1
|
Du M, Yin J. Dual-Drug Nanosystem: Etoposide Prodrug and Cisplatin Coloaded Nanostructured Lipid Carriers for Lung Cancer Therapy. Drug Des Devel Ther 2022; 16:4139-4149. [PMID: 36506793 PMCID: PMC9733446 DOI: 10.2147/dddt.s386100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Cisplatin (CDDP) and etoposide (Etp) are recommended first-line therapy for lung cancer. Nanostructured lipid carriers (NLCs) are engineered to deliver drugs for lung cancer treatment. In the present study, NLCs were applied to coload an Etp prodrug (EtpP) and CDDP. Methods The Etp prodrug was synthesized by linking the phenolic hydroxyl group of Etp with polyethylene glycol (PEG). EtpP and CDDP coencapsulated NLCs (EtpP-CDDP NLCs) were prepared using film ultrasound. Cytotoxicity of drugs and drug-containing NLCs was assessed by evaluating cell viability using MTT assays. In vivo antitumor efficiency of EtpP-CDDP NLCs was evaluated on lung cancer-bearing xenografts. Results EtpP-CDDP NLCs showed a uniformly spherical morphology with a size of 176.8±4.9 nm and -potential of -31.9±3.2 mV. Cellular uptake efficiency of EtpP-CDDP NLCs was 57.4%±3.9% on A549/DDP cells. EtpP-CDDP NLCs exhibited more sustained plasma retention, the highest drug distribution in tumors, and the highest tumor-inhibition rates in lung tumor-bearing mice. Conclusion EtpP-CDDP NLCs improved tumor-cell uptake, cytotoxicity, and tumor-inhibition efficiency, and could be used as a promising drug-delivery system for lung cancer combination therapy.
Collapse
Affiliation(s)
- Min Du
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214000, People’s Republic of China
| | - Jianbo Yin
- Department of Pharmacy, Wuxi Dashan Medical Beauty Clinic, Wuxi, Jiangsu Province, 214001, People’s Republic of China,Correspondence: Jianbo Yin, Email
| |
Collapse
|
2
|
Dong Z, Wang Y, Guo J, Tian C, Pan W, Wang H, Yan J. Prostate Cancer Therapy Using Docetaxel and Formononetin Combination: Hyaluronic Acid and Epidermal Growth Factor Receptor Targeted Peptide Dual Ligands Modified Binary Nanoparticles to Facilitate the in vivo Anti-Tumor Activity. Drug Des Devel Ther 2022; 16:2683-2693. [PMID: 35983428 PMCID: PMC9380734 DOI: 10.2147/dddt.s366622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Objective To evaluate the prostate cancer therapy efficiency of the synergistic combination docetaxel (DTX) and formononetin (FMN) in one nano-sized drug delivery system. Hyaluronic acid (HA) and epidermal growth factor receptor-targeted peptide (GE11) dual ligands were applied to modify the nano-systems. Methods In this study, GE11-modified nanoparticles (GE-NPs) were applied for the loading of DTX, and HA-decorated NPs (HA-NPs) were used to encapsulate FMN. HA and GE11 dual ligand-modified binary nanoparticles (HAGE-DTX/FMN-NPs) were constructed by the self-assembling of GE-NPs and HA-NPs. The anti-PCa ability of the system was evaluated in vitro on PC-3 human prostate carcinoma cells (PC3 cells) and in vivo on PC3 tumor-bearing mice in comparison with single NPs and free drugs formulations. Results HA/GE-DTX/FMN-NPs were nano-sized particles with smaller particles coating on the inner core and achieved a size of 189.5 nm. HA/GE-DTX/FMN-NPs showed a cellular uptake efficiency of 59.6%, and a more efficient inhibition effect on PC3 cells compared with single ligand-modified NPs and free drugs. HA/GE-DTX/FMN-NPs showed significantly higher tumor inhibition efficiency than their single drug-loaded counterparts and free drugs. Conclusion HA/GE-DTX/FMN-NPs have a synergistic anti-tumor effect and also could the reduce unexpected side effects during the cancer therapy. It could be used as a promising anti-PCa system.
Collapse
Affiliation(s)
- Zhaoqiang Dong
- Department of Cardiology, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Yuzhen Wang
- Clinical Department, Jinan Vocation College of Nursing, Ji’nan, 250033, People’s Republic of China
| | - Jing Guo
- Department of Gynaecology, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Chuan Tian
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Wengu Pan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Hongwei Wang
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| | - Jieke Yan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, 250033, People’s Republic of China
| |
Collapse
|
3
|
Gao Q, Feng J, Liu W, Wen C, Wu Y, Liao Q, Zou L, Sui X, Xie T, Zhang J, Hu Y. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv Drug Deliv Rev 2022; 188:114445. [PMID: 35820601 DOI: 10.1016/j.addr.2022.114445] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The therapeutic limitations such as insufficient efficacy, drug resistance, metastasis, and undesirable side effects are frequently caused by the long duration monotherapy based on chemotherapeutic drugs. multiple combinational anticancer strategies such as nucleic acids combined with chemotherapeutic agents, chemotherapeutic combinations, chemotherapy and tumor immunotherapy combinations have been embraced, holding great promise to counter these limitations, while still taking including some potential risks. Nowadays, an increasing number of research has manifested the anticancer effects of phytochemicals mediated by modulating cancer cellular events directly as well as the tumor microenvironment. Specifically, these natural compounds exhibited suppression of cancer cell proliferation, apoptosis, migration and invasion of cancer cells, P-glycoprotein inhibition, decreasing vascularization and activation of tumor immunosuppression. Due to the low toxicity and multiple modulation pathways of these phytochemicals, the combination of chemotherapeutic agents with natural compounds acts as a novel approach to cancer therapy to increase the efficiency of cancer treatments as well as reduce the adverse consequences. In order to achieve the maximized combination advantages of small-molecule chemotherapeutic drugs and natural compounds, a variety of functional nano-scaled drug delivery systems, such as liposomes, host-guest supramolecules, supramolecules, dendrimers, micelles and inorganic systems have been developed for dual/multiple drug co-delivery. These co-delivery nanomedicines can improve pharmacokinetic behavior, tumor accumulation capacity, and achieve tumor site-targeting delivery. In that way, the improved antitumor effects through multiple-target therapy and reduced side effects by decreasing dose can be implemented. Here, we present the synergistic anticancer outcomes and the related mechanisms of the combination of phytochemicals with small-molecule anticancer drugs. We also focus on illustrating the design concept, and action mechanisms of nanosystems with co-delivery of drugs to synergistically improve anticancer efficacy. In addition, the challenges and prospects of how these insights can be translated into clinical benefits are discussed.
Collapse
Affiliation(s)
- Quan Gao
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jiao Feng
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wencheng Liu
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chengyong Wen
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy and Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
4
|
Md S, Alhakamy NA, Sharma P, Ansari MS, Gorain B. Nanocarrier-based co-delivery approaches of chemotherapeutics with natural P-glycoprotein inhibitors in the improvement of multidrug resistance cancer therapy. J Drug Target 2022; 30:801-818. [DOI: 10.1080/1061186x.2022.2069782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priyanka Sharma
- Center for Innovation in Personalized Medicine, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| |
Collapse
|
5
|
Qu Z, Ren Y, Shen H, Wang H, Shi L, Tong D. Combination Therapy of Metastatic Castration-Recurrent Prostate Cancer: Hyaluronic Acid Decorated, Cabazitaxel-Prodrug and Orlistat Co-Loaded Nano-System. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3605-3616. [PMID: 34447241 PMCID: PMC8384126 DOI: 10.2147/dddt.s306684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022]
Abstract
Purpose Prostate cancer (PCa) is the second leading cause of cancer-related death among men in developed countries. Cabazitaxel (CBZ) is recommended as one of the most active chemotherapy agents for PCa. This study aimed to develop a hyaluronic acid (HA) decorated, cabazitaxel-prodrug (HA-CBZ) and orlistat (ORL) co-loaded nano-system against the prostate cancer in vitro and in vivo. Methods Cabazitaxel-prodrug was firstly synthesized by conjugating HA with CBZ through the formation of ester bonds. HA contained ORL and CBZ prodrug co-loaded lipid-polymer hybrid nanoparticles (ORL/HA-CBZ/LPNs) were constructed and characterized in terms of particle size, zeta potential, drug loading capacity and stability. The antitumor efficiency and systemic toxicity of LPNs were evaluated in vitro and in vivo. Results The resulting ORL/HA-CBZ/LPNs were 150.9 nm in particle size with narrow distribution and high entrapment efficiency. The minimum combination index of 0.57 was found at a drug ratio of 1:2 (ORL:HA-CBZ, w/w) in the drug co-loaded formulations, indicating the strongest synergism effect. ORL/HA-CBZ/LPNs demonstrated an enhanced in vitro and in vivo antitumor effect compared with single drug loaded LPNs and free drug formulations. Conclusion ORL/HA-CBZ/LPNs showed remarkable synergism cytotoxicity and the best tumor inhibition efficiency in mice with negligible systemic toxicity. ORL/HA-CBZ/LPNs can be highly useful for targeted prostate cancer therapy.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Yuning Ren
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Hongyu Shen
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Huihui Wang
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Lijie Shi
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| | - Deyong Tong
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264001, People's Republic of China
| |
Collapse
|
7
|
Borges GSM, Lima FA, Carneiro G, Goulart GAC, Ferreira LAM. All-trans retinoic acid in anticancer therapy: how nanotechnology can enhance its efficacy and resolve its drawbacks. Expert Opin Drug Deliv 2021; 18:1335-1354. [PMID: 33896323 DOI: 10.1080/17425247.2021.1919619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: All-trans retinoic acid (ATRA, tretinoin) is the main drug used in the treatment of acute promyelocytic leukemia (APL). Despite its impressive activity against APL, the same could not be clinically observed in other types of cancer. Nanotechnology can be a tool to enhance ATRA anticancer efficacy and resolve its drawbacks in APL as well as in other malignancies.Areas covered: This review covers ATRA use in APL and non-APL cancers, the problems that were found in ATRA therapy and how nanoencapsulation can aid to circumvent them. Pre-clinical results obtained with nanoencapsulated ATRA are shown as well as the two ATRA products based on nanotechnology that were clinically tested: ATRA-IV® and Apealea®.Expert opinion: ATRA presents interesting properties to be used in anticancer therapy with a notorious differentiation and antimetastatic activity. Bioavailability and resistance limitations impair the use of ATRA in non-APL cancers. Nanotechnology can circumvent these issues and provide tools to enhance its anticancer activities, such as co-loading of multiple drug and active targeting to tumor site.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Flávia Alves Lima
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme Carneiro
- Departamento De Farmácia, Faculdade De Ciências Biológicas E Da Saúde, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Brazil
| | - Gisele Assis Castro Goulart
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Antônio Miranda Ferreira
- Departamento De Produtos Farmacêuticos, Faculdade De Farmácia, Universidade Federal De Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|