1
|
Jing L, Liu C. Novel phenylpiperazine derivatives as potent transient receptor potential vanilloid 1 antagonists. Chem Biol Drug Des 2024; 104:e14584. [PMID: 38997239 DOI: 10.1111/cbdd.14584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel, which is considered a highly validated target for pain perception. Repeated activation with agonists to desensitize receptors or use the antagonists can both exert analgesic effects. In this work, two series of novel phenylpiperazine derivatives were designed, synthesized, and evaluated for the in vitro receptor inhibitory activity and in vivo analgesic activity. Among them, L-21 containing sulfonylurea group was identified with potent TRPV1 antagonistic activity and analgesic activity in various pain models. At the same time, L-21 exhibited low risk of hyperthermia side effect. These results indicated that L-21 is a promising candidate for further development of novel TRPV1 antagonist to treat pain.
Collapse
Affiliation(s)
- Lina Jing
- Department of Comprehensive Surgery, Zhengzhou People's Hospital, Zhengzhou, P. R. China
| | - Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
2
|
Liu C, Miao R, Raza F, Qian H, Tian X. Research progress and challenges of TRPV1 channel modulators as a prospective therapy for diabetic neuropathic pain. Eur J Med Chem 2022; 245:114893. [DOI: 10.1016/j.ejmech.2022.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
3
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
4
|
Iglesias LP, Aguiar DC, Moreira FA. TRPV1 blockers as potential new treatments for psychiatric disorders. Behav Pharmacol 2022; 33:2-14. [PMID: 33136616 DOI: 10.1097/fbp.0000000000000603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transient receptor potential vanilloid-1 channel (TRPV1) is responsible for decoding physical and chemical stimuli. TRPV1 is activated by capsaicin (a compound from chili peppers), heat (above 43°C) and acid environment, playing a major role in pain, inflammation and body temperature. Molecular and histological studies have suggested TRPV1 expression in specific brain regions, where it can be activated primarily by the endocannabinoid anandamide, fostering studies on its potential role in psychiatric disorders. TRPV1 blockers are effective in various animal models predictive of anxiolytic and antipanic activities, in addition to reducing conditioned fear. In models of antidepressant activity, these compounds reduce behavioral despair and promote active stress-coping behavior. TRPV1 blockers also reduce the effects of certain drugs of abuse and revert behavioral changes in animal models of neurodevelopmental disorders. The main limiting factor in developing TRPV1 blockers as therapeutic agents concerns their effects on body temperature, particularly hyperthermia. New compounds, which block specific states of the channel, could represent an alternative. Moreover, compounds blocking both TRPV1 and the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), termed dual TRPV1/FAAH blockers, have been investigated with promising results. Overall, preclinical studies yield favorable results with TRPV1 blockers in animal models of psychiatric disorders.
Collapse
Affiliation(s)
- Lia P Iglesias
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Graduate School of Neuroscience
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gera, Brazil
| |
Collapse
|
5
|
Abstract
The transient receptor potential vanilloid-1 (TRPV1) is a non-specific cation channel known for its sensitivity to pungent vanilloid compound (i.e. capsaicin) and noxious stimuli, including heat, low pH or inflammatory mediators. TRPV1 is found in the somatosensory system, particularly primary afferent neurons that respond to damaging or potentially damaging stimuli (nociceptors). Stimulation of TRPV1 evokes a burning sensation, reflecting a central role of the channel in pain. Pharmacological and genetic studies have validated TRPV1 as a therapeutic target in several preclinical models of chronic pain, including cancer, neuropathic, postoperative and musculoskeletal pain. While antagonists of TRPV1 were found to be a valuable addition to the pain therapeutic toolbox, their clinical use has been limited by detrimental side effects, such as hyperthermia. In contrast, capsaicin induces a prolonged defunctionalisation of nociceptors and thus opened the door to the development of a new class of therapeutics with long-lasting pain-relieving effects. Here we review the list of TRPV1 agonists undergoing clinical trials for chronic pain management, and discuss new indications, formulations or combination therapies being explored for capsaicin. While the analgesic pharmacopeia for chronic pain patients is ancient and poorly effective, modern TRPV1-targeted drugs could rapidly become available as the next generation of analgesics for a broad spectrum of pain conditions.
Collapse
Affiliation(s)
- Mircea Iftinca
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
6
|
van Hoogdalem EJ, van Iersel MT, Winter E, Constant J, Kappler M. Pharmacology-Guided Rule-Based Adaptive Dose Escalation in First-in-Human Studies. Clin Pharmacol Ther 2020; 109:1326-1333. [PMID: 33150581 DOI: 10.1002/cpt.2101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 11/06/2022]
Abstract
First-in-human (FIH) studies typically progress through cohorts of fixed, standard size throughout the escalation scheme. This work presents and tests a pharmacology-guided rule-based adaptive dose escalation design that aims at making "best use" of participants in early clinical drug evaluation; it is paper based, not requiring real-time access to computational methods. The design minimizes the number of participants exposed to dose levels with low likelihood of being therapeutically relevant. Using criteria based on dose-limiting adverse event rate and on target exposure or target pharmacodynamics, the design increases the sample size when approaching the dose range of potential clinical relevance. The adaptive escalation design was retrospectively tested on actual data from a sample of 40 recently executed FIH studies with novel small and large molecules, and it was evaluated by simulating trials with three compounds with different therapeutic windows, i.e., representing a promising, unacceptable, and dubious profile. In retrospective evaluation of the adaptive escalation design, none of the cases overshot the actually reported top dose; one case resulted in a top dose that was within 20% under the estimated maximum tolerated dose in the original study. The median reduction of total number of participants per study was 38%. Trial simulations confirmed the retrospective evaluation, showing a similar performance of the adaptive escalation design compared with the conventional 6 + 2 design, at a reduced study size for compounds with a presumed acceptable therapeutic window. The adaptive escalation design was shown to make "best use" of participants in FIH studies without compromising safety.
Collapse
Affiliation(s)
| | | | | | - John Constant
- PRA Health Sciences, Scientific Affairs, Victoria, British Columbia, Canada
| | - Martin Kappler
- PRA Health Sciences, Statistical Consulting Services, Levallois-Perret, France
| |
Collapse
|
7
|
Silverman HA, Chen A, Kravatz NL, Chavan SS, Chang EH. Involvement of Neural Transient Receptor Potential Channels in Peripheral Inflammation. Front Immunol 2020; 11:590261. [PMID: 33193423 PMCID: PMC7645044 DOI: 10.3389/fimmu.2020.590261] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of non-selective cation channels that act as polymodal sensors in many tissues throughout mammalian organisms. In the context of ion channels, they are unique for their broad diversity of activation mechanisms and their cation selectivity. TRP channels are involved in a diverse range of physiological processes including chemical sensing, nociception, and mediating cytokine release. They also play an important role in the regulation of inflammation through sensory function and the release of neuropeptides. In this review, we discuss the functional contribution of a subset of TRP channels (TRPV1, TRPV4, TRPM3, TRPM8, and TRPA1) that are involved in the body’s immune responses, particularly in relation to inflammation. We focus on these five TRP channels because, in addition to being expressed in many somatic cell types, these channels are also expressed on peripheral ganglia and nerves that innervate visceral organs and tissues throughout the body. Activation of these neural TRP channels enables crosstalk between neurons, immune cells, and epithelial cells to regulate a wide range of inflammatory actions. TRP channels act either through direct effects on cation levels or through indirect modulation of intracellular pathways to trigger pro- or anti-inflammatory mechanisms, depending on the inflammatory disease context. The expression of TRP channels on both neural and immune cells has made them an attractive drug target in diseases involving inflammation. Future work in this domain will likely yield important new pathways and therapies for the treatment of a broad range of disorders including colitis, dermatitis, sepsis, asthma, and pain.
Collapse
Affiliation(s)
- Harold A Silverman
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Adrian Chen
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Nigel L Kravatz
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| | - Eric H Chang
- Laboratory of Biomedical Science, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hofstra University, Hempstead, NY, United States
| |
Collapse
|
8
|
Bamps D, Vriens J, de Hoon J, Voets T. TRP Channel Cooperation for Nociception: Therapeutic Opportunities. Annu Rev Pharmacol Toxicol 2020; 61:655-677. [PMID: 32976736 DOI: 10.1146/annurev-pharmtox-010919-023238] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic pain treatment remains a sore challenge, and in our aging society, the number of patients reporting inadequate pain relief continues to grow. Current treatment options all have their drawbacks, including limited efficacy and the propensity of abuse and addiction; the latter is exemplified by the ongoing opioid crisis. Extensive research in the last few decades has focused on mechanisms underlying chronic pain states, thereby producing attractive opportunities for novel, effective and safe pharmaceutical interventions. Members of the transient receptor potential (TRP) ion channel family represent innovative targets to tackle pain sensation at the root. Three TRP channels, TRPV1, TRPM3, and TRPA1, are of particular interest, as they were identified as sensors of chemical- and heat-induced pain in nociceptor neurons. This review summarizes the knowledge regarding TRP channel-based pain therapies, including the bumpy road of the clinical development of TRPV1 antagonists, the current status of TRPA1 antagonists, and the future potential of targeting TRPM3.
Collapse
Affiliation(s)
- Dorien Bamps
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium; .,Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
9
|
Khan A, Khan S, Kim YS. Insight into Pain Modulation: Nociceptors Sensitization and Therapeutic Targets. Curr Drug Targets 2020; 20:775-788. [PMID: 30706780 DOI: 10.2174/1389450120666190131114244] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Pain is a complex multidimensional concept that facilitates the initiation of the signaling cascade in response to any noxious stimuli. Action potential generation in the peripheral nociceptor terminal and its transmission through various types of nociceptors corresponding to mechanical, chemical or thermal stimuli lead to the activation of receptors and further neuronal processing produces the sensation of pain. Numerous types of receptors are activated in pain sensation which vary in their signaling pathway. These signaling pathways can be regarded as a site for modulation of pain by targeting the pain transduction molecules to produce analgesia. On the basis of their anatomic location, transient receptor potential ion channels (TRPV1, TRPV2 and TRPM8), Piezo 2, acid-sensing ion channels (ASICs), purinergic (P2X and P2Y), bradykinin (B1 and B2), α-amino-3-hydroxy-5- methylisoxazole-4-propionate (AMPA), N-methyl-D-aspartate (NMDA), metabotropic glutamate (mGlu), neurokinin 1 (NK1) and calcitonin gene-related peptide (CGRP) receptors are activated during pain sensitization. Various inhibitors of TRPV1, TRPV2, TRPM8, Piezo 2, ASICs, P2X, P2Y, B1, B2, AMPA, NMDA, mGlu, NK1 and CGRP receptors have shown high therapeutic value in experimental models of pain. Similarly, local inhibitory regulation by the activation of opioid, adrenergic, serotonergic and cannabinoid receptors has shown analgesic properties by modulating the central and peripheral perception of painful stimuli. This review mainly focused on various classes of nociceptors involved in pain transduction, transmission and modulation, site of action of the nociceptors in modulating pain transmission pathways and the drugs (both clinical and preclinical data, relevant to targets) alleviating the painful stimuli by exploiting nociceptor-specific channels and receptors.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
TRPV1 Antagonist DWP05195 Induces ER Stress-Dependent Apoptosis through the ROS-p38-CHOP Pathway in Human Ovarian Cancer Cells. Cancers (Basel) 2020; 12:cancers12061702. [PMID: 32604833 PMCID: PMC7352786 DOI: 10.3390/cancers12061702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022] Open
Abstract
In addition to their analgesic activity, transient receptor potential vanilloid 1 (TRPV1) agonists and antagonists demonstrate profound anti-cancer activities in various human cancers. In the present study, we investigated the anti-cancer activity of a novel TRPV1 antagonist, DWP05195, and evaluated its molecular mechanism in human ovarian cancer cells. DWP05195 demonstrated potent growth inhibitory effects in all five ovarian cancer cell lines examined. DWP05195 induced apoptosis through the activation of caspase-3, -8, and -9. DWP05195 induced C/EBP homologous protein (CHOP) expression and endoplasmic reticulum (ER) stress. Sodium phenylbutyrate (4-PBA), an ER-stress inhibitor, and CHOP knockdown significantly suppressed DWP5195-induced cell death. DWP05195-enhanced CHOP expression stimulated intrinsic and extrinsic apoptotic pathways through the regulation of Bcl2-like11 (BIM), death receptor 4 (DR4), and DR5. DWP05195-induced cell death was associated with increased reactive oxygen species (ROS) levels and p38 pathway activation. Pre-treatment with the antioxidant N-acetyl-L-cysteine (NAC) significantly suppressed DWP05195-induced CHOP expression and p38 activation. Inhibition of NADPH oxidase (NOX) through p47phox knockdown abolished DWP05195-induced CHOP expression and cell death. Taken together, the findings indicate that DWP05195 induces ER stress-induced apoptosis via the ROS-p38-CHOP pathway in human ovarian cancer cells.
Collapse
|
11
|
Abstract
Osteoarthritis (OA) is one of the most debilitating diseases and is associated with a high personal and socioeconomic burden. So far, there is no therapy available that effectively arrests structural deterioration of cartilage and bone or is able to successfully reverse any of the existing structural defects. Efforts to identify more tailored treatment options led to the development of strategies that enabled the classification of patient subgroups from the pool of heterogeneous phenotypes that display distinct common characteristics. To this end, the classification differentiates the structural endotypes into cartilage and bone subtypes, which are predominantly driven by structure-related degenerative events. In addition, further classifications have highlighted individuals with an increased inflammatory contribution (inflammatory phenotype) and pain-driven phenotypes as well as senescence and metabolic syndrome phenotypes. Most probably, it will not be possible to classify individuals by a single definite subtype, but it might help to identify groups of patients with a predominant pathology that would more likely benefit from a specific drug or cell-based therapy. Current clinical trials addressed mainly regeneration/repair of cartilage and bone defects or targeted pro-inflammatory mediators by intra-articular injections of drugs and antibodies. Pain was treated mostly by antagonizing nerve growth factor (NGF) activity and its receptor tropomyosin-related kinase A (TrkA). Therapies targeting metabolic disorders such as diabetes mellitus and senescence/aging-related pathologies are not specifically addressing OA. However, none of these therapies has been proven to modify disease progression significantly or successfully prevent final joint replacement in the advanced disease stage. Within this review, we discuss the recent advances in phenotype-specific treatment options and evaluate their applicability for use in personalized OA therapy.
Collapse
Affiliation(s)
- Susanne Grässel
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| | - Dominique Muschter
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| |
Collapse
|
12
|
Liu L, Gu L, Chen M, Zheng Y, Xiong X, Zhu S. Novel Targets for Stroke Therapy: Special Focus on TRPC Channels and TRPC6. Front Aging Neurosci 2020; 12:70. [PMID: 32256338 PMCID: PMC7093711 DOI: 10.3389/fnagi.2020.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke remains a leading cause of death, disability, and medical care burden worldwide. However, transformation from laboratory findings toward effective pharmacological interventions for clinical stroke has been unsatisfactory. Novel evidence has been gained on the underlying mechanisms and therapeutic potential related to the transient receptor potential (TRP) channels in several disorders. The TRP superfamily consists of a diverse group of Ca2+ permeable non-selective cation channels. In particular, the members of TRP subfamilies, TRP canonical (TRPC) channels and TRPC6, have been found in different cell types in the whole body and have high levels of expression in the central nervous system (CNS). Notably, the TRPCs and TRPC6 channel have been implicated in neurite outgrowth and neuronal survival during normal development and in a range of CNS pathological conditions. Recent studies have shown that suppression of TRPC6 channel degradation prevents ischemic neuronal cell death in experimental stroke. Accumulating evidence supports the important functions of TRPC6 in brain ischemia. We have highlighted some crucial advancement that points toward an important involvement of TRPCs and TRPC6 in ischemic stroke. This review will make an overview of the TRP and TRPC channels due to their roles as targets for clinical trials and CNS disorders. Besides, the primary goal is to discuss and update the critical role of TRPC6 channels in stroke and provide a promising target for stroke prevention and therapy.
Collapse
Affiliation(s)
- Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Garami A, Shimansky YP, Rumbus Z, Vizin RCL, Farkas N, Hegyi J, Szakacs Z, Solymar M, Csenkey A, Chiche DA, Kapil R, Kyle DJ, Van Horn WD, Hegyi P, Romanovsky AA. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacol Ther 2020; 208:107474. [PMID: 31926897 DOI: 10.1016/j.pharmthera.2020.107474] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
Abstract
Antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel alter body temperature (Tb) in laboratory animals and humans: most cause hyperthermia; some produce hypothermia; and yet others have no effect. TRPV1 can be activated by capsaicin (CAP), protons (low pH), and heat. First-generation (polymodal) TRPV1 antagonists potently block all three TRPV1 activation modes. Second-generation (mode-selective) TRPV1 antagonists potently block channel activation by CAP, but exert different effects (e.g., potentiation, no effect, or low-potency inhibition) in the proton mode, heat mode, or both. Based on our earlier studies in rats, only one mode of TRPV1 activation - by protons - is involved in thermoregulatory responses to TRPV1 antagonists. In rats, compounds that potently block, potentiate, or have no effect on proton activation cause hyperthermia, hypothermia, or no effect on Tb, respectively. A Tb response occurs when a TRPV1 antagonist blocks (in case of hyperthermia) or potentiates (hypothermia) the tonic TRPV1 activation by protons somewhere in the trunk, perhaps in muscles, and - via the acido-antithermogenic and acido-antivasoconstrictor reflexes - modulates thermogenesis and skin vasoconstriction. In this work, we used a mathematical model to analyze Tb data from human clinical trials of TRPV1 antagonists. The analysis suggests that, in humans, the hyperthermic effect depends on the antagonist's potency to block TRPV1 activation not only by protons, but also by heat, while the CAP activation mode is uninvolved. Whereas in rats TRPV1 drives thermoeffectors by mediating pH signals from the trunk, but not Tb signals, our analysis suggests that TRPV1 mediates both pH and thermal signals driving thermoregulation in humans. Hence, in humans (but not in rats), TRPV1 is likely to serve as a thermosensor of the thermoregulation system. We also conducted a meta-analysis of Tb data from human trials and found that polymodal TRPV1 antagonists (ABT-102, AZD1386, and V116517) increase Tb, whereas the mode-selective blocker NEO6860 does not. Several strategies of harnessing the thermoregulatory effects of TRPV1 antagonists in humans are discussed.
Collapse
Affiliation(s)
- Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.
| | - Yury P Shimansky
- Department of Neurobiology, Barrow Neurological Institute, Dignity Health, Phoenix, AZ, USA
| | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Robson C L Vizin
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA
| | - Nelli Farkas
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Zsolt Szakacs
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Margit Solymar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Alexandra Csenkey
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | | | | | | | - Wade D Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pecs, Pecs, Hungary; Department of Translational Medicine, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andrej A Romanovsky
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, AZ, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ, USA; Zharko Pharma Inc., Olympia, WA, USA.
| |
Collapse
|
14
|
Alcaraz MJ, Guillén MI, Ferrándiz ML. Emerging therapeutic agents in osteoarthritis. Biochem Pharmacol 2019; 165:4-16. [PMID: 30826327 DOI: 10.1016/j.bcp.2019.02.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is the most common joint disorder and a leading cause of disability. Current treatments for OA can improve symptoms but do not delay the progression of disease. In the last years, much effort has been devoted to developing new treatments for OA focused on pain control, inflammatory mediators or degradation of articular tissues. Although promising results have been obtained in ex vivo studies and animal models of OA, few of these agents have completed clinical trials. Available clinical data support the interest of nerve growth factor as a target in pain control as well as the disease-modifying potential of inhibitors of Wnt signaling or catabolic enzymes such as aggrecanases and cathepsin K, and anabolic strategies like fibroblast growth factor-18 or cellular therapies. Carefully controlled studies in patients selected according to OA phenotypes and with a long follow-up will help to confirm the relevance of these new approaches as emerging therapeutic treatments in OA.
Collapse
Affiliation(s)
- María José Alcaraz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain.
| | - María Isabel Guillén
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain; Department of Pharmacy, Cardenal Herrera-CEU University, Ed. Ciencias de la Salud, 46115 Alfara, Valencia, Spain
| | - María Luisa Ferrándiz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, 46100 Burjasot, Valencia, Spain
| |
Collapse
|
15
|
Non-opioid analgesic use and concerns for impaired organ protection. Br J Anaesth 2018; 120:403-405. [PMID: 29406189 DOI: 10.1016/j.bja.2017.11.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
|