1
|
Zhao J, Wang X, Wu Y, Zhao C. Krüppel-like factor 4 modulates the miR-101/COL10A1 axis to inhibit renal fibrosis after AKI by regulating epithelial-mesenchymal transition. Ren Fail 2024; 46:2316259. [PMID: 38345033 PMCID: PMC10863509 DOI: 10.1080/0886022x.2024.2316259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
Acute kidney injury (AKI) can progress to renal fibrosis and chronic kidney disease (CKD), which reduces quality of life and increases the economic burden on patients. However, the molecular mechanisms underlying renal fibrosis following AKI remain unclear. This study tested the hypothesis that the Krüppel-like factor 4 (KLF4)/miR-101/Collagen alpha-1X (COL10A1) axis could inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis after AKI in a mouse model of ischemia-reperfusion (I/R)-induced renal fibrosis and HK-2 cells by gene silencing, overexpression, immunofluorescence, immunohistochemistry, real-time quantitative PCR, Western blotting, dual-luciferase reporter assay, fluorescence in situ hybridization (FISH) and ELISA. Compared with the Sham group, I/R induced renal tubular and glomerular injury and fibrosis, and increased the levels of BUN, serum Scr and neutrophil gelatinase-associated lipocalin (NGAL), Col10a1 and Vimentin expression, but decreased E-cadherin expression in the kidney tissues of mice at 42 days post-I/R. Similarly, hypoxia promoted fibroblastic morphological changes in HK-2 cells and enhanced NGAL, COL10A1, Vimentin, and α-SMA expression, but reduced E-cadherin expression in HK-2 cells. These pathological changes were significantly mitigated in COL10A1-silenced renal tissues and HK-2 cells. KLF4 induces miR-101 transcription. More importantly, hypoxia upregulated Vimentin and COL10A1 expression, but decreased miR-101, KLF4, and E-cadherin expression in HK-2 cells. These hypoxic effects were significantly mitigated or abrogated by KLF4 over-expression in the HK-2 cells. Our data indicate that KLF4 up-regulates miR-101 expression, leading to the downregulation of COL10A1 expression, inhibition of EMT and renal fibrosis during the pathogenic process of I/R-related renal fibrosis.
Collapse
Affiliation(s)
- Jingying Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xiuli Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yubin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chengguang Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Wang L, Luo W, Zhang S, Zhang J, He L, Shi Y, Gao L, Wu B, Nie X, Hu C, Han X, He C, Xu B, Liang G. Macrophage-derived FGFR1 drives atherosclerosis through PLCγ-mediated activation of NF-κB inflammatory signalling pathway. Cardiovasc Res 2024; 120:1385-1399. [PMID: 38842387 DOI: 10.1093/cvr/cvae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024] Open
Abstract
AIMS Atherosclerosis (AS) is a leading cause of cardiovascular morbidity and mortality. Atherosclerotic lesions show increased levels of proteins associated with the fibroblast growth factor receptor (FGFR) pathway. However, the functional significance and mechanisms governed by FGFR signalling in AS are not known. In the present study, we investigated fibroblast growth factor receptor 1 (FGFR1) signalling in AS development and progression. METHODS AND RESULTS Examination of human atherosclerotic lesions and aortas of Apoe-/- mice fed a high-fat diet (HFD) showed increased levels of FGFR1 in macrophages. We deleted myeloid-expressed Fgfr1 in Apoe-/- mice and showed that Fgfr1 deficiency reduces atherosclerotic lesions and lipid accumulations in both male and female mice upon HFD feeding. These protective effects of myeloid Fgfr1 deficiency were also observed when mice with intact FGFR1 were treated with FGFR inhibitor AZD4547. To understand the mechanistic basis of this protection, we harvested macrophages from mice and show that FGFR1 is required for macrophage inflammatory responses and uptake of oxidized LDL. RNA sequencing showed that FGFR1 activity is mediated through phospholipase-C-gamma (PLCγ) and the activation of nuclear factor-κB (NF-κB) but is independent of FGFR substrate 2. CONCLUSION Our study provides evidence of a new FGFR1-PLCγ-NF-κB axis in macrophages in inflammatory AS, supporting FGFR1 as a potentially therapeutic target for AS-related diseases.
Collapse
MESH Headings
- Animals
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Phospholipase C gamma/metabolism
- Phospholipase C gamma/genetics
- NF-kappa B/metabolism
- Signal Transduction
- Macrophages/metabolism
- Male
- Female
- Disease Models, Animal
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aortic Diseases/immunology
- Humans
- Plaque, Atherosclerotic
- Mice, Knockout, ApoE
- Mice, Inbred C57BL
- Lipoproteins, LDL/metabolism
- Diet, High-Fat
- Pyrazoles/pharmacology
- Inflammation Mediators/metabolism
- Benzamides/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Piperazines
Collapse
Affiliation(s)
- Lintao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Wu Luo
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, The Affiliated First Hospital of Wenzhou Medical University, Nanbaixiang Street, Wenzhou, Zhejiang 325035, China
| | - Suya Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Junsheng Zhang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
- Department of Pathology, Anhui Public Health Clinical Center, Hefei, Anhui 230032, China
| | - Lu He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Yifan Shi
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
| | - Li Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Baochuan Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
| | - Xiaoyan Nie
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Chenghong Hu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, The Affiliated First Hospital of Wenzhou Medical University, Nanbaixiang Street, Wenzhou, Zhejiang 325035, China
| | - Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, The Affiliated First Hospital of Wenzhou Medical University, Nanbaixiang Street, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
3
|
Meng M, Ma Y, Xu J, Chen G, Mahato RK. DNA methylation-mediated FGFR1 silencing enhances NF-κB signaling: implications for asthma pathogenesis. Front Mol Biosci 2024; 11:1433557. [PMID: 39377013 PMCID: PMC11456769 DOI: 10.3389/fmolb.2024.1433557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background Fibroblast growth factor receptor 1 (FGFR1) is known to play a crucial role in the pathogenesis of asthma, although the precise mechanism remains unclear. This study aims to investigate how DNA methylation-mediated silencing of FGFR1 contributes to the enhancement of NF-κB signaling, thereby influencing the progression of asthma. Methods RT-qPCR was utilized to assess FGFR1 mRNA levels in the serum of asthma patients and BEAS-2B, HBEpiC, and PCS-301-011 cells. CCK8 assays were conducted to evaluate the impact of FGFR1 overexpression on the proliferation of BEAS-2B, PCS-301-011, and HBEpiC cells. Dual-luciferase and DNA methylation inhibition assays were performed to elucidate the underlying mechanism of FGFR1 gene in asthma. The MassARRAY technique was employed to measure the methylation levels of the FGFR1 DNA. Results Elevated FGFR1 mRNA levels were observed in the serum of asthma patients compared to healthy controls. Overexpression of FGFR1 in BEAS-2B cells significantly enhanced cell proliferation and stimulated NF-ĸB transcriptional activity in HERK-293T cells. Furthermore, treatment with 5-Aza-CdR, a DNA demethylating agent, markedly increased the expression of FGFR1 mRNA in BEAS-2B, PCS-301-011, and HBEpiC cells. Luciferase activity analysis confirmed heightened NF-ĸB transcriptional activity in FGFR1-overexpressing BEAS-2B cells and BEAS-2B cells treated with 5-Aza-CdR. Additionally, a decrease in methylation levels in the FGFR1 DNA promoter was detected in the serum of asthma patients using the MassARRAY technique. Conclusion Our findings reveal a potential mechanism involving FGFR1 in the progression of asthma. DNA methylation of FGFR1 inactivates the NF-ĸB signaling pathway, suggesting a promising avenue for developing effective therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Minglu Meng
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
- Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Yingjiao Ma
- School of Public Health, Youjiang Medical University for Nationalities, Baise, China
| | - Jianguo Xu
- Department of Respiratory Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Gao Chen
- Department of Laboratory Medicine, The People’s Hospital of Hechi, Hechi, China
| | | |
Collapse
|
4
|
Zhao YN, Liu ZD, Yan T, Xu TX, Jin TY, Jiang YS, Zuo W, Lee KY, Huang LJ, Wang Y. Macrophage-specific FGFR1 deletion alleviates high-fat-diet-induced liver inflammation by inhibiting the MAPKs/TNF pathways. Acta Pharmacol Sin 2024; 45:988-1001. [PMID: 38279043 PMCID: PMC11053141 DOI: 10.1038/s41401-024-01226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease that is substantially associated with obesity-induced chronic inflammation. Macrophage activation and macrophage-medicated inflammation play crucial roles in the development and progression of NAFLD. Furthermore, fibroblast growth factor receptor 1 (FGFR1) has been shown to be essentially involved in macrophage activation. This study investigated the role of FGFR1 in the NAFLD pathogenesis and indicated that a high-fat diet (HFD) increased p-FGFR1 levels in the mouse liver, which is associated with increased macrophage infiltration. In addition, macrophage-specific FGFR1 knockout or administration of FGFR1 inhibitor markedly protected the liver from HFD-induced lipid accumulation, fibrosis, and inflammatory responses. The mechanistic study showed that macrophage-specific FGFR1 knockout alleviated HFD-induced liver inflammation by suppressing the activation of MAPKs and TNF signaling pathways and reduced fat deposition in hepatocytes, thereby inhibiting the activation of hepatic stellate cells. In conclusion, the results of this research revealed that FGFR1 could protect the liver of HFD-fed mice by inhibiting MAPKs/TNF-mediated inflammatory responses in macrophages. Therefore, FGFR1 can be employed as a target to prevent the development and progression of NAFLD.
Collapse
Affiliation(s)
- Yan-Ni Zhao
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Zhou-di Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tao Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ting-Xin Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tian-Yang Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong-Sheng Jiang
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China
| | - Wei Zuo
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea.
| | - Li-Jiang Huang
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China.
| | - Yi Wang
- Joint Research Center on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, China.
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Chen Z, Encarnacion AM, Rajan RPS, Yao H, Lee S, Kim E, Lee TH. Discovery of a novel homoisoflavonoid derivative 5g for anti-osteoclastic bone loss via targeting FGFR1. Eur J Med Chem 2024; 270:116335. [PMID: 38555854 DOI: 10.1016/j.ejmech.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Several flavonoids have been shown to exert anti-osteoporosis activity. However, the structure-activity relationship and the mechanism of anti-osteoporosis activity of flavonoids remain unknown. In this study, we prepared a series of novel homoisoflavonoid (HIF) derivatives to evaluate their inhibitory effects on osteoclastogenesis using TRAP-activity in vitro assay. Then, the preliminary structure-activity relationship was studied. Among the evaluated novel flavonoids, derivative 5g exerted the most inhibitory bioactivity on primary osteoclast differentiation without interfering with osteogenesis. It was hence selected for further in vitro, in vivo and mechanism of action investigation. Results show that 5g likely directly binds to the fibroblast growth factor receptor 1 (FGFR1), decreasing the activation of ERK1/2 and IκBα/NF-κB signaling pathways, which in turn blocks osteoclastogenesis in vitro and osteoclastic bone loss in vivo. Our study shows that homoisoflavonoid (HIF) derivatives 5g can serve as a potential novel candidate for treating osteoporosis via inhibition of FGFR1.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Alessandra Marie Encarnacion
- Department of Interdisciplinary Program of Biomedical Engineering, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | | | - Hongyuan Yao
- Department of Interdisciplinary Program of Biomedical Engineering, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eunae Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea; Host-directed Antiviral Research Center, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
6
|
Wang ZW, Zou FM, Wang AL, Yang J, Jin R, Wang BL, Shen LJ, Qi S, Liu J, Liu J, Wang WC, Liu QS. Repurposing of the FGFR inhibitor AZD4547 as a potent inhibitor of necroptosis by selectively targeting RIPK1. Acta Pharmacol Sin 2023; 44:801-810. [PMID: 36216899 PMCID: PMC10042809 DOI: 10.1038/s41401-022-00993-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Necroptosis is a form of regulated necrosis involved in various pathological diseases. The process of necroptosis is controlled by receptor-interacting kinase 1 (RIPK1), RIPK3, and pseudokinase mixed lineage kinase domain-like protein (MLKL), and pharmacological inhibition of these kinases has been shown to have therapeutic potentials in a variety of diseases. In this study, using drug repurposing strategy combined with high-throughput screening (HTS), we discovered that AZD4547, a previously reported FGFR inhibitor, is able to interfere with necroptosis through direct targeting of RIPK1 kinase. In both human and mouse cell models, AZD4547 blocked RIPK1-dependent necroptosis. In addition, AZD4547 rescued animals from TNF-induced lethal shock and inflammatory responses. Together, our study demonstrates that AZD4547 is a potent and selective inhibitor of RIPK1 with therapeutic potential for the treatment of inflammatory disorders that involve necroptosis.
Collapse
Affiliation(s)
- Zuo-Wei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Feng-Ming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Ao-Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Rui Jin
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Bei-Lei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Li-Juan Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Juan Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Wen-Chao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Qing-Song Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
- Precision Medicine Research Laboratory of Anhui Province, Hefei, 230088, China.
| |
Collapse
|
7
|
Xu Z, Luo W, Chen L, Zhuang Z, Yang D, Qian J, Khan ZA, Guan X, Wang Y, Li X, Liang G. Ang II (Angiotensin II)-Induced FGFR1 (Fibroblast Growth Factor Receptor 1) Activation in Tubular Epithelial Cells Promotes Hypertensive Kidney Fibrosis and Injury. Hypertension 2022; 79:2028-2041. [PMID: 35862110 DOI: 10.1161/hypertensionaha.122.18657] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Elevated Ang II (angiotensin II) level leads to a range of conditions, including hypertensive kidney disease. Recent evidences indicate that FGFR1 (fibroblast growth factor receptor 1) signaling may be involved in kidney injuries. In this study, we determined whether Ang II alters FGFR1 signaling to mediate renal dysfunction. METHODS Human archival kidney samples from patients with or without hypertension were examined. Multiple genetic and pharmacological approaches were used to investigate FGFR1-mediated signaling in tubular epithelial NRK-52E cells in response to Ang II stimulation. C57BL/6 mice were infused with Ang II for 28 days to develop hypertensive kidney disease. Mice were treated with either adeno-associated virus expressing FGFR1 shRNA or FGFR1 inhibitor AZD4547. RESULTS Kidney specimens from subjects with hypertension and mice challenged with Ang II have increased FGFR1 activity in renal epithelial cells. Renal epithelial cells in culture initiate extracellular matrix programming in response to Ang II, through the activation of FGFR1, which is independent of both AT1R (angiotensin II receptor type 1) and AT2R (angiotensin II receptor type 2). The RNA sequencing analysis indicated that disrupting FGFR1 suppresses Ang II-induced fibrogenic responses in epithelial cells. Mechanistically, Ang II-activated FGFR1 leads to STAT3 (signal transducer and activator of transcription 3) activation, which is responsible for fibrogenic factor expression in kidneys. In the mouse model of hypertensive kidney disease, genetic knockdown of FGFR1 or pharmacological inhibition of its activity protected kidneys from dysfunction and fibrosis upon Ang II challenge. CONCLUSIONS Our studies uncover a novel mechanism causing renal fibrosis in hypertension and indicate FGFR1 as a potential target to preserve renal function and integrity.
Collapse
Affiliation(s)
- Zheng Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (Z.X., W.L., J.Q., Y.W., X.L., G.L.).,School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (Z.X., L.C., G.L.).,Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China (Z.X., W.L.)
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (Z.X., W.L., J.Q., Y.W., X.L., G.L.).,Department of Cardiology and Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang, China (Z.X., W.L.)
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (Z.X., L.C., G.L.)
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Zhejiang, China (Z.Z., D.Y., X.G.)
| | - Daona Yang
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Zhejiang, China (Z.Z., D.Y., X.G.)
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (Z.X., W.L., J.Q., Y.W., X.L., G.L.)
| | - Zia A Khan
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Canada (Z.A.K.)
| | - Xinfu Guan
- The Affiliated Cangnan Hospital, Wenzhou Medical University, Zhejiang, China (Z.Z., D.Y., X.G.)
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (Z.X., W.L., J.Q., Y.W., X.L., G.L.)
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (Z.X., W.L., J.Q., Y.W., X.L., G.L.)
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (Z.X., W.L., J.Q., Y.W., X.L., G.L.).,School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, China (Z.X., L.C., G.L.).,Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, China (G.L.)
| |
Collapse
|
8
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
9
|
Chen Y, Zou H, Lu H, Xiang H, Chen S. Research progress of endothelial-mesenchymal transition in diabetic kidney disease. J Cell Mol Med 2022; 26:3313-3322. [PMID: 35560773 PMCID: PMC9189345 DOI: 10.1111/jcmm.17356] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Renal fibrosis is an important pathological feature of diabetic kidney disease (DKD), manifested as tubular interstitial fibrosis, tubular atrophy, glomerulosclerosis and damage to the normal structure of the kidney. Renal fibrosis can eventually develop into renal failure. A better understanding of renal fibrosis in DKD is needed due to clinical limitations of current anti‐fibrotic drugs in terms of effectiveness, cost‐effectiveness and side effects. Fibrosis is characterized by local excessive deposition of extracellular matrix, which is derived from activated myofibroblasts to increase its production or specific tissue inhibitors of metalloproteinases to reduce its degradation. In recent years, endothelial‐mesenchymal transition (EndMT) has gradually integrated into the pathogenesis of fibrosis. In animal models of diabetic kidney disease, it has been found that EndMT is involved in the formation of renal fibrosis and multiple signalling pathways such as TGF‐β signalling pathway, Wnt signalling pathway and non‐coding RNA network participate in the regulation of EndMT during fibrosis. Here, we mainly review EndMT regulation and targeted therapy of renal fibrosis in DKD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hang Zou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
10
|
Alazouny ZM, Alghonamy NM, Mohamed SR, Abdel Aal SM. Mesenchymal stem cells microvesicles versus granulocytes colony stimulating factor efficacy in ameliorating septic induced acute renal cortical injury in adult male albino rats (Histological and Immunohistochemical Study). Ultrastruct Pathol 2022; 46:164-187. [PMID: 35193482 DOI: 10.1080/01913123.2022.2039826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sepsis is the most common cause of acute kidney injury in ICU patients, with increasing mortalities. Treatment septic AKI is unsatisfactory; therefore, more effective therapies must be investigated. MSCs-MVs have the same effectiveness in tissue repair as their original cells. Granulocyte colony-stimulating factor (G-CSF) is considered a simple and convenient tool in regenerative medicine. This study aimed to compare the probable therapeutic effect of MSCs-MVs versus G-CSF on septic AKI in rats. Forty-eight adult male rats were divided into four groups; I control group (IA-ID), II induced-sepsis group, III G-CSF, and IV MSC-MVs groups. Sepsis was induced in groups II, III, IV through a single IV injection of 10 mg/ kg of E.Coli-LPS dissolved in 1 ml saline. Four hours later, group IV received a single IV injection of MSCs-MVs, while group III received a SC injection of Neupogen for 5 days. All animals were sacrificed 7 days from the start. Serum and tissue samples of each group were used for biochemical study. Sections from all groups were subjected to light and electron microscopic examination. A fluorescent microscope examination for subgroup ID and group IV was done. Morphometric and statistical analyses were performed. Group II showed features of acute tubular injury. Group III showed some improvement (biochemically, LM & EM level) however, group IV showed more improvement. MVs injection caused a marked improvement in septic AKI; G-CSF can also meliorate the degenerative effect of sepsis on renal cortex, but to a lesser extent than MSCs-MVs.
Collapse
Affiliation(s)
- Zeinab M Alazouny
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nabila M Alghonamy
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samar R Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara M Abdel Aal
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Zhan Y, Zhu M, Liu S, Lu J, Ni Z, Cai H, Zhang W. MicroRNA‑93 inhibits the apoptosis and inflammatory response of tubular epithelial cells via the PTEN/AKT/mTOR pathway in acute kidney injury. Mol Med Rep 2021; 24:666. [PMID: 34296286 PMCID: PMC8335745 DOI: 10.3892/mmr.2021.12305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Renal tubular epithelial cell injury is the main cause of septic acute kidney injury (AKI), which is characterized by the excessive inflammatory response and apoptosis. Numerous studies have demonstrated that miRNAs are associated with inflammatory response and apoptosis in numerous diseases. The present study mainly focuses on investigating the association between microRNA (miRNA/miR) expression and inflammatory response and apoptosis in the pathogenesis of AKI. In vitro and in vivo models of AKI were simulated using Escherichia coli lipopolysaccharide (LPS)‑administrated kidney epithelial cells and mice, respectively. The miRNA expression profile was examined using miRNA microarray in kidney tissues. Next, the effects of miR‑93 upregulation on the apoptosis, cytokine expression and oxidative stress in the LPS‑stimulated TCMK‑1 were tested. The target genes of this miRNA were investigated, and the regulatory association between miR‑93 and the AKT/mTOR pathway was investigated. The results demonstrated that miR‑93 was the most downregulated miRNA in mice kidney. Furthermore, in LPS‑induced renal tubular epithelial cells (TECs) injury model, that upregulation of miR‑93 was found to attenuate the apoptosis and inflammatory response, as well as reactive oxygen species generation. Mechanistically, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was identified as a target of miR‑93. Further experiments revealed that LPS‑induced the decrease of phosphorylated (p)‑AKT and p‑mTOR protein expression in vitro are reversed by the overexpression of miR‑93. The results of the present study suggested that the protective effect of miR‑93 on AKI may be associated with the activation of PTEN/AKT/mTOR pathway. miR‑93 may serve as a potential therapeutic target in sepsis‑induced AKI.
Collapse
Affiliation(s)
- Yaping Zhan
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Minxia Zhu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Shang Liu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Jiayue Lu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Hong Cai
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| | - Weiming Zhang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
- Department of Nephrology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201100, P.R. China
| |
Collapse
|
12
|
Huang X, Shen H, Liu Y, Qiu S, Guo Y. Fisetin attenuates periodontitis through FGFR1/TLR4/NLRP3 inflammasome pathway. Int Immunopharmacol 2021; 95:107505. [PMID: 33725636 DOI: 10.1016/j.intimp.2021.107505] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 12/22/2022]
Abstract
The purpose of the present study was to investigate the pharmacological effect of Fisetin on experimental periodontitis in rats and explore its potential mechanism. The ligature/LPS method was used to induce periodontitis in rats. LPS was employed to cause inflammation in Human gingival fibroblasts (HGF). The transfections with FGFR1 SiRNA, NLRP3 SiRNA and the selective TLR4 inhibitor TAK242 were used to investigate the mechanism of Fisetin-mediated inflammatory reaction in LPS-induced HGF. As a result, Fisetin reduced the alveolar bone gap, reversed histopathological lesion and inhibited serum inflammatory cytokine concentration in periodontitis rats. Fisetin decreased the inflammatory cytokine contents in the supernatant of LPS-induced HGF. The inhibitory effect of Fisetin might be attributed to FGFR1/TLR4/NLRP3 inflammasome pathway both in vivo and in vitro. The suppressions of FGFR1, TLR4 and NLRP3 proved that FGFR1/TLR4/NLRP3 signaling was involved in the Fisetin-mediated inflammatory response. Fisetin also inhibited NLRP3 priming. The data demonstrated that Fisetin attenuated periodontitis by inhibiting inflammatory reaction via FGFR1/TLR4/NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Xin Huang
- Department of Pediatric and Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Hong Shen
- Department of Pediatric and Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yiran Liu
- Department of Pediatric and Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Sainan Qiu
- Department of Pediatric and Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.
| | - Yan Guo
- Department of Pediatric and Preventive Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
13
|
Li S, Jia Y, Xue M, Hu F, Zheng Z, Zhang S, Ren S, Yang Y, Si Z, Wang L, Guan M, Xue Y. Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. Life Sci 2020; 261:118347. [PMID: 32853650 DOI: 10.1016/j.lfs.2020.118347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
The effect of exosomes on receptor cells participating in intercellular communication has been extensively studied, but the effect of exosomes on donor cells remains unclear. It has been reported that exosomes secreted by renal proximal tubular epithelial cells (PTECs) under different stimuli accelerate acute and chronic kidney diseases. This study aimed to explore whether inhibiting exosomal secretion in PTECs by knocking out Rab27a, a key exosome regulatory gene, inhibits the excessive inflammatory response in PTECs and delays diabetic kidney disease (DKD). First, we proved that the bovine serum albumin (BSA)-induced inflammatory response in HK-2 cells was inhibited by knocking out Rab27a and that Rab27a, IL-6, TNF-α and COL-1 expression was markedly increased in an HFD/STZ-induced diabetic mouse model. Furthermore, miR-26a-5p expression in exosomes secreted by BSA-treated HK-2 cells was significantly increased but correspondingly decreased in the cells; after knocking out Rab27a, miR-26a-5p levels in the cells rebounded. Next, we confirmed that a miR-26a-5p mimic suppressed the inflammatory response, while a miR-26a-5p inhibitor accelerated the inflammatory response. Then, we found that miR-26a-5p targets the 3'-untranslated region (UTR) of CHAC1. Furthermore, the inflammatory response and NF-κB signalling pathway activation induction by the miR-26a-5p inhibitor were abolished by CHAC1 knockout. Therefore, we conclude that inhibiting exosome secretion by BSA-induced PTECs promotes miR-26a-5p expression in cells, thereby inhibiting the CHAC1/NF-κB pathways to prevent the inflammatory response in PTECs and delaying the development of DKD. This study provides new insight into the pathogenic mechanism of exosomes and a new therapeutic target for DKD.
Collapse
Affiliation(s)
- Shuangshuang Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Jia
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Fang Hu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Zongji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shijing Ren
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zekun Si
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|