1
|
Barzola FN, Laiolo J, Cotelo C, Joray MB, Volpini X, Rivero MR, Rópolo AS, Touz MC, Feliziani C. Cytotoxic effects of ivermectin on Giardia lamblia: induction of apoptosis and cell cycle arrest. Front Microbiol 2024; 15:1484805. [PMID: 39545240 PMCID: PMC11560887 DOI: 10.3389/fmicb.2024.1484805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Giardia lamblia is a flagellated protozoan parasite causing giardiasis, a common intestinal infection characterized by diarrhea, abdominal cramps, and nausea. Treatments employed to combat this parasitic infection have remained unchanged for the past 40 years, leading to the emergence of resistant strains and prompting the search for new therapeutic agents. Methods This study investigated the cytotoxic effects of ivermectin (IVM) on G. lamblia trophozoites. We conducted dose-response experiments to assess IVM-induced cytotoxicity. We utilized various biochemical and ultrastructural analyses to explore the underlying mechanisms of cell death, including reactive oxygen species (ROS) production, DNA fragmentation, cell cycle arrest, and apoptosis markers. Results Our findings demonstrate that IVM induces dose-dependent cytotoxicity and triggers cell death pathways. We found that IVM treatment generates elevated levels of reactive oxygen species (ROS), DNA fragmentation, and arrests of trophozoites in the cell cycle's S phase. Additionally, ultrastructural analysis reveals morphological alterations consistent with apoptosis, such as cytoplasmic vacuolization, chromatin condensation, and tubulin distribution. Discussion The insights gained from this study may contribute to developing new therapeutic strategies against giardiasis, addressing the challenge posed by drug-resistant strains.
Collapse
Affiliation(s)
- Florencia Nicole Barzola
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica De Córdoba, Córdoba, Argentina
| | - Camilo Cotelo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Belén Joray
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE), Consejo Nacional de Investigaciones Cientí-ficas y Técnicas (CONICET)/Universidad Católica de Córdoba (UCC), Córdoba, Argentina
| | - Ximena Volpini
- Centro de Investigaciones en Bioquímica Clínica e Inmunología – Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - María Romina Rivero
- Instituto De Desarrollo Agroindustrial y De La Salud (IDAS-CONCIET), Universidad Nacional De Rio Cuarto, Rio Cuarto, Argentina
| | - Andrea Silvana Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Carolina Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Abou-Elnour FS, El-Habashy SE, Essawy MM, Abdallah OY. Codelivery of ivermectin and methyl dihydrojasmonate in nanostructured lipid carrier for synergistic antileukemia therapy. Int J Pharm 2024; 656:124086. [PMID: 38580074 DOI: 10.1016/j.ijpharm.2024.124086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.
Collapse
Affiliation(s)
- Fatma S Abou-Elnour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Biswal P, Sahu MR, Ahmad MH, Mondal AC. The interplay between hippo signaling and mitochondrial metabolism: Implications for cellular homeostasis and disease. Mitochondrion 2024; 76:101885. [PMID: 38643865 DOI: 10.1016/j.mito.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Mitochondria are the membrane-bound organelles producing energy for cellular metabolic processes. They orchestrate diverse cell signaling cascades regulating cellular homeostasis. This functional versatility may be attributed to their ability to regulate mitochondrial dynamics, biogenesis, and apoptosis. The Hippo pathway, a conserved signaling pathway, regulates various cellular processes, including mitochondrial functions. Through its effectors YAP and TAZ, the Hippo pathway regulates transcription factors and creates a seriatim process that mediates cellular metabolism, mitochondrial dynamics, and survival. Mitochondrial dynamics also potentially regulates Hippo signaling activation, indicating a bidirectional relationship between the two. This review outlines the interplay between the Hippo signaling components and the multifaceted role of mitochondria in cellular homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Priyanka Biswal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
4
|
Jitobaom K, Peerapen P, Boonyuen U, Meewan I, Boonarkart C, Sirihongthong T, Thongon S, Thongboonkerd V, Auewarakul P. Identification of inositol monophosphatase as a broad-spectrum antiviral target of ivermectin. J Med Virol 2024; 96:e29552. [PMID: 38511598 DOI: 10.1002/jmv.29552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Ivermectin has broad-spectrum antiviral activities. Despite the failure in clinical application of COVID-19, it can serve as a lead compound for the development of more effective broad-spectrum antivirals, for which a better understanding of its antiviral mechanisms is essential. We thus searched for potential novel targets of ivermectin in host cells by label-free thermal proteomic profiling using Huh-7 cells. Inositol monophosphatase (IMPase) was found among the proteins with shifted thermal stability by ivermectin. Ivermectin could inhibit IMPase activity and reduce cellular myo-inositol and phosphatidylinositol-4-phosphate levels. On the other hand, inositol could impair the antiviral activity of ivermectin and lithium, an IMPase inhibitor with known antiviral activity. As phosphatidylinositol phosphate is crucial for the replication of many RNA viruses, inhibition of cellular myo-inositol biosynthesis may be an important antiviral mechanism of ivermectin. Hence, inhibition of IMPase could serve as a potential target for broad-spectrum antiviral development.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ittipat Meewan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyaporn Sirihongthong
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Songkran Thongon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Fan N, Zhang L, Wang Z, Ding H, Yue Z. Ivermectin Inhibits Bladder Cancer Cell Growth and Induces Oxidative Stress and DNA Damage. Anticancer Agents Med Chem 2024; 24:348-357. [PMID: 38375808 DOI: 10.2174/0118715206274095231106042833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Bladder cancer is the most common malignant tumor of the urinary system. Nevertheless, current therapies do not provide satisfactory results. It is imperative that novel strategies should be developed for treating bladder cancer. OBJECTIVES To evaluate the effect of a broad-spectrum anti-parasitic agent, Ivermectin, on bladder cancer cells in vitro and in vivo. METHODS CCK-8 and EdU incorporation assays were used to evaluate cell proliferation. Apoptosis was detected by flow cytometry, TUNEL assay, and western blotting. Flow cytometry and DCFH-DA assay were used to analyze the reactive oxygen species (ROS) levels. DNA damage was determined by Neutral COMET assay and γ H2AX expression. Proteins related to apoptosis and DNA damage pathways were determined by WB assay. Xenograft tumor models in nude mice were used to investigate the anti-cancer effect of Ivermectin in vivo. RESULTS Our study showed that in vitro and in vivo, Ivermectin inhibited the growth of bladder cancer cells. In addition, Ivermectin could induce apoptosis, ROS production, DNA damage, and activate ATM/P53 pathwayrelated proteins in bladder cancer cells. CONCLUSIONS According to these findings, Ivermectin may be a potential therapeutic candidate against bladder cancer due to its significant anti-cancer effect.
Collapse
Affiliation(s)
- Ning Fan
- Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Lixiu Zhang
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Gansu. Lanzhou, 730050, China
| | - Zhiping Wang
- Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Hui Ding
- Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zhongjin Yue
- Institute of Urology, Key Laboratory of Gansu Urological Diseases, Gansu Nephro-Urological Clinical Center, Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| |
Collapse
|
6
|
Wang Y, Qin P, Zhao C, Li Y, Li S, Fan F, Li D, Huang H, Duan H, Yang X, Du W, Li Y. Evaluating anti-viral effect of Ivermectin on porcine epidemic diarrhea virus and analyzing the related genes and signaling pathway by RNA-seq in vitro. Virology 2023; 587:109877. [PMID: 37688922 DOI: 10.1016/j.virol.2023.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) has catastrophic impacts on the global pig industry. However, there remains no effective drugs for PEDV infection. Ivermectin is an FDA-approved anthelmintic drug used to treat worm infections. In this study, we reported the broad-spectrum antiviral activity of Ivermectin in vitro. Ivermectin can inhibit PEDV infections of different genotypes. Avermectin derivatives can also inhibit PEDV infections. A time of addition assay showed that Ivermectin exhibited potent anti-PEDV activity when added simultaneously with or post virus infection. Furthermore, Ivermectin significantly inhibited the late stage of viral infection by affecting viral release. RNA sequencing indicates Ivermectin induces cell cycle arrest, which may be related to its ability to inhibit viral release. Interestingly, when combined with Niclosamide, Ivermectin demonstrated an enhanced anti-PEDV effect. These findings highlight Ivermectin as a novel antiviral agent with potential for the development of drugs against PEDV infection.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Panpan Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Chenxu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Shuai Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Fangfang Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Huimin Huang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, 6 Long-zi-hu Street, Zhengzhou, 450046, China.
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Wenjuan Du
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, CL, the Netherlands.
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, 450046, China; Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, CL, the Netherlands.
| |
Collapse
|
7
|
Luo H, Feng Y, Wang F, Lin Z, Huang J, Li Q, Wang X, Liu X, Zhai X, Gao Q, Li L, Zhang Y, Wen J, Zhang L, Niu T, Zheng Y. Combinations of ivermectin with proteasome inhibitors induce synergistic lethality in multiple myeloma. Cancer Lett 2023; 565:216218. [PMID: 37149018 DOI: 10.1016/j.canlet.2023.216218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells. Ivermectin is a US Food and Drug Administration-approved drug for antiparasitic use. Here, we showed that ivermectin exerted anti-MM effects and significantly synergized with proteasome inhibitors in vitro and in vivo. Ivermectin alone exhibited mild anti-MM activity in vitro. Further investigation suggested that ivermectin inhibited proteasome activity in the nucleus by repressing the nuclear import of proteasome subunits, such as PSMB5-7 and PSMA3-4. Therefore, ivermectin treatment caused the accumulation of ubiquitylated proteins and the activation of the UPR pathway in MM cells. Furthermore, ivermectin treatment caused DNA damage and DNA damage response (DDR) signaling pathway activation in MM cells. Ivermectin and bortezomib exhibited synergized anti-MM activity in vitro. The dual-drug treatment resulted in synergistic inhibition of proteasome activity and increased DNA damage. An in vivo study using a human MM cell line xenograft mouse model showed that ivermectin and bortezomib efficiently repressed MM tumor growth in vivo, while the dual-drug treatment was well tolerated by experimental animals. Overall, our results demonstrated that ivermectin alone or cotreated with bortezomib might be promising in MM treatment.
Collapse
Affiliation(s)
- Hongmei Luo
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yu Feng
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Zhimei Lin
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, The Affiliated Hospital of Chengdu University, China
| | - Jingcao Huang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qian Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xin Wang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xiang Liu
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Xinyu Zhai
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Qianwen Gao
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Lingfeng Li
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Yue Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Jingjing Wen
- Department of Hematology, West China Hospital, Sichuan University, China; Department of Hematology, Mian-yang Central Hospital, China
| | - Li Zhang
- Department of Hematology, West China Hospital, Sichuan University, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, China.
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, China.
| |
Collapse
|
8
|
Astărăstoae V, Rogozea LM. Against Authority: The Bioethics of Ivermectin Use for COVID-19 Infection. Am J Ther 2023:00045391-990000000-00143. [PMID: 37068020 DOI: 10.1097/mjt.0000000000001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND The COVID-19 pandemic has brought new ethical challenges to both health care professionals and the general public. Among the ethical problems amplified during this period were the making of medical decisions to quickly introduce some drugs into therapeutic practice with unproven or insufficiently proven effects (such as ivermectin), the validity of drug testing, and the allocation of limited resources. FIELDS OF UNCERTAINTY The COVID-19 pandemic brought to the attention of the entire scientific world a new problem, which exceeded the guidelines and rules known until then. Out of the desire to quickly solve this medical problem, a series of measures were taken, however not sufficiently validated in scientific terms; the recommendations regarding the use of drugs known for their properties to treat a greater number of conditions, such as ivermectin, was tried. DATA SOURCES A narrative review of the specialized literature was carried out using keywords such as COVID-19, ivermectin, ethics, and off-label medication from Scopus and Google Scholar but also of official documents developed at the international level (World Health Organization). ETHICS AND THERAPEUTIC ADVANCES The off-label use of ivermectin alone or in combination with other medications during COVID pandemic raised problems related to the demonstration of its effectiveness, but also to ethics, starting from the expectations that both the medical staff and the population had of it. Ivermectin therapy was also evaluated by analyzing the behavior of ivermectin based on ethical principles (nonmaleficence, beneficence, and respect for one's autonomy) or on justice. Even in times of pandemic, exceptionalism must not triumph, and finding an effective treatment must be done through studies that respect ethical standard. CONCLUSIONS The failures or rather lack of success in decision making during the pandemic showed that alongside scientific knowledge and the development of health policies, it is necessary to constantly evaluate the measures and decisions from an ethical point of view, and the prevention of slippages and abuses is not only necessary but even mandatory.
Collapse
Affiliation(s)
- Vasile Astărăstoae
- Faculty of Medicine, Grigore T Popa University of Medicine & Pharmacy, Iasi, Romania; and
| | - Liliana M Rogozea
- Basic, Preventive and Clinical Sciences Department, Transilvania University, Brasov, Romania
| |
Collapse
|
9
|
Zhong P, Wu H, Ma Y, Xu X, Jiang Y, Jin C, Zhu Q, Liu X, Suo Z, Wang J. P2X4 receptor modulates gut inflammation and favours microbial homeostasis in colitis. Clin Transl Med 2023; 13:e1227. [PMID: 37085966 PMCID: PMC10122071 DOI: 10.1002/ctm2.1227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a non-specific chronic inflammatory disease of the intestine. In addition to genetic susceptibility, environmental factors and dysregulated host immunity, the gut microbiota is implicated in the pathogenesis of Crohn's disease (CD) or ulcerative colitis (UC), the two primary types of IBD. The P2X4 receptor has been demonstrated to have a crucial role in preventing infection, inflammation, and organ damage. However, it remains unclear whether the P2X4 receptor affects IBD and the underlying mechanisms. METHODS Colitis was induced in mice administrated with dextran sodium sulphate (DSS). 16S rDNA sequencing was used to analyze the gut microbiota in knockout and wild-type mice. Clinical and histopathological parameters were monitored throughout the disease progression. RESULTS Gene Expression Omnibus analysis showed the downregulation of P2RX4 (P2rx4) expression in colonic tissues from patients or mice with IBD. However, its expression at the protein levels was upregulated on day 4 or 6 and then downregulated on day 7 in C57BL/6 mice treated with DSS. Gene ablation of P2rx4 aggravated DSS-induced colitis accompanying gut microbiota dysbiosis in mice. Moreover, P2X4 receptor-positive modulator ivermectin alleviated colitis and corrected dysregulated microbiota in wild-type C57BL/6 mice. Further antibiotic-treated gut microbiota depletion, cohousing experiment, and fecal microbiota transplantation proved that gut microbiota dysbiosis was associated with the aggravation of colitis in the mouse model initiated by P2rx4. CONCLUSIONS Our findings elaborate on an unrevealed etiopathophysiological mechanism by which microbiota dysbiosis induced by the P2X4 receptor influences the development of colitis, indicating that the P2X4 receptor represents a promising target for treating patients with CD and UC.
Collapse
Affiliation(s)
- Peijie Zhong
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Hang Wu
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Yuanqiao Ma
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Xiaoxiao Xu
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Yizhuo Jiang
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Qiaozhen Zhu
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Xinlei Liu
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Zhimin Suo
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center, Huaihe HospitalHenan UniversityKaifengChina
| |
Collapse
|
10
|
Jiménez-Gaona Y, Vivanco-Galván O, Morales-Larreategui G, Cabrera-Bejarano A, Lakshminarayanan V. Outcome of Ivermectin in Cancer Treatment: An Experience in Loja-Ecuador. NURSING REPORTS 2023; 13:315-326. [PMID: 36976682 PMCID: PMC10054244 DOI: 10.3390/nursrep13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/14/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Cancer is one of the leading causes of death worldwide, and trends in cancer incidence and mortality are increasing over last years in Loja-Ecuador. Cancer treatment is expensive because of social and economic issues which force the patients to look for other alternatives. One such alternative treatment is ivermectin-based antiparasitic, which is commonly used in treating cattle. This paper analyzed ivermectin use as cancer treatment in the rural area of the Loja province and the medical opinion regarding the use of ivermectin in humans. (2) Methods: The study used a mixed methodology using different sampling techniques such as observation, surveys, and interviews. (3) Results: The main findings show that 19% of the participants diagnosed with cancer take medicines based on ivermectin as alternative therapy to the cancer control and treatment without leaving treatment such as chemotherapy, radiotherapy, or immunotherapy, while 81% use it to treat other diseases. (4) Conclusions: Finally, we identify that the interviewed not only use IVM as anticancer treatment, but it is also used as a treatment against other diseases. Although the participants’ opinions indicate that they feel improvements in their health after the third dose, the specialist considers that there is no authorization to prescribe these alternative treatments. In addition, they confirmed that currently, there is no scientific knowledge about the application of these treatments in humans and they do not recommend their application. Thus, the anticancer mechanism of ivermectin remains to be further investigated; therefore, we consider that it is important to continue with this research by proposing a new stage to evaluate and determine the pharmacological action of this type of drug through an in vitro study in different cultures of cancer cells.
Collapse
Affiliation(s)
- Yuliana Jiménez-Gaona
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
- Instituto de Instrumentación Para la Imagen Molecular I3M, Universitat Politécnica de Valencia, E-46022 Valencia, Spain
- Correspondence:
| | - Oscar Vivanco-Galván
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Gonzalo Morales-Larreategui
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Andrea Cabrera-Bejarano
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Vasudevan Lakshminarayanan
- Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L3G1, Canada
- Department of Systems Design Engineering, Physics, and Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
11
|
Turabi KS, Deshmukh A, Paul S, Swami D, Siddiqui S, Kumar U, Naikar S, Devarajan S, Basu S, Paul MK, Aich J. Drug repurposing-an emerging strategy in cancer therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1139-1158. [PMID: 35695911 DOI: 10.1007/s00210-022-02263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a complex disease affecting millions of people around the world. Despite advances in surgical and radiation therapy, chemotherapy continues to be an important therapeutic option for the treatment of cancer. The current treatment is expensive and has several side effects. Also, over time, cancer cells develop resistance to chemotherapy, due to which there is a demand for new drugs. Drug repurposing is a novel approach that focuses on finding new applications for the old clinically approved drugs. Current advances in the high-dimensional multiomics landscape, especially proteomics, genomics, and computational omics-data analysis, have facilitated drug repurposing. The drug repurposing approach provides cheaper, effective, and safe drugs with fewer side effects and fastens the process of drug development. The review further delineates each repurposed drug's original indication and mechanism of action in cancer. Along with this, the article also provides insight upon artificial intelligence and its application in drug repurposing. Clinical trials are vital for determining medication safety and effectiveness, and hence the clinical studies for each repurposed medicine in cancer, including their stages, status, and National Clinical Trial (NCT) identification, are reported in this review article. Various emerging evidences imply that repurposing drugs is critical for the faster and more affordable discovery of anti-cancerous drugs, and the advent of artificial intelligence-based computational tools can accelerate the translational cancer-targeting pipeline.
Collapse
Affiliation(s)
- Khadija Shahab Turabi
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Ankita Deshmukh
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Sayan Paul
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Dayanand Swami
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Shafina Siddiqui
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Urwashi Kumar
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Shreelekha Naikar
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Shine Devarajan
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jyotirmoi Aich
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India.
| |
Collapse
|
12
|
Fedotcheva T, Shimanovsky N, Fedotcheva N. Involvement of Multidrug Resistance Modulators in the Regulation of the Mitochondrial Permeability Transition Pore. MEMBRANES 2022; 12:membranes12090890. [PMID: 36135908 PMCID: PMC9502193 DOI: 10.3390/membranes12090890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 05/12/2023]
Abstract
The permeability transition pore in mitochondria (MPTP) and the ATP-binding cassette transporters (АВС transporters) in cell membranes provide the efflux of low-molecular compounds across mitochondrial and cell membranes, respectively. The inhibition of ABC transporters, especially of those related to multi drug resistance (MDR) proteins, is an actively explored approach to enhance intracellular drug accumulation and increase thereby the efficiency of anticancer therapy. Although there is evidence showing the simultaneous effect of some inhibitors on both MDR-related proteins and mitochondrial functions, their influence on MPTP has not been previously studied. We examined the participation of verapamil and quinidine, classified now as the first generation of MDR modulators, and avermectin, which has recently been actively studied as an MDR inhibitor, in the regulation of the MPTP opening. In experiments on rat liver mitochondria, we found that quinidine lowered and verapamil increased the threshold concentrations of calcium ions required for MPTP opening, and that they both decreased the rate of calcium-induced swelling of mitochondria. These effects may be associated with the positive charge of the drugs and their aliphatic properties. Avermectin not only decreased the threshold concentration of calcium ions, but also by itself induced the opening of MPTP and the mitochondrial swelling inhibited by ADP and activated by carboxyatractyloside, the substrate and inhibitor of adenine nucleotide translocase (ANT), which suggests the involvement of ANT in the process. Thus, these data indicate an additional opportunity to evaluate the effectiveness of MDR modulators in the context of their influence on the mitochondrial-dependent apoptosis.
Collapse
Affiliation(s)
- Tatiana Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| | - Nikolai Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| | - Nadezhda Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St. 3, Pushchino 142290, Russia
- Correspondence:
| |
Collapse
|
13
|
Alonso L, Dorta ML, Alonso A. Ivermectin and curcumin cause plasma membrane rigidity in Leishmania amazonensis due to oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183977. [PMID: 35654148 DOI: 10.1016/j.bbamem.2022.183977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Spin label electron paramagnetic resonance (EPR) spectroscopy was used to study the mechanisms of action of ivermectin and curcumin against Leishmania (L.) amazonensis promastigotes. EPR spectra showed that treatment of the parasites with both compounds results in plasma membrane rigidity due to oxidative processes. With the IC50 and EPR measurements for assays using different parasite concentrations, estimations could be made for the membrane-water partition coefficient (KM/W), and the concentration of the compound in the membrane (cm50) and in the aqueous phase (cw50), which inhibits cell growth by 50%. The KM/W values indicated that ivermectin has a greater affinity than curcumin for the parasite membrane. Therefore, the activity of ivermectin was higher for experiments with low cell concentrations, but for concentrations greater than 1.5 × 108 parasites/mL the compounds did not show significantly different results. The cm50 values indicated that the concentration of compound in the membrane leading to growth inhibition or membrane alteration is approximately 1 M for both ivermectin and curcumin. This high membrane concentration suggests that many ivermectin molecules per chlorine channel are needed to cause an increase in chlorine ion influx.
Collapse
Affiliation(s)
- Lais Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Miriam Leandro Dorta
- Instituto de Patologia Tropical e Saúde Publica, Departamento de Imunologia e Patologia Geral, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Antonio Alonso
- Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
14
|
Volkova YA, Rassokhina IV, Kondrakhin EA, Rossokhin AV, Kolbaev SN, Tihonova TB, Kh. Dzhafarov M, Schetinina MA, Chernoburova EI, Vasileva EV, Dmitrenok AS, Kovalev GI, Sharonova IN, Zavarzin IV. Synthesis and Evaluation of Avermectin–Imidazo[1,2-a]pyridine Hybrids as Potent GABAA Receptor Modulators. Bioorg Chem 2022; 127:105904. [DOI: 10.1016/j.bioorg.2022.105904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/08/2023]
|
15
|
Ivermectin-induced cell death of cervical cancer cells in vitro a consequence of precipitate formation in culture media. Toxicol Appl Pharmacol 2022; 449:116073. [DOI: 10.1016/j.taap.2022.116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
|
16
|
Tung CL, Chao WY, Li YZ, Shen CH, Zhao PW, Chen SH, Wu TY, Lee YR. Ivermectin induces cell cycle arrest and caspase-dependent apoptosis in human urothelial carcinoma cells. Int J Med Sci 2022; 19:1567-1575. [PMID: 36185334 PMCID: PMC9515697 DOI: 10.7150/ijms.76623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Bladder carcinoma is one of the most common malignancies worldwide, and >90% of all bladder cancers are classified as urothelial carcinomas (UC). Surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy are evidence-based treatments that are administered depending on the clinical stage of UC. All these treatments exhibited limited effects in cases of metastatic UC, and UC with specific location, invasiveness, and recurrence. Therefore, a new therapeutic strategy for UC is urgently needed. Ivermectin, an avermectin derivative, has been reported to be effective against various parasites, and its pharmacokinetic and pharmacodynamic properties as well as safety are well understood in humans. Recently, ivermectin was shown to exhibit therapeutic benefits against various virus infections in vitro, and anticancer activity against various human cancer cells. This study aimed to investigate the anticancer effects of ivermectin in human UC cells. Ivermectin inhibited growth, regulated the cell cycle, and induced apoptosis in human UC cells. It also induced the activation of both extrinsic and intrinsic caspase-dependent apoptotic pathways. Further investigation revealed that ivermectin induced apoptosis in UC cells is mediated via c-Jun N-terminal kinase signaling. Herein, we demonstrated that ivermectin can be used as a new therapeutic agent for treating UC cells.
Collapse
Affiliation(s)
- Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.,Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Wen-Ying Chao
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan 73658, Taiwan
| | - Yi-Zhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Pei-Wen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Shu-Hsin Chen
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Tzu-Yun Wu
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Master of Science Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Mucke HAM. Drug Repurposing Patent Applications July-September 2021. Assay Drug Dev Technol 2021. [PMID: 34936476 DOI: 10.1089/adt.2021.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
18
|
Rein T. Harnessing autophagy to fight SARS-CoV-2: An update in view of recent drug development efforts. J Cell Biochem 2021; 123:155-160. [PMID: 34668225 PMCID: PMC9088732 DOI: 10.1002/jcb.30166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023]
Abstract
Drug repurposing is an attractive option for identifying new treatment strategies, in particular in extraordinary situations of urgent need such as the current coronavirus disease 2019 (Covid-19) pandemic. Recently, the World Health Organization announced testing of three drugs as potential Covid-19 therapeutics that are known for their dampening effect on the immune system. Thus, the underlying concept of selecting these drugs is to temper the potentially life-threatening overshooting of the immune system reacting to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. This viewpoint discusses the possibility that the impact of these and other drugs on autophagy contributes to their therapeutic effect by hampering the SARS-CoV-2 life cycle.
Collapse
Affiliation(s)
- Theo Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
19
|
Zhou S, Wu H, Ning W, Wu X, Xu X, Ma Y, Li X, Hu J, Wang C, Wang J. Ivermectin has New Application in Inhibiting Colorectal Cancer Cell Growth. Front Pharmacol 2021; 12:717529. [PMID: 34483925 PMCID: PMC8415024 DOI: 10.3389/fphar.2021.717529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/05/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and still lacks effective therapy. Ivermectin, an antiparasitic drug, has been shown to possess anti-inflammation, anti-virus, and antitumor properties. However, whether ivermectin affects CRC is still unclear. The objective of this study was to evaluate the influence of ivermectin on CRC using CRC cell lines SW480 and SW1116. We used CCK-8 assay to determine the cell viability, used an optical microscope to measure cell morphology, used Annexin V-FITC/7-AAD kit to determine cell apoptosis, used Caspase 3/7 Activity Apoptosis Assay Kit to evaluate Caspase 3/7 activity, used Western blot to determine apoptosis-associated protein expression, and used flow cytometry and fluorescence microscope to determine the reactive oxygen species (ROS) levels and cell cycle. The results demonstrated that ivermectin dose-dependently inhibited colorectal cancer SW480 and SW1116 cell growth, followed by promoting cell apoptosis and increasing Caspase-3/7 activity. Besides, ivermectin upregulated the expression of proapoptotic proteins Bax and cleaved PARP and downregulated antiapoptotic protein Bcl-2. Mechanism analysis showed that ivermectin promoted both total and mitochondrial ROS production in a dose-dependent manner, which could be eliminated by administering N-acetyl-l-cysteine (NAC) in CRC cells. Following NAC treatment, the inhibition of cell growth induced by ivermectin was reversed. Finally, ivermectin at low doses (2.5 and 5 µM) induced CRC cell arrest. Overall, ivermectin suppressed cell proliferation by promoting ROS-mediated mitochondrial apoptosis pathway and inducing S phase arrest in CRC cells, suggesting that ivermectin might be a new potential anticancer drug therapy for human colorectal cancer and other cancers.
Collapse
Affiliation(s)
- Shican Zhou
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Hang Wu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Wenjuan Ning
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiao Wu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaoxiao Xu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Yuanqiao Ma
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Xingwang Li
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junhong Hu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Chenyu Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|
20
|
Huang H, He Q, Guo B, Xu X, Wu Y, Li X. Progress in Redirecting Antiparasitic Drugs for Cancer Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2747-2767. [PMID: 34188451 PMCID: PMC8235938 DOI: 10.2147/dddt.s308973] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Drug repurposing is a feasible strategy in developing novel medications. Regarding the cancer field, scientists are continuously making efforts to redirect conventional drugs into cancer treatment. This approach aims at exploring new applications in the existing agents. Antiparasitic medications, including artemisinin derivatives (ARTs), quinine-related compounds, niclosamide, ivermectin, albendazole derivatives, nitazoxanide and pyrimethamine, have been deeply investigated and widely applied in treating various parasitic diseases for a long time. Generally, their pharmacokinetic and pharmacodynamic properties are well understood, while the side effects are roughly acceptable. Scientists noticed that some of these agents have anticancer potentials and explored the underlying mechanisms to achieve drug repurposing. Recent studies show that these agents inhibit cancer progression via multiple interesting ways, inducing ferroptosis induction, autophagy regulation, mitochondrial disturbance, immunoregulation, and metabolic disruption. In this review, we summarize the recent advancement in uncovering antiparasitic drugs' anticancer properties from the perspective of their pharmacological targets. Instead of paying attention to the previously discovered mechanisms, we focus more on newly emerging ones that are worth noticing. While most investigations are focusing on the mechanisms of their antiparasitic effect, more in vivo exploration in clinical trials in the future is necessary. Moreover, we also paid attention to what limits the clinical application of these agents. For some of these agents like ARTs and niclosamide, drug modification, novel delivery system invention, or drug combination are strongly recommended for future exploration.
Collapse
Affiliation(s)
- Haoyang Huang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qing He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Binghua Guo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Xudong Xu
- Department of Clinical Medicine, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, 510080, People's Republic of China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, People's Republic of China.,CAEA Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing, 100048, People's Republic of China
| |
Collapse
|
21
|
Antiviral Drug Ivermectin at Nanomolar Concentrations Inhibits Glycine-Induced Chloride Current in Rat Hippocampal Neurons. Bull Exp Biol Med 2021; 170:649-653. [PMID: 33788116 PMCID: PMC8011064 DOI: 10.1007/s10517-021-05125-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 11/21/2022]
Abstract
Ivermectin (IVM) belongs to the class of macrocyclic lactones, which is used as an antiparasitic agent. At present, the researchers focus on possibility to use IVM in treatment of certain forms of cancer and viral diseases such as COVID-19. The mechanisms of IVM action are not clear. It is assumed that IVM affects chloride channels and increases cytoplasmic concentration of chloride. This study examines the effect of IVM on chloride currents induced by glycine (IGly). Experiments were carried out on isolated pyramidal neurons of the rat hippocampus with whole-cell patch clamp. A short-term (600 msec) application of IVM in a concentration of 10 μM induced a slow inward current, which persisted after washing the neurons. The low concentrations (0.1-1000 nM) of IVM did not induce any novel current, but it rapidly and reversibly reduced the peak amplitude and accelerated desensitization of IGly in a dose-dependent manner. The threshold concentrations of IVM sufficient to reduce peak amplitude of IGly and to accelerate desensitization of IGly were 100 nM and 0.1 nM, respectively. The study revealed a high sensitivity of neuronal glycine receptors to IVM.
Collapse
|
22
|
Metabolism and interactions of Ivermectin with human cytochrome P450 enzymes and drug transporters, possible adverse and toxic effects. Arch Toxicol 2021; 95:1535-1546. [PMID: 33719007 PMCID: PMC7956433 DOI: 10.1007/s00204-021-03025-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
The review presents metabolic properties of Ivermectin (IVM) as substrate and inhibitor of human P450 (P450, CYP) enzymes and drug transporters. IVM is metabolized, both in vivo and in vitro, by C-hydroxylation and O-demethylation reactions catalyzed by P450 3A4 as the major enzyme, with a contribution of P450 3A5 and 2C9. In samples from both in vitro and in vivo metabolism, a number of metabolites were detected and as major identified metabolites were 3″-O-demethylated, C4-methyl hydroxylated, C25 isobutyl-/isopropyl-hydroxylated, and products of oxidation reactions. Ivermectin inhibited P450 2C9, 2C19, 2D6, and CYP3A4 with IC50 values ranging from 5.3 μM to no inhibition suggesting that it is no or weak inhibitor of the enzymes. It is suggested that P-gp (MDR1) transporter participate in IVM efflux at low drug concentration with a slow transport rate. At the higher, micromolar concentration range, which saturates MDR1 (P-gp), MRP1, and to a lesser extent, MRP2 and MRP3 participate in IVM transport across physiological barriers. IVM exerts a potent inhibition of P-gp (ABCB1), MRP1 (ABCC1), MRP2 (ABCC2), and BCRP1 (ABCG2), and medium to weak inhibition of OATP1B1 (SLC21A6) and OATP1B3 (SLCOB3) transport activity. The metabolic and transport properties of IVM indicate that when IVM is co-administered with other drugs/chemicals that are potent inhibitors/inducers P4503A4 enzyme and of MDR1 (P-gp), BCRP or MRP transporters, or when polymorphisms of the drug transporters and P450 3A4 exist, drug–drug or drug–toxic chemical interactions might result in suboptimal response to the therapy or to toxic effects.
Collapse
|
23
|
Li N, Li J, Desiderio DM, Zhan X. SILAC quantitative proteomics analysis of ivermectin-related proteomic profiling and molecular network alterations in human ovarian cancer cells. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4659. [PMID: 33047383 DOI: 10.1002/jms.4659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/14/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
The antiparasitic agent ivermectin offers more promises to treat a diverse range of diseases. However, a comprehensive proteomic analysis of ivermectin-treated ovarian cancer (OC) cells has not been performed. This study sought to identify ivermectin-related proteomic profiling and molecular network alterations in human OC cells. Stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics was used to study the human OC TOV-21G cells. After TOV-21G cells underwent 10 passages in SILAC-labeled growth media, TOV-21G cells were treated with 10 ml of 20 μmol/L ivermectin in cell growing medium for 24 h. The SILAC-labeled proteins were digested with trypsin; tryptic peptides were identified with mass spectrometry (MS). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to mine signaling pathway alterations with ivermectin-related proteins in TOV-21G cells. Gene ontology (GO) analysis was used to explore biological functions of ivermectin-related proteins, including biological processes (BPs), cellular components (CCs), and molecular functions (MFs). The protein-protein interaction network was analyzed with molecular complex detection (MCODE) to identify hub modules. In total, 4,447 proteins were identified in ivermectin-treated TOV-21G cells. KEGG analysis revealed 89 statistically significant signaling pathways. Interestingly, the clustering analysis of these pathways showed that ivermectin was involved in various cancer pathogenesis processes, including modulation of replication, RNA metabolism, and translational machinery. GO analysis revealed 69 statistically significant CCs, 87 MFs, and 62 BPs. Furthermore, MCODE analysis identified five hub modules, including 147 hub molecules. Those hub modules involved ribosomal proteins, RNA-binding proteins, cell-cycle progression-related proteins, proteasome subunits, and minichromosome maintenance proteins. These findings demonstrate that SILAC quantitative proteomics is an effective method to analyze ivermectin-treated cells, provide the first ivermectin-related proteomic profiling and molecular network alterations in human OC cells, and provide deeper insights into molecular mechanisms and functions of ivermectin to inhibit OC cells.
Collapse
Affiliation(s)
- Na Li
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong, 250117, China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Jiajia Li
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong, 250117, China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong, 250117, China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| |
Collapse
|
24
|
Tang M, Hu X, Wang Y, Yao X, Zhang W, Yu C, Cheng F, Li J, Fang Q. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol Res 2021; 163:105207. [PMID: 32971268 PMCID: PMC7505114 DOI: 10.1016/j.phrs.2020.105207] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022]
Abstract
Ivermectin is a macrolide antiparasitic drug with a 16-membered ring that is widely used for the treatment of many parasitic diseases such as river blindness, elephantiasis and scabies. Satoshi ōmura and William C. Campbell won the 2015 Nobel Prize in Physiology or Medicine for the discovery of the excellent efficacy of ivermectin against parasitic diseases. Recently, ivermectin has been reported to inhibit the proliferation of several tumor cells by regulating multiple signaling pathways. This suggests that ivermectin may be an anticancer drug with great potential. Here, we reviewed the related mechanisms by which ivermectin inhibited the development of different cancers and promoted programmed cell death and discussed the prospects for the clinical application of ivermectin as an anticancer drug for neoplasm therapy.
Collapse
Affiliation(s)
- Mingyang Tang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Xiaodong Hu
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Yi Wang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Xin Yao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Wei Zhang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Chenying Yu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Fuying Cheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Clinical Medical Department, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Jiangyan Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| | - Qiang Fang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui Province 233030, China; Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui Province 233030, China; School of Fundamental Sciences, Bengbu Medical College, Bengbu, Anhui Province 233030, China.
| |
Collapse
|
25
|
Bailly C, Vergoten G. Fraxinellone: From pesticidal control to cancer treatment. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104624. [PMID: 32711764 DOI: 10.1016/j.pestbp.2020.104624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Fraxinellone (FRA) is a degraded limonoid isolated from the root bark of Dictamnus plants. The potent insecticidal activity of FRA has led to the synthesis of numerous derivatives (presented here with the structure-activity relationships) active against the oriental armyworm Mythimna separata Walker. In addition to its pesticidal activity, the natural product displays potent anti-inflammatory and immuno-modulatory effects at the origin of hepatoprotective and anticancer properties. This mini-review provides an update of the mechanism of action of FRA to highlight the recently discovered capacity of the compound to deactivate cancer-associated fibroblasts and thus to limit the immunosuppressive tumor microenvironment. The anticancer mode of action of FRA raises new ideas to better understand its primary insecticidal activity. The relationship between drug-induced cancer cell death and insect cell death is discussed. A drug interaction with the insect cytokine growth-blocking peptide (GBP), a member of the large EGF family, is proposed, supported by preliminary molecular modeling data. Altogether, the review shed light on the pharmacological properties of fraxinellone as an antitumor agent and a natural insecticide.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, ICPAL, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
26
|
Banerjee K, Nandy M, Dalai CK, Ahmed SN. The Battle against COVID 19 Pandemic: What we Need to Know Before we "Test Fire" Ivermectin. Drug Res (Stuttg) 2020; 70:337-340. [PMID: 32559771 PMCID: PMC7417290 DOI: 10.1055/a-1185-8913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Abstract
The world is faced with the dire challenge of finding an effective treatment against the rampaging COVID 19 pandemic. Amidst the crisis, reports of in vitro inhibitory activity of ivermectin, an approved anthelmintic, against the causative SARSCoV2 virus, have generated lot of optimism. In this article, we have fished and compiled the needed information on the drug, that will help readers and prospective investigators in having a quick overview. Though the primordial biological action of the drug is allosteric modulation of helminthic ion channel receptor, its in vitro activity against both RNA and DNA viruses is known for almost a decade. In the past two years, efficacy study in animal models of pseudorabies and zika virus was found to be favourable and unfavourable respectively. Only one clinical study evaluated the drug in dengue virus infection without any clinical efficacy. However, the proposed mechanism of drug action, by inhibiting the importin family of nucleus-cytoplasmic transporters along with favourable pharmacokinetics, warrants exploration of its role in COVID 19 through safely conducted clinical trials. Being an available and affordable drug, enlisted in WHO List of Essential Medicine, and a long track record of clinical safety, the drug is already in clinical trials the world over. As the pandemic continues to ravage human civilisation with unabated intensity, the world eagerly waits for a ray of hope emanating from the outcome of the ongoing trials with ivermectin as well as other drugs.
Collapse
Affiliation(s)
- Kushal Banerjee
- Post graduate trainee, Department of Pharmacology, Medical College and
Hospital Kolkata, Kolkata, West Bengal, India
| | - Manab Nandy
- Professor, Department of Pharmacology, Medical College and Hospital
Kolkata, Kolkata, West Bengal, India
| | - Chanchal Kumar Dalai
- Associate Professor, Department of Pharmacology, The West Bengal
University of Health Sciences, College of Medicine and JNM Hospital, Kalyani,
West Bengal, India
| | - Shah Newaz Ahmed
- Demonstrator, Department of Pharmacology, The West Bengal University of
Health Sciences, College of Medicine and JNM Hospital, Kalyani, West Bengal,
India
| |
Collapse
|
27
|
Alonso DF, Farina HG. Repurposing of host-based therapeutic agents for the treatment of coronavirus disease 2019 (COVID-19): a link between antiviral and anticancer mechanisms? Int J Antimicrob Agents 2020; 56:106125. [PMID: 32739476 PMCID: PMC7391054 DOI: 10.1016/j.ijantimicag.2020.106125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel F Alonso
- Laboratory of Molecular Oncology, Department of Science and Technology, National University of Quilmes, Buenos Aires, Argentina.
| | - Hernán G Farina
- Laboratory of Molecular Oncology, Department of Science and Technology, National University of Quilmes, Buenos Aires, Argentina
| |
Collapse
|