. Cell viability and apoptosis were assessed using CCK-8 assay and flow cytometry to evaluate proliferation and drug-induced cytotoxicity. Cell migration and contractile phenotype were detected through wound healing assay and collagen gel contraction assay. RESULTS The expression of α-SMA, FN and COL1 induced by TGF-β1 were suppressed by treatment with resveratrol in dose-dependent manner. The Smad3, mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol-3-kinase (PI3K) / protein kinase B (AKT) pathways were activated by TGF-β1, while resveratrol attenuated those pathways. Resveratrol also inhibited cellular proliferation, migration and contractile phenotype, and induced apoptosis in HPFs. CONCLUSIONS Resveratrol inhibit TGF-β1-induced myofibroblast activation and extra cellular matrix synthesis in HPFs, at least partly, by regulating the TGF-β/Smad3, p38 MAPK and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Jianwu Fan
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Shuang Wei
- Department of Ophthalmology, Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai 201600, China
| | - Xiaoyan Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Li Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Minjie Sheng
- Department of Ophthalmology, Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai 201600, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| |
Collapse
|
11
|
Wang Y, Zhang Y, Li Y, Kou X, Xue Z. Mechanisms of Biochanin A Alleviating PM2.5 Organic Extracts-Induced EMT of A549 Cells through the PI3K/Akt Pathway. JOURNAL OF NATURAL PRODUCTS 2022; 85:2290-2301. [PMID: 36181478 DOI: 10.1021/acs.jnatprod.2c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important step in tumor progression, which enables tumor cells to acquire migration and invasion characteristics. The aim of this study was to investigate the mechanism of biological biochanin A (BCA) in ameliorating fine particulate matter (PM2.5) lung injury. The results showed that PM2.5 could induce spindle-like changes in cell morphology, causing the ability of migration and invasion. However, they were significantly inhibited by BCA treatment (10/20/30 μm). After BCA treatment, the release and transcription of chemokine CXCL12 and its receptor gene CXCR4 were inhibited, and the release of growth inducer TGF-β1 was significantly reduced. In addition, BCA promoted the transcription of E-cadherin and β-catenin, inhibiting the expression of N-cadherin, vimentin, and fibronectin, and down-regulated the expression of MMP-2/9. We found that BCA effectively interfered with the PI3K/Akt signaling pathway activated by PM2.5. In conclusion, PM2.5 can induce EMT in lung cancer cells, and BCA may reverse this process by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| | - Yonghui Li
- Cardiovascular Department, Tianjin Fourth Center Hospital, 300140, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| |
Collapse
|
12
|
SANTOS SOBRINHO ELIANEM, SANTOS HÉRCULESO, MARTINS ERNANER, FONSECA FRANCINESOUZAALVESDA, FARIAS LUCYANAC, AGUILAR CHARLESM, PEREIRA ULISSESA, NICOLAU JUNIOR NILSON, GOMES MATHEUSS, SOUZA CINTYANDE, RAVNJAK JOÃOMATHEUSA, PORTO RAPHAELR, ALMEIDA ANNACHRISTINADE. Protein-coding gene interaction network prediction of bioactive plant compound action against SARS-CoV-2: a novel hypothesis using bioinformatics analysis. AN ACAD BRAS CIENC 2022; 94:e20201380. [DOI: 10.1590/0001-3765202220201380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/23/2021] [Indexed: 11/23/2022] Open
|
13
|
Caban M, Lewandowska U. Polyphenols and Posterior Segment Eye Diseases: Effects on Angiogenesis, Invasion, Migration and Epithelial-Mesenchymal Transition. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Wang ZY, Zhang Y, Chen J, Wu LD, Chen ML, Chen CM, Xu QH. Artesunate inhibits the development of PVR by suppressing the TGF-β/Smad signaling pathway. Exp Eye Res 2021; 213:108859. [PMID: 34822854 DOI: 10.1016/j.exer.2021.108859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is the main cause of retinal detachment surgery failure. The epithelial-mesenchymal transition (EMT) induced by transforming growth factor (TGF-β2) plays an important role in the development of PVR. Artesunate has been widely studied as a treatment for ophthalmic diseases because of its antioxidant, anti-inflammatory, antiapoptotic and antiproliferative properties. The purpose of this study was to investigate the effects of artesunate on the TGF-β2-induced EMT in ARPE-19 cells and PVR development. We found that artesunate inhibited the proliferation and contraction of ARPE-19 cells after the EMT and the autocrine effects of TGF-β2 on ARPE-19 cells. Additionally, the levels of Smad3 and p-Smad3 were increased in clinical samples, and artesunate decreased the levels of Smad3 and p-Smad3 in ARPE-19 cells treated with TGF-β2. Artesunate also inhibited the occurrence and development of PVR in vivo. In summary, artesunate inhibits the occurrence and development of PVR by inhibiting the EMT in ARPE-19 cells.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yu Zhang
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Jie Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Ling-Dan Wu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Mei-Ling Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Ci-Min Chen
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Qi-Hua Xu
- Nanchang University, Nanchang, 330000, Jiangxi Province, China; Jiangxi Research Institute of Ophthalmology & Visual Sciences, Nanchang, 330006, Jiangxi Province, China; Department of Ophthalmology, The Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
15
|
Igarashi K, Sugimoto K, Hirano E. Placental extract suppresses the formation of fibrotic deposits by tumor necrosis factor alpha and transforming growth factor beta-induced epithelial-mesenchymal transition in ARPE-19 cells. BMC Res Notes 2021; 14:407. [PMID: 34727968 PMCID: PMC8561846 DOI: 10.1186/s13104-021-05824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Epithelial–mesenchymal transition (EMT) is involved in the development of proliferative vitreoretinopathy (PVR) and subsequent fibrosis. Previously, we demonstrated that placental extract ameliorates fibrosis in a mouse model of non-alcoholic steatohepatitis. In this study, we evaluated whether placental extract influences EMT and fibrosis through cytokine-induced EMT in the retinal pigment epithelial cells, in vitro. Results Placental extract did not inhibit EMT, but it suppressed excessive mesenchymal reactions and the subsequent fibrosis. These results suggest that placental extract effectively ameliorates EMT-associated fibrosis in PVR. This beneficial effect could be partially attributed to the suppression of excessive mesenchymal reactions. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05824-0.
Collapse
Affiliation(s)
- Kyoko Igarashi
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, 839-0864, Japan
| | - Koji Sugimoto
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, 839-0864, Japan
| | - Eiichi Hirano
- Research Institute, Japan Bio Products Co., Ltd., 1-1 Kurume Research Center bldg. 2F, Hyakunenkoen, Kurume, 839-0864, Japan.
| |
Collapse
|
16
|
Zhang W, Li J. Yes-associated protein is essential for proliferative vitreoretinopathy development via the epithelial-mesenchymal transition in retinal pigment epithelial fibrosis. J Cell Mol Med 2021; 25:10213-10223. [PMID: 34598306 PMCID: PMC8572794 DOI: 10.1111/jcmm.16958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
This study was aim to investigate whether the progression of proliferative vitreoretinopathy (PVR) depended on the activation of Yes‐associated protein (YAP) and the subsequent epithelial‐mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cell. The effect of YAP activation on retinal fibrosis in a PVR mouse model and in human ARPE‐19 cells in vitro was studied. After treated with transforming growth factor‐β2(TGF‐β2), the expressions of fibrogenic molecules, YAP activation and the TGF‐β2‐Smad signalling pathway in ARPE‐19 cells were detected by Western blot and immunocytochemical analyses. The effect of YAP on change in fibrosis and EMT was tested by knockdown experiment using verteporfin (YAP inhibitor). YAP was upregulated in the PVR mouse model and during TGF‐β2–induced RPE cell EMT. In an in vivo study, verteporfin attenuated PVR progression in a mouse model. Additionally, YAP knockdown retained phenotype of RPE cells and ameliorated TGF‐β2–induced migration, gel contraction and EMT in vitro. YAP knockdown inhibited the TGF‐β2–induced upregulation of connective tissue growth factor (CTGF), smooth muscle actin (SMA‐α) and fibronectin. YAP was essential for the TGF‐β2–induced nuclear translocation and phosphorylation of Smad2/3. Our work provides direct evidence that YAP is an essential regulator of EMT and profibrotic responses in PVR and indicates that YAP inhibition could be a potential target in PVR therapeutic intervention.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals (Basel) 2021; 14:ph14090837. [PMID: 34577536 PMCID: PMC8471500 DOI: 10.3390/ph14090837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds are a large, heterogeneous group of secondary metabolites found in various plants and herbal substances. From the perspective of dermatology, the most important benefits for human health are their pharmacological effects on oxidation processes, inflammation, vascular pathology, immune response, precancerous and oncological lesions or formations, and microbial growth. Because the nature of phenolic compounds is designed to fit the phytochemical needs of plants and not the biopharmaceutical requirements for a specific route of delivery (dermal or other), their utilization in cutaneous formulations sets challenges to drug development. These are encountered often due to insufficient water solubility, high molecular weight and low permeation and/or high reactivity (inherent for the set of representatives) and subsequent chemical/photochemical instability and ionizability. The inclusion of phenolic phytochemicals in lipid-based nanocarriers (such as nanoemulsions, liposomes and solid lipid nanoparticles) is so far recognized as a strategic physico-chemical approach to improve their in situ stability and introduction to the skin barriers, with a view to enhance bioavailability and therapeutic potency. This current review is focused on recent advances and achievements in this area.
Collapse
|
18
|
Resveratrol-Elicited PKC Inhibition Counteracts NOX-Mediated Endothelial to Mesenchymal Transition in Human Retinal Endothelial Cells Exposed to High Glucose. Antioxidants (Basel) 2021; 10:antiox10020224. [PMID: 33540918 PMCID: PMC7913144 DOI: 10.3390/antiox10020224] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes-associated long-term hyperglycaemia leads to oxidative stress-mediated fibrosis in different tissues and organs. Endothelial-to-mesenchymal-transition (EndMT) appears to play a role in diabetes-associated fibrotic conditions. Here, we investigate whether EndMT is implicated in the diabetic retinopathy fibrotic process and evaluate the possibility that resveratrol could counteract EndMT by inhibiting high glucose (HG)-induced increases in ROS. Primary Human Retinal Endothelial Cells (HRECs) were either pre-treated for 24 h with 1 µM resveratrol or left untreated, then glucose (30 mM) was applied at 3-day intervals for 10 days. qRT-PCR and ELISA were used to detect mRNA or protein expression of endothelial markers (CD31, CDH5, vWF) or mesenchymal markers (VIM, αSMA and collagen I), respectively. Intracellular ROS levels were measured with carboxy-DCFDA, while NOX-associated ROS levels were evaluated using the NADPH-specific redox biosensor p47-roGFP. Treatment of HRECs with HG increased intracellular ROS levels and promoted phenotype shifting towards EndMT, evidenced by decreased expression of endothelial markers concomitant with increased expression of mesenchymal ones. HG-induced EndMT appears to be mediated by NADPH-associated ROS generation as pre-treatment of HRECs with resveratrol or the NADPH inhibitor, diphenyleneiodonium chloride (DPI), attenuated ROS production and EndMT transition, suggesting that the effect of resveratrol on HG-induced ROS occurs via down-regulation of NADPH oxidase. It is worth noting that resveratrol or Chelerythrine, a Protein kinase C (PKC) inhibitor, reduce ROS and EndMT in HG-exposed cells, suggesting that NADPH activation occurs via a PKC-dependent mechanism. Taken together, our results provide the basis for a resveratrol-based potential protective therapy to prevent diabetic-associated complications.
Collapse
|
19
|
Delmas D, Cornebise C, Courtaut F, Xiao J, Aires V. New Highlights of Resveratrol: A Review of Properties against Ocular Diseases. Int J Mol Sci 2021; 22:1295. [PMID: 33525499 PMCID: PMC7865717 DOI: 10.3390/ijms22031295] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Eye diseases are currently a major public health concern due to the growing number of cases resulting from both an aging of populations and exogenous factors linked to our lifestyles. Thus, many treatments including surgical pharmacological approaches have emerged, and special attention has been paid to prevention, where diet plays a preponderant role. Recently, potential antioxidants such as resveratrol have received much attention as potential tools against various ocular diseases. In this review, we focus on the mechanisms of resveratrol against ocular diseases, in particular age-related macular degeneration, glaucoma, cataract, diabetic retinopathy, and vitreoretinopathy. We analyze, in relation to the different steps of each disease, the resveratrol properties at multiple levels, such as cellular and molecular signaling as well as physiological effects. We show and discuss the relationship to reactive oxygen species, the regulation of inflammatory process, and how resveratrol can prevent ocular diseases through a potential epigenetic action by the activation of sirtuin-1. Lastly, various new forms of resveratrol delivery are emerging at the same time as some clinical trials are raising more questions about the future of resveratrol as a potential tool for prevention or in therapeutic strategies against ocular diseases. More preclinical studies are required to provide further insights into RSV's potential adjuvant activity.
Collapse
Affiliation(s)
- Dominique Delmas
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
- Centre Anticancéreux Georges François Leclerc, F-21000 Dijon, France
| | - Clarisse Cornebise
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Flavie Courtaut
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain;
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Virginie Aires
- Université de Bourgogne Franche-Comté, F-21000 Dijon, France; (C.C.); (F.C.); (V.A.)
- INSERM Research Center U1231, Cancer and Adaptive Immune Response Team, Bioactive Molecules and Health Research Group, F-21000 Dijon, France
| |
Collapse
|
20
|
Li D, Zhang J, Liu Z, Gong Y, Zheng Z. Human umbilical cord mesenchymal stem cell-derived exosomal miR-27b attenuates subretinal fibrosis via suppressing epithelial-mesenchymal transition by targeting HOXC6. Stem Cell Res Ther 2021; 12:24. [PMID: 33413548 PMCID: PMC7792361 DOI: 10.1186/s13287-020-02064-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIM Subretinal fibrosis resulting from neovascular age-related macular degeneration (nAMD) is one of the major causes of serious and irreversible vision loss worldwide, and no definite and effective treatment exists currently. Retinal pigmented epithelium (RPE) cells are crucial in maintaining the visual function of normal eyes and its epithelial-mesenchymal transition (EMT) is associated with the pathogenesis of subretinal fibrosis. Stem cell-derived exosomes have been reported to play a crucial role in tissue fibrosis by transferring their molecular contents. This study aimed to explore the effects of human umbilical cord-derived mesenchymal stem cell exosomes (hucMSC-Exo) on subretinal fibrosis in vivo and in vitro and to investigate the anti-fibrotic mechanism of action of hucMSC-Exo. METHODS In this study, human umbilical cord-derived mesenchymal stem cells (hucMSCs) were successfully cultured and identified, and exosomes were isolated from the supernatant by ultracentrifugation. A laser-induced choroidal neovascularization (CNV) and subretinal fibrosis model indicated that the intravitreal administration of hucMSC-Exo effectively alleviated subretinal fibrosis in vivo. Furthermore, hucMSC-Exo could efficaciously suppress the migration of retinal pigmented epithelial (RPE) cells and promote the mesenchymal-epithelial transition by delivering miR-27b-3p. The latent binding of miR-27b-3p to homeobox protein Hox-C6 (HOXC6) was analyzed by bioinformatics prediction and luciferase reporter assays. RESULTS This study showed that the intravitreal injection of hucMSC-Exo effectively ameliorated laser-induced CNV and subretinal fibrosis via the suppression of epithelial-mesenchymal transition (EMT) process. In addition, hucMSC-Exo containing miR-27b repressed the EMT process in RPE cells induced by transforming growth factor-beta2 (TGF-β2) via inhibiting HOXC6 expression. CONCLUSIONS The present study showed that HucMSC-derived exosomal miR-27b could reverse the process of EMT induced by TGF-β2 via inhibiting HOXC6, indicating that the exosomal miR-27b/HOXC6 axis might play a vital role in ameliorating subretinal fibrosis. The present study proposed a promising therapeutic agent for treating ocular fibrotic diseases and provided insights into the mechanism of action of hucMSC-Exo on subretinal fibrosis.
Collapse
Affiliation(s)
- Dongli Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China.,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Junxiu Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China.,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zijia Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China.,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yuanyuan Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China. .,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China. .,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China. .,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China. .,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
21
|
Qi T, Jing R, Wen C, Hu C, Wang Y, Pei C, Ma B. Interleukin-6 promotes migration and extracellular matrix synthesis in retinal pigment epithelial cells. Histochem Cell Biol 2020; 154:629-638. [PMID: 32997263 DOI: 10.1007/s00418-020-01923-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is the most common cause of surgical failure in the rhegmatogenous retinal detachment (RD) treatment. Retinal pigment epithelial (RPE) cell proliferation, migration, and the synthesis of extracellular matrix (ECM) are intrinsic to the formation of a PVR membrane. High level of interleukin-6 (IL-6) has been found in the vitreous of PVR patients, while the role of IL-6 in RPE cells remaining further characterized. In the present study, we evaluated the potential regulatory effects of IL-6 on cell migration, ECM components, and transforming growth factor β2 (TGF-β2) expression in RPE cells. Furthermore, cell counting kit-8 (CCK‑8) assay was used to investigate cell proliferation activity. We found that IL-6 promoted fibronectin (Fn) and type I collagen (COL-1), TGF-β2 expression in RPE cells, also stimulate RPE cell migration effectively. Moreover, the induction of IL-6 activated the Janus kinase/signal transducers and activators of transcription (JAK/STAT3) and the nuclear factor kappa-B (NF-κB) signaling pathways significantly. Simultaneously, both JAK/STAT3 and NF-κB pathways inhibitors, WP1066 and BAY11-7082, alleviated IL-6-induced biological effects, respectively. However, it was noted that IL-6 had little effect on α-smooth muscle actin (α-SMA) expression. Collectively, our results reveal that IL-6 promotes RPE cell migration and ECM synthesis via activating JAK/STAT3 and NF-κB signaling pathways, which may play a crucial role in PVR formation.
Collapse
Affiliation(s)
- Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Conghui Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunqing Wang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
22
|
Ashrafizadeh M, Najafi M, Orouei S, Zabolian A, Saleki H, Azami N, Sharifi N, Hushmandi K, Zarrabi A, Ahn KS. Resveratrol Modulates Transforming Growth Factor-Beta (TGF-β) Signaling Pathway for Disease Therapy: A New Insight into Its Pharmacological Activities. Biomedicines 2020; 8:E261. [PMID: 32752069 PMCID: PMC7460084 DOI: 10.3390/biomedicines8080261] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (Res) is a well-known natural product that can exhibit important pharmacological activities such as antioxidant, anti-diabetes, anti-tumor, and anti-inflammatory. An evaluation of its therapeutic effects demonstrates that this naturally occurring bioactive compound can target different molecular pathways to exert its pharmacological actions. Transforming growth factor-beta (TGF-β) is an important molecular pathway that is capable of regulating different cellular mechanisms such as proliferation, migration, and angiogenesis. TGF-β has been reported to be involved in the development of disorders such as diabetes, cancer, inflammatory disorders, fibrosis, cardiovascular disorders, etc. In the present review, the relationship between Res and TGF-β has been investigated. It was noticed that Res can inhibit TGF-β to suppress the proliferation and migration of cancer cells. In addition, Res can improve fibrosis by reducing inflammation via promoting TGF-β down-regulation. Res has been reported to be also beneficial in the amelioration of diabetic complications via targeting the TGF-β signaling pathway. These topics are discussed in detail in this review to shed light on the protective effects of Res mediated via the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negin Sharifi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
23
|
Smith AJO, Eldred JA, Wormstone IM. Resveratrol Inhibits Wound Healing and Lens Fibrosis: A Putative Candidate for Posterior Capsule Opacification Prevention. Invest Ophthalmol Vis Sci 2020; 60:3863-3877. [PMID: 31529119 DOI: 10.1167/iovs.18-26248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Posterior capsule opacification (PCO) is a common complication of cataract surgery. In addition to improved surgical methods and IOL designs, it is likely additional agents will be needed to improve patient outcomes. Presently no pharmacological agent is in clinical use to prevent PCO. Here we investigate the putative ability of resveratrol (RESV), a naturally occurring polyphenol, as a therapeutic agent. Methods The human lens epithelial cell line FHL124, a human lens capsular bag model, and central anterior epithelium were used as experimental systems. Standard culture was in 5% fetal calf serum Eagle's minimum essential medium; 10 ng/mL transforming growth factor-β2 (TGFβ2) was used to induce fibrotic changes. A scratch wound assay was used to measure cell migration and the patch assay was used to assess matrix contraction by FHL124 cells. Protein expression was assessed by immunocytochemistry and Western blot and gene expression by quantitative RT-PCR. In capsular bags, cell growth across the posterior lens capsule, capsular wrinkling, and epithelial-to-mesenchymal transition were determined by image analysis. Results In FHL124 cells, addition of 30 μM RESV significantly impeded cell migration in a wound-healing assay. RESV significantly inhibited TGFβ2-induced expression of the myofibroblast marker alpha-smooth muscle actin (α-SMA) at both the message and protein levels, as well as significantly inhibiting matrix contraction induced by TGFβ2. In human capsular bags, 30 μM RESV significantly inhibited cell growth. TGFβ2-induced α-SMA expression and capsular wrinkling were also significantly inhibited by RESV treatment. RESV significantly suppressed expression of TGFβ2-induced genes associated with fibrotic disease, including matrix metalloproteinase-2 in FHL124 cells, capsular bags, and central anterior epithelium. Conclusions RESV can counter PCO-related physiological events in two human lens model systems. RESV therefore has the potential to be used as a candidate agent for the prevention of PCO, which in turn could benefit millions of cataract patients.
Collapse
Affiliation(s)
- Andrew J O Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Julie A Eldred
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - I Michael Wormstone
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
24
|
Huang H, Nie C, Qin X, Zhou J, Zhang L. Diosgenin inhibits the epithelial-mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncol Lett 2019; 18:4278-4287. [PMID: 31579425 DOI: 10.3892/ol.2019.10780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
Diosgenin is an important basic raw material for the production of steroid hormone drugs. It can be isolated and purified from a variety of traditional Chinese medicines or plants. Modern molecular biological studies have shown that diosgenin inhibits various tumor cells migration and invasion ability to varying degrees in vitro and in vivo. The aim of the present study was to observe the inhibitory effects of diosgenin on the invasive and metastatic capabilities of osteosarcoma cells and to determine the association between the effects of diosgenin on the epithelial-mesenchymal transition (EMT). Wound healing and Transwell assays were used to observe the inhibitory effects of diosgenin on the invasion and migration of two osteosarcoma cell lines. Immunofluorescence was used to observe changes in transforming growth factor β1 (TGF-β1) protein expression levels in the osteosarcoma cells following drug administration. EMT-associated proteins, including TGFβ1, E-cadherin and vimentin were detected by western blotting, which demonstrated that the drug may inhibit the initiation of EMT in osteosarcoma cells. Western blot analysis of the expression of all the proteins in the mitogen-activated protein kinase (MAPK) pathway demonstrated that the drug inhibited the MAPK signaling pathway. The primary mechanism of action of diosgenin was the inhibition of the phosphorylated p38 (pP38) protein. Through a combination of inhibitors of the p38MAPK signaling pathway and detection of the downstream EMT marker protein E-cadherin by quantitative PCR, pP38 was confirmed to be a target of diosgenin in the inhibition of EMT in the osteosarcoma cells via the MAPK molecular signaling pathway. Diosgenin may exhibit utility as an auxiliary drug for the clinical reduction of metastasis in patients with osteosarcoma.
Collapse
Affiliation(s)
- Huaming Huang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China.,Department of Orthopedics, Xishan People's Hospital of Wuxi, Wuxi, Jiangsu 214015, P.R. China
| | - Chao Nie
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Xiaokang Qin
- Jiangsu KeyGEN BioTECH Co., Ltd., Nanjing, Jiangsu 211100, P.R. China
| | - Jie Zhou
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Lei Zhang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| |
Collapse
|
25
|
Peng L, Yang C, Yin J, Ge M, Wang S, Zhang G, Zhang Q, Xu F, Dai Z, Xie L, Li Y, Si JQ, Ma K. TGF-β2 Induces Gli1 in a Smad3-Dependent Manner Against Cerebral Ischemia/Reperfusion Injury After Isoflurane Post-conditioning in Rats. Front Neurosci 2019; 13:636. [PMID: 31297044 PMCID: PMC6608402 DOI: 10.3389/fnins.2019.00636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Isoflurane (ISO) post-conditioning attenuates cerebral ischemia/reperfusion (I/R) injury, but the underlying mechanism is incompletely elucidated. Transforming growth factor beta (TGF-β) and hedgehog (Hh) signaling pathways govern a wide range of mechanisms in the central nervous system. We aimed to investigate the effect of the TGF-β2/Smad3 and sonic hedgehog (Shh)/Glioblastoma (Gli) signaling pathway and their crosstalk in the hippocampus of rats with ISO post-conditioning after cerebral I/R injury. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), 1.5 h occlusion and 24 h reperfusion (MCAO/R). To assess the effect of ISO after I/R injury, various approaches were used, including neurobehavioral tests, TTC staining, HE staining, Nissl staining, TUNEL staining, immunofluorescence (IF), qRT-PCR (quantitative real-time polymerase chain reaction) and Western blot. The ISO post-conditioning group (ISO group) received 1 h ISO post-conditioning when reperfusion was initiated, leading to lower infarct volumes and neurologic deficit scores, more surviving neurons, and less damaged and apoptotic neurons. IF staining, qRT-PCR and Western blot showed high expression levels of TGF-β2, Shh and Gli1 in the hippocampal CA1 of the ISO group. Phosphorylated Smad3 (p-Smad3), Patched (Ptch), and Smoothed (Smo) were also increased at protein level in the ISO group, whereas total Smad3 expression did not change in all groups. When TGF-β2 inhibitor, pirfenidone, or Smad3 inhibitor, SIS3 HCl, were administered, the expression levels of p-Smad3 and Gli1 were reduced, and surviving pyramidal neurons decreased. By contrast, the expression levels of TGF-β2 and p-Smad3 did not change significantly after pre-injection of Smo inhibitor cyclopamine, but reduced the expression levels of Shh, Ptch, and Gli1. Moreover, Gli showed the lowest expression levels with pirfenidone combined with cyclopamine. These findings indicate that the TGF-β and hedgehog signaling pathways mediate the neuroprotection of ISO post-conditioning after cerebral I/R injury, and crosstalk between two pathways at the Gli1 level.
Collapse
Affiliation(s)
- Li Peng
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Chengwei Yang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Mingyue Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guixing Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Qingtong Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Feng Xu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Zhigang Dai
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liping Xie
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jun-Qiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| |
Collapse
|
26
|
Resveratrol Suppresses Epithelial-Mesenchymal Transition in GBM by Regulating Smad-Dependent Signaling. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1321973. [PMID: 31119150 PMCID: PMC6500704 DOI: 10.1155/2019/1321973] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant intracranial tumor in adults. Despite continuous improvements in diagnosis and therapeutic method, the prognosis is still far away from expectations. The invasive phenotype of GBM is the main reason for the poor prognosis. Epithelial-mesenchymal transition (EMT) is recognized as a participator in this invasive phenotype. Resveratrol, a natural plant-derived compound, is reported to be able to regulate EMT. In the present study, we used TGF-β1 to induce EMT and aimed to evaluate the effect of resveratrol on EMT and to explore the underline mechanism in GBM. Western blotting was used to detect the expression of EMT-related markers, stemness markers, and Smad-dependent signaling. Wound healing assay and transwell invasion assay were performed to evaluate the migratory and invasive ability of GBM cells. Gliosphere formation assay was used to investigate the effect of resveratrol on the ability of self-renewal. Xenograft experiment was conducted to examine the effect of resveratrol on EMT and Smad-dependent signaling in vivo. Our data validated that resveratrol suppressed EMT and EMT-associated migratory and invasive ability via Smad-dependent signaling in GBM cells. We also confirmed that resveratrol obviously inhibited EMT-induced self-renewal ability of glioma stem cells (GSCs) and inhibited EMT-induced cancer stem cell markers Bmi1 and Sox2, suggesting that resveratrol is able to suppress EMT-generated stem cell-like properties in GBM cells. Furthermore, we also showed the inhibitory effect of resveratrol on EMT in xenograft experiments in vivo. Overall, our study reveals that resveratrol suppresses EMT and EMT-generated stem cell-like properties in GBM by regulating Smad-dependent signaling and provides experimental evidence of resveratrol for GBM treatment.
Collapse
|
27
|
Salehi B, Varoni EM, Sharifi-Rad M, Rajabi S, Zucca P, Iriti M, Sharifi-Rad J. Epithelial-mesenchymal transition as a target for botanicals in cancer metastasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:125-136. [PMID: 30668422 DOI: 10.1016/j.phymed.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 06/15/2018] [Accepted: 07/13/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The plant kingdom represents an unlimited source of phytotherapeutics with promising perspectives in the field of anticancer drug discovery. PURPOSE In this view, epithelial-mesenchymal transition (EMT) represents a novel and major target in anticancer therapy. Therefore, this narrative review aims to provide an updated overview on the bioactive phytochemicals with anti-EMT activity. CONCLUSION Among the plant products reviewed, phenylpropanoids were the most investigated at preclinical phase, thus exhibiting a promising potential as anticancer drugs, though an evidence-based clinical efficacy is still lacking.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Sadegh Rajabi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Italy.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada.
| |
Collapse
|
28
|
Liu S, Zhao M, Zhou Y, Wang C, Yuan Y, Li L, Bresette W, Chen Y, Cheng J, Lu Y, Liu J. Resveratrol exerts dose-dependent anti-fibrotic or pro-fibrotic effects in kidneys: A potential risk to individuals with impaired kidney function. PHYTOMEDICINE 2018; 57:223-235. [PMID: 30785018 DOI: 10.1016/j.phymed.2018.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Renal fibrosis is the pathological feature of chronic kidney disease (CKD) which leads to end-stage renal disease (ESRD) and renal failure. Resveratrol [3,5,4'-trihydroxy-trans-stilbene (RSV)] has shown benefits for metabolic diseases and anti-cancer therapy, but its potential risk on renal health has not been fully evaluated. PURPOSE To investigate the global effects of RSV on renal fibrosis in human tubular epithelial cell (TEC) line HK-2, and in mice with unilateral ureteral obstruction (UUO). METHODS A TGF-β-induced in vitro model of epithelial-mesenchymal transition (EMT) in TEC was established. The effects of RSV on cell viability, pro-fibrotic factors, oxidative stress, mitochondria function, and underlying pathway proteins were analyzed. In vivo, the effects of RSV on renal function and fibrosis were assayed in UUO mice. RESULTS Our results showed that low concentrations of RSV (5-20 μM) decreased TGF-β-induced EMT via Sirt1-dependent deacetylation of Smad3/Smad4 mechanism. By contrast, long-term (72 h) exposure to high concentrations of RSV (≥ 40 μM) promoted EMT in HK-2 cells via mitochondrial oxidative stress and ROCK1-mediated disordered cytoskeleton remodeling. In vivo, low-dose treatment of RSV (≤ 25 mg/kg) partly improved renal function, whereas high-dose treatment of RSV (≥ 50 mg/kg) lost its anti-fibrotic role and even aggravated renal fibrosis. However, mice with UUO were more susceptible to high RSV-induced renal injury than normal mice. CONCLUSION Dependent on dose, RSV activated either anti-fibrotic or pro-fibrotic effects in kidneys. The risk of RSV consumption in individuals with impaired kidney function should be carefully considered.
Collapse
Affiliation(s)
- Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijie Zhou
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - William Bresette
- Center for Metabolic and Vascular Biology, School for Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, AZ, United States
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Center for Metabolic and Vascular Biology, School for Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, AZ, United States.
| |
Collapse
|
29
|
Cai W, Yu D, Fan J, Liang X, Jin H, Liu C, Zhu M, Shen T, Zhang R, Hu W, Wei Q, Yu J. Quercetin inhibits transforming growth factor β1-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells via the Smad pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:4149-4161. [PMID: 30584279 PMCID: PMC6287523 DOI: 10.2147/dddt.s185618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose The purpose of this study was to evaluate the effect and mechanism of quercetin on TGF-β1-induced retinal pigment epithelial (RPE) cell proliferation, migration, and extracellular matrix secretion. Materials and methods Cell counting kit-8, transwell, wound-healing assays, and ELISA were used to assess viability, migration, and collagen I secretion, respectively. Western blot analysis and qPCR were employed to detect mRNA and protein expression levels, respectively. Results Quercetin suppressed TGF-β1-induced cell proliferation, migration, and collagen I secretion. The results also showed that mRNA and protein expression of epithelial–mesenchymal transition (EMT)-related markers such as alpha-smooth muscle actin and N-cadherin was downregulated by quercetin in TGF-β1-treated RPE cells; conversely, quercetin upregulated the expression of E-cadherin and tight junction protein 1 (ZO-1). In addition, quercetin could inhibit mRNA and protein expression of matrix metalloproteinases. Quercetin may reverse the progression of EMT via the Smad2/3 pathway. Conclusion Our results demonstrate the protective effects of quercetin on RPE cell EMT, revealing a potential therapeutic agent for proliferative vitreoretinopathy treatment.
Collapse
Affiliation(s)
- Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Jiaqi Fan
- Department of Ophthalmology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiuwei Liang
- Department of Ophthalmology, Nanchang University, Nanchang, People's Republic of China
| | - Huizi Jin
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Chang Liu
- Department of Ophthalmology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Ruiling Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Weinan Hu
- Department of Ophthalmology, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Qingquan Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China,
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai, People's Republic of China, .,Department of Ophthalmology, Ninghai First Hospital, Zhejiang, People's Republic of China,
| |
Collapse
|
30
|
Abstract
Renal fibrosis was a chronic and progressive process affecting kidneys in chronic kidney disease (CKD), regardless of cause. Although no effective targeted therapy yet existed to retard renal fibrosis, a number of important recent advances have highlighted the cellular and molecular mechanisms underlying the renal fibrosis. The advances including TGF-β/Smad pathway, oxidative stress and inflammation, hypoxia and gut microbiota-derived from uremic solutes were highlighted that could provide therapeutic targets. New therapeutic targets and strategies that are particularly promising for development of new treatments for patients with CKD were also highlighted.
Collapse
Affiliation(s)
- Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| |
Collapse
|
31
|
Wu T, Liu T, Xing L, Ji G. Baicalin and puerarin reverse epithelial-mesenchymal transition via the TGF-β1/Smad3 pathway in vitro. Exp Ther Med 2018; 16:1968-1974. [PMID: 30186426 PMCID: PMC6122322 DOI: 10.3892/etm.2018.6400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) occurs in the development of fibrosis and carcinogenesis. EMT is associated with chronic liver injury. Evidence shows that hepatocytes undergo EMT in the adult liver. The Qinggan Huoxue Recipe (QGHXR), a Traditional Chinese Medicinal formula, shows a range of pharmacological effects in treating alcoholic liver disease. The present study aimed to investigate the effect of four major components of QGHXR, baicalin, salvianic acid, puerarin and saikosaponin, on EMT in vitro, and to elucidate the potential mechanism of QGHXR against EMT via the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway. EMT models were established using LO2 hepatocytes and HepG2 cells treated with acetaldehyde in vitro. Acetaldehyde presented a mesenchymal cell characteristic in hepatocytes, accompanied by an increased expression of mesenchymal markers, including vimentin and fibronectin, and decreased E-cadherin. Baicalin and puerarin abrogated the increased expression of vimentin and fibronectin, and rescued E-cadherin expression in acetaldehyde-treated hepatocytes. It was further demonstrated that baicalin and puerarin reduced the gene expression of snail, TGF-β1 and Smad3. A decreased expression of tight function markers, including ZO-1, occludin and claudin, were also found in the acetaldehyde-treated hepatocytes. Barcacin regulated the mRNA level of TGF-βl and snail, and then suppressed the EMT process. This was accompanied by an increased mRNA level of E-cadherin and decreased levels of vimentin and fibronectin, but no significant differences in of Smad3, occludin, ZO-1 and claudin were observed. Puerarin regulated the mRNA level of TGF-βl, Smad3 and snail, suppresing the EMT process, which was accompanied by an increased mRNA level of E-cadherin and decreased levels of vimentin and fibronectin, along with increased levels of occludin, ZO-1 and claudin. When the snail gene was silent, barcacin and puerarin did not show significant effects in the acetaldehyde-treated cells. The results presented a novel mechanism through which baicalin and puerarin modulated hepatocyte EMT to improve liver fibrosis.
Collapse
Affiliation(s)
- Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Tao Liu
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Lianjun Xing
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China.,China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
32
|
Popescu M, Bogdan C, Pintea A, Rugină D, Ionescu C. Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1985-1996. [PMID: 30013318 PMCID: PMC6037275 DOI: 10.2147/dddt.s156941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus (DM) affects >350 million people worldwide. With many complications that can reduce the patient’s quality of life, vision loss is one of the most debilitating disorders it can cause. Active research in the field of diabetes includes microvascular complications in diabetic retinopathy (DR). Disturbances in the balance of pro-angiogenesis and anti-angiogenesis factors can lead to the progression of DR. The retinal pigment epithelium (RPE) is the outermost layer of the retina, and it is essential in maintaining the visual function. The RPE produces and secretes growth factors as well as protective agents which maintain structural integrity of the retina. Small natural molecules, such as resveratrol, may influence neurotrophic factors of the retina. The pigment epithelium-derived factor (PEDF) and thrombospondin-1 (TSP-1) are secreted by RPE cells. These two proteins inhibit angiogenesis and inflammation in RPE cells. An alteration of their production contributes to various eye diseases. There is a critical balance between two important factors secreted on opposite sides of the RPE: at the basal side, vascular endothelial growth factor (VEGF; acts on the choroidal endothelium) and, on the apical side, PEDF (acts on neurons and photoreceptors). Resveratrol inhibits VEGF expression in human adult RPE cells and limits the development of proliferative vitreoretinopathy, by attenuating transforming growth factor-β2-induced wound closure and cell migration. Possible new mechanisms could include PEDF and TSP-1 expression alterations under physiological and pathological conditions. Resveratrol is currently of interest due to its capacity to influence the cell’s secretory activity. Some limitations arise from its low bioavailability. Several drug delivery systems are currently tested, promising to improve tissue concentrations. This article reviews biological pathways involved in the pathogenesis of DR that could be influenced by resveratrol. A study of these pathways could identify new potential targets for the reduction of diabetic complications.
Collapse
Affiliation(s)
- Mihaela Popescu
- Department of Biochemistry, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania,
| | - Adela Pintea
- Department of Biochemistry, University of Agriculture Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dumitriţa Rugină
- Department of Biochemistry, University of Agriculture Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Corina Ionescu
- Department of Biochemistry, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| |
Collapse
|
33
|
BSA/Chitosan Polyelectrolyte Complex: A Platform for Enhancing the Loading and Cancer Cell-Uptake of Resveratrol. Macromol Res 2018. [DOI: 10.1007/s13233-018-6112-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Chen L, Yang T, Lu DW, Zhao H, Feng YL, Chen H, Chen DQ, Vaziri ND, Zhao YY. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment. Biomed Pharmacother 2018. [DOI: 10.1016/j.biopha.2018.02.090] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
35
|
Sun Y, Schaar A, Sukumaran P, Dhasarathy A, Singh BB. TGFβ-induced epithelial-to-mesenchymal transition in prostate cancer cells is mediated via TRPM7 expression. Mol Carcinog 2018; 57:752-761. [PMID: 29500887 PMCID: PMC5947546 DOI: 10.1002/mc.22797] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022]
Abstract
Growth factors, such as the transforming growth factor beta (TGFβ), play an important role in promoting metastasis of prostate cancer, thus understanding how TGFβ could induce prostate cancer cell migration may enable us to develop targeted strategies for treatment of advanced metastatic prostate cancer. To more clearly define the mechanism(s) involved in prostate cancer cell migration, we undertook a series of studies utilizing non‐malignant prostate epithelial cells RWPE1 and prostate cancer DU145 and PC3 cells. Our studies show that increased cell migration was observed in prostate cancer cells, which was mediated through epithelial‐to‐mesenchymal transition (EMT). Importantly, addition of Mg2+, but not Ca2+, increased cell migration. Furthermore, TRPM7 expression, which functions as an Mg2+ influx channel, was also increased in prostate cancer cells. Inhibition of TRPM7 currents by 2‐APB, significantly blocked cell migration in both DU145 and PC3 cells. Addition of growth factor TGFβ showed a further increase in cell migration, which was again blocked by the addition of 2‐APB. Importantly, TGFβ addition also significantly increased TRPM7 expression and function, and silencing of TRPM7 negated TGFβ‐induced cell migration along with a decrease in EMT markers showing loss of cell adhesion. Furthermore, resveratrol, which decreases prostate cancer cell migration, inhibited TRPM7 expression and function including TGFβ‐induced cell migration and activation of TRPM7 function. Together, these results suggest that Mg2+ influx via TRPM7 promotes cell migration by inducing EMT in prostate cancer cells and resveratrol negatively modulates TRPM7 function thereby inhibiting prostate cancer metastasis.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Anne Schaar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Pramod Sukumaran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| |
Collapse
|
36
|
Zhang P, Zhao G, Ji L, Yin J, Lu L, Li W, Zhou G, Chaum E, Yue J. Knockdown of survivin results in inhibition of epithelial to mesenchymal transition in retinal pigment epithelial cells by attenuating the TGFβ pathway. Biochem Biophys Res Commun 2018. [PMID: 29522718 DOI: 10.1016/j.bbrc.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a common complication of open globe injury and the most common cause of failed retinal detachment surgery. The response by retinal pigment epithelial (RPE) cells liberated into the vitreous includes proliferation and migration; most importantly, epithelial to mesenchymal transition (EMT) of RPE plays a central role in the development and progress of PVR. For the first time, we show that knockdown of BIRC5, a member of the inhibitor of apoptosis protein family, using either lentiviral vector based CRISPR/Cas9 nickase gene editing or inhibition of survivin using the small-molecule inhibitor YM155, results in the suppression of EMT in RPE cells. Knockdown of survivin or inhibition of survivin significantly reduced TGFβ-induced cell proliferation and migration. We further demonstrated that knockdown or inhibition of survivin attenuated the TGFβ signaling by showing reduced phospho-SMAD2 in BIRC5 knockdown or YM155-treated cells compared to controls. Inhibition of the TGFβ pathway using TGFβ receptor inhibitor also suppressed survivin expression in RPE cells. Our studies demonstrate that survivin contributes to EMT by cross-talking with the TGFβ pathway in RPE cells. Targeting survivin using small-molecule inhibitors may provide a novel approach to treat PVR disease.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Anatomy, Histology and Embryology, Fudan University, Shanghai, PR China
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ji
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jinggang Yin
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lu Lu
- Department of Genetics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Guomin Zhou
- Department of Anatomy, Histology and Embryology, Fudan University, Shanghai, PR China.
| | - Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
37
|
Resveratrol reverses the adverse effects of bevacizumab on cultured ARPE-19 cells. Sci Rep 2017; 7:12242. [PMID: 28947815 PMCID: PMC5612947 DOI: 10.1038/s41598-017-12496-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Age-related macular degeneration (AMD) and proliferative diabetic retinopathy (PDR) are one of the major causes of blindness caused by neo-vascular changes in the retina. Intravitreal anti-VEGF injections are widely used in the treatment of wet-AMD and PDR. A significant percentage of treated patients have complications of repeated injections. Resveratrol (RES) is a polyphenol phytoalexin with anti-oxidative, anti-inflammatory and anti-proliferative properties. Hence, we hypothesized that if RES is used in combination with bevacizumab (BEV, anti-VEGF), it could reverse the adverse effects that precipitate fibrotic changes, drusen formation, tractional retinal detachment and so on. Human retinal pigment epithelial cells were treated with various combinations of BEV and RES. There was partial reduction in secreted VEGF levels compared to untreated controls. Epithelial-mesenchymal transition was lower in BEV + RES treated cultures compared to BEV treated cultures. The proliferation status was similar in BEV + RES as well as BEV treated cultures both groups. Phagocytosis was enhanced in the presence of BEV + RES compared to BEV. Furthermore, we observed that notch signaling was involved in reversing the adverse effects of BEV. This study paves way for a combinatorial strategy to treat as well as prevent adverse effects of therapy in patients with wet AMD and PDR.
Collapse
|