1
|
Hu X, Wang P, Zeng D, Hu GX. The effect of gene polymorphism on ticagrelor metabolism: an in vitro study of 22 CYP3A4 variants in Chinese Han population. PeerJ 2024; 12:e18109. [PMID: 39346054 PMCID: PMC11430164 DOI: 10.7717/peerj.18109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Background Ticagrelor is a novel oral antiplatelet agent which can selectively inhibit P2Y12 receptor. Bleeding and dyspnea are common adverse reactions of ticagrelor in clinic. The side effects of ticagrelor are correlated with the plasma concentration of ticagrelor. Objective This study aimed to evaluate the catalytic characteristics of 22 CYP3A4 alleles identified in the Chinese Han population on the metabolism of ticagrelor in vitro, focusing on the effect of CYP3A4 polymorphism on ticagrelor metabolism. Methods In this study, insect cells were used to express 22 CYP3A4 variants, which were then incubated with 1-50 µM ticagrelor at 37 °C for 30 minutes to obtain the metabolite (AR-C124910XX). AR-C124910XX was detected by UHPLC-MS/MS to calculate the kinetic parameters, including Km, Vmax and CLint. Results Compared to the wild-type, most CYP3A4 alleles exhibited significant differences in intrinsic clearance. The intrinsic clearance of CYP3A4*11, *18 and *33 was much higher than that of wild-type; four variants exhibited similar intrinsic clearance values as the wild-type enzyme; The remaining 14 variants showed significantly reduced intrinsic clearance values, ranging from 1.48% to 75.11% of the wild-type; CYP3A4*30 displayed weak or no activity. Conclusion This study conducted a comprehensive assessment of the effect of CYP3A4 variants on ticagrelor's metabolism. The results suggested that there is allele-specific activity towards ticagrelor in vitro. These findings can provide some insights and predictions for treatment strategies and risk assessments associated with ticagrelor in clinical practice.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, China
| | - Peng Wang
- Department of Pharmacy, Jinhua People’s Hospital, Jinhua, China
| | - Dali Zeng
- Department of Pharmacy, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Guo-xin Hu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Hu Y, Ye Z, Wu H, Chen X, Xia H, Cai JP, Hu GX, Xu RA. Functional assessment of CYP3A4 and CYP2C19 genetic polymorphisms on the metabolism of clothianidin invitro. Chem Biol Interact 2024; 399:111154. [PMID: 39025286 DOI: 10.1016/j.cbi.2024.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Clothianidin, classified as a second-generation neonicotinoid, has achieved extensive application due to its high efficacy against insect pests. This broad-spectrum usage has resulted in its frequent detection in environmental surveys. CYP2C19 and CYP3A4 are crucial for converting clothianidin to desmethyl-clothianidin (dm-clothianidin). The expression of these CYP450s can be significantly influenced by genetic polymorphisms. The objective of our research was to examine the catalytic effects of 27 CYP3A4 variants and 31 CYP2C19 variants on the metabolism of clothianidin within recombinant insect microsomes. These variants were assessed through a well-established incubation procedure. In addition, the concentration of its metabolite dm-clothianidin was quantified by employing an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Lastly, the kinetic parameters of these CYP3A4 and CYP2C19 variants were calculated by applying Michaelis-Menten kinetic analysis to fit the data. The observed changes in enzyme activity were related to the metabolic transformation of clothianidin to dm-clothianidin. In the CYP2C19 metabolic pathway, one variant (CYP2C19.23) showed no notable change in intrinsic clearance (CLint), four variants (CYP2C19.29, .30, .31 and L16F) demonstrated a marked increase in CLint (110.86-183.46 %), and the remaining 25 variants exhibited a considerable decrease in CLint (26.38-89.79 %), with a maximum decrease of 73.62 % (CYP2C19.6). In the CYP3A4 metabolic pathway, 26 variants demonstrated significantly reduced CLint (10.54-52.52 %), with a maximum decrease of 89.46 % (CYP3A4.20). Our results suggested that most variants of CYP3A4 and CYP2C19 significantly altered the enzymatic activities associated with clothianidin metabolism to various degrees. This study provides new insights into assessing the metabolic behavior of pesticides and delivers crucial data that can guide clinical detoxification strategies.
Collapse
Affiliation(s)
- Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhize Ye
- Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Hualu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Dai GX, Tan W, Shen Y, Lin D, Xu RA, Lin Q, Wei Z. Differential inhibition of sildenafil and macitentan on saxagliptin metabolism. Toxicol Appl Pharmacol 2024; 486:116934. [PMID: 38663673 DOI: 10.1016/j.taap.2024.116934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
The development of diabetes mellitus (DM) is generally accompanied by erectile dysfunction (ED) and pulmonary arterial hypertension (PAH), which increases the use of combination drug therapy and the risk of drug-drug interactions. Saxagliptin for the treatment of DM, sildenafil for the treatment of ED and PAH, and macitentan for the treatment of PAH are all substrates of CYP3A4, which indicates their potential involvement in drug-drug interactions. Therefore, we investigated potential pharmacokinetic interactions between saxagliptin and sildenafil/macitentan. We investigated this speculation both in vitro and in vivo, and explored the underlying mechanism using in vitro hepatic metabolic models and molecular docking assays. The results showed that sildenafil substantially inhibited the metabolism of saxagliptin by occupying the catalytic site of CYP3A4 in a competitive manner, leading to the alterations in the pharmacokinetic properties of saxagliptin in terms of increased maximum plasma concentration (Cmax), area under the plasma concentration-time curve from time 0 to 24 h (AUC(0-t)), area under the plasma concentration-time curve from time 0 extrapolated to infinite time (AUC(0-∞)), decreased clearance rate (CLz/F), and prolonged terminal half-life (t1/2). In contrast, a slight inhibition was observed in saxagliptin metabolism when concomitantly used with macitentan, as no pharmacokinetic parameters were altered, except for CLz/F. Thus, dosage adjustment of saxagliptin may be required in combination with sildenafil to achieve safe therapeutic plasma concentrations and reduce the risk of potential toxicity, but it is not necessary for co-administration with macitentan.
Collapse
Affiliation(s)
- Ge-Xin Dai
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Tan
- The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing 401120, China
| | - Yuxin Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dongdong Lin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianmeng Lin
- Department of Oncology, Department of Pathology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Zhen Wei
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Yuan LJ, Li XY, Ni JH, Wang J, Xu XY, Luo JC, Zhou Q, Hu GX, Cai JP, Qian JC. Functional evaluation of CYP2C19 and CYP3A4 gene polymorphism on ibuprofen metabolism. Toxicol Appl Pharmacol 2023; 475:116653. [PMID: 37574146 DOI: 10.1016/j.taap.2023.116653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
AIM Ibuprofen is the most commonly used analgesic. CYP polymorphisms are mainly responsible for the differences in drug metabolism among individuals. Variations in the ability of populations to metabolize ibuprofen can lead to drug exposure events. The aim of this study was to evaluate the effects of CYP2C19 and CYP3A4 polymorphisms on ibuprofen metabolism in a Chinese population. METHODS First, 31 CYP2C19 and 12 CYP3A4 microsomal enzymes were identified using an insect expression system. Then, variants were evaluated using a mature incubation system. Moreover, ibuprofen metabolite content was determined via ultra-performance liquid chromatography-tandem mass spectrometry analysis. Finally, kinetic parameters of CYP2C19 and CYP3A4 genotypes were determined via Michaelis-Menten curve fitting. RESULTS Most variants exhibited significantly altered intrinsic clearance compared to the wild type. In the CYP2C19 metabolic pathway, seven variants exhibited no significant alterations in intrinsic clearance (CLint), six variants exhibited significantly high CLint (121-291%), and the remaining 15 variants exhibited substantially reduced CLint (1-71%). In the CYP3A4 metabolic pathway, CYP3A4*30 was not detected in the metabolite content due to the absence of activity, and 10 variants exhibited significantly reduced CLint. CONCLUSION To the best of our knowledge, this is the first study to assess the kinetic characteristics of 31 CYP2C19 and 12 CYP3A4 genotypes on ibuprofen metabolism. However, further studies are needed on poor metabolizers as they are more susceptible to drug exposure. Our findings suggest that the kinetic characteristics in combination with artificial intelligence to predict the toxicity of ibuprofen and reduce any adverse drug reactions.
Collapse
Affiliation(s)
- Ling-Jing Yuan
- Department of Pharmacy, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Xiang-Yu Li
- Department of Pharmacy, Shaoxing Keqiao Women & Children΄s Hospital, Shaoxing, Zhejiang, China
| | - Jin-Huan Ni
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Yu Xu
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Chao Luo
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhou
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, PR China.
| | - Jian-Chang Qian
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Yuan LJ, Li XY, Ye F, Li XY, Li QQ, Zhong YS, Wang SY, Wang YH, Hu GX, Cai JP, Li JW. Enzymatic activity of 38 CYP2C9 genotypes on ibuprofen. Food Chem Toxicol 2023:113926. [PMID: 37406757 DOI: 10.1016/j.fct.2023.113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Ibuprofen, a common non-steroidal anti-inflammatory drug, is used clinically for pain relief and antipyretic treatment worldwide. However, regular or long-term use of ibuprofen may lead to a series of adverse reactions, including gastrointestinal bleeding, hypertension and kidney injury. Previous studies have shown that CYP2C9 gene polymorphism plays an important role in the elimination of various drugs, which leads to the variation in drug efficacy. This study aimed to evaluate the effect of 38 CYP2C9 genotypes on ibuprofen metabolism. METHODS Thirty-eight recombinant human CYP2C9 microsomal enzymes were obtained using a frugiperda 21 insect expression system according to a previously described method. Assessment of the catalytic function of these variants was completed via a mature incubation system: 5 pmol CYP2C9*1 and 38 CYP2C9 variants recombinant human microsomes, 5 μL cytochrome B5, ibuprofen (5-1000 μM), and Tris-HCl buffer (pH 7.4). The ibuprofen metabolite contents were determined using HPLC analysis. HPLC analysis included a UV detector, Plus-C18 column, and mobile phase [50% acetonitrile and 50% water (containing 0.05% trifluoroacetic acid)]. The kinetic parameters of the CYP2C9 genotypes were obtained by Michaelis-Menten curve fitting. RESULTS The intrinsic clearance (CLint) of eight variants was not significantly different from CYP2C9*1; four CYP2C9 variants (CYP2C9*38, *44, *53 and *59) showed significantly higher CLint (increase by 35%-230%) than that of the wild-type; the remaining twenty-six variants exhibited significantly reduced CLint (reduced by 30%-99%) compared to that of the wild-type. CONCLUSION This is the first systematic evaluation of the catalytic characteristics of 38 CYP2C9 genotypes involved ibuprofen metabolism. Our results provide a corresponding supplement to studies on CYP2C9 gene polymorphisms and kinetic characteristics of different variants. We need to focus on poor metabolizers (PMs) with severely abnormal metabolic functions, because they are more susceptible to drug exposure.
Collapse
Affiliation(s)
- Ling-Jing Yuan
- Department of Pharmacy, Shaoxing Second Hospital, Shaoxing, Zhejiang, China; School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang-Yu Li
- Department of Pharmacy, Shaoxing Keqiao Women & Children΄s Hospital, Shaoxing, Zhejiang, China
| | - Feng Ye
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin-Yue Li
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing-Qing Li
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yun-Shan Zhong
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shi-Yu Wang
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ya-Hui Wang
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, PR China.
| | - Jun-Wei Li
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Petersen AS, Barloese M, Lund N, Pedersen AF, Søborg MLK, Chalmer MA, Callesen I, Winsvold BS, Zwart JA, Ostrowski SR, Pedersen OB, Sellebjerg F, Søndergaard HB, Hansen MB, Jensen RH, Hansen TF. Cluster headache polygenetic risk and known functional variants of CYP3A4 are not associated with treatment response. Eur J Neurol 2023; 30:1425-1434. [PMID: 36773010 DOI: 10.1111/ene.15736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND AND PURPOSE The response to cluster headache treatments has a high interindividual variation. To date, treatment response has only been assessed by a candidate gene approach and no investigations into metabolic pathways have been performed. Our aim was to investigate the association between the polygenetic risk of cluster headache and treatment response to first-line cluster headache treatments as well as known functional variants of CYP3A4 and the response to verapamil. Further, it was aimed to replicate previous single nucleotide polymorphisms found to be associated with treatment response in cluster headache and/or migraine. METHODS In, 508 cluster headache patients diagnosed according to the International Classification of Headache Disorders were genotyped and participated in a semi-structured interview to evaluate treatment response. Polygenetic risk scores were calculated by the effect retrieved from a meta-analysis of the latest two genome-wide association studies on cluster headache. RESULTS Inferior treatment response to oxygen, triptans and verapamil is associated with chronicity of cluster headache were confirmed but no evidence was found that a response could be predicted by a high genetic risk of cluster headache. Likewise, verapamil response was not associated with functional variants of CYP3A4. No support of the genetic variants previously reported to be associated with treatment response to triptans or verapamil was found. CONCLUSION The clinically relevant variation in treatment response for cluster headache was not influenced by genetic factors in the present study.
Collapse
Affiliation(s)
- Anja Sofie Petersen
- Department of Neurology, Danish Headache Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Mads Barloese
- Department of Neurology, Danish Headache Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.,Department of Clinical Physiology and Nuclear Medicine, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nunu Lund
- Department of Neurology, Danish Headache Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Adam Friis Pedersen
- Department of Neurology, Danish Headache Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Marie-Louise Kulas Søborg
- Department of Neurology, Danish Headache Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Mona Ameri Chalmer
- Department of Neurology, Danish Headache Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Ida Callesen
- Department of Neurology, Danish Headache Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Bendik Slagsvold Winsvold
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John-Anker Zwart
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Helle Bach Søndergaard
- Department of Neurology, Danish Multiple Sclerosis Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Malene Bredahl Hansen
- Department of Neurology, Danish Multiple Sclerosis Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Rigmor Højland Jensen
- Department of Neurology, Danish Headache Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Folkmann Hansen
- Department of Neurology, Danish Headache Centre, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
7
|
Chitosan Nanoparticles Alleviated the Adverse Effects of Sildenafil on the Oxidative Stress Markers and Antioxidant Enzyme Activities in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9944985. [PMID: 36891377 PMCID: PMC9988388 DOI: 10.1155/2023/9944985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 02/01/2023]
Abstract
Sildenafil (SF) is widely used for erectile dysfunction and other conditions, though with limitations regarding oral absorption and adverse effects. Despite nanotechnological improvements, the effect of nanocarriers on SF hepatotoxicity has not been documented to date. This study aimed at assessing the impact of chitosan nanoparticles either uncoated (CS NPs) or Tween 80-coated (T-CS NPs) on the effects of SF on oxidative stress markers and antioxidant enzyme activities in rats. Test SF-CS NPs prepared by ionic gelation were uniform positively charged nanospheres (diameter 178-215 nm). SF was administered intraperitoneally to male rats (1.5 mg/kg body weight) in free or nanoencapsulated forms as SF-CS NPs and T-SF-CS NPs for 3 weeks. Free SF significantly suppressed the activity of the antioxidant enzymes glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD), as well as the levels of glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) as in an indirect measure of free radicals. Interestingly, SF-CS NPs and T-SF-CS-NPs treatments significantly attenuated the inhibitory effects of SF on the activity of these enzymes whereas, GST activity was inhibited. Moreover, the protein expression of GST was downregulated upon treatment of rats with free SF, SF-CS-NPs, and T-SF CS-NPs. In contrast, the activity and protein expression of GPx was induced by SF-CS NPs and T-SF-CS-NPs treatments. The histopathological study showed that SF induced multiple adverse effects on the rat liver architecture which were markedly suppressed particularly by T-SF-CS NPs. In conclusion, chitosan nanoencapsulation of SF counteracted the adverse effects of SF on the activity of antioxidant enzymes and liver architecture. Findings might have significant implications in improving the safety and efficacy of SF treatment of the widely expanding disease conditions.
Collapse
|
8
|
Hu J, Hu T, Guo Z, Song Y, Shan L, Shi X. Species Difference in the Metabolism of Mulberrin in Vitro and Its Inhibitory Effect on Cytochrome P450 and UDP-Glucuronosyltransferase Enzymes. Chem Pharm Bull (Tokyo) 2022; 70:669-678. [PMID: 36184449 DOI: 10.1248/cpb.c22-00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate the interspecies difference in metabolism of mulberrin and examine the interaction between mulberrin and CYP enzymes or recombinant human uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) enzymes. Liver microsomes from human (HLMs), Beagle dog (DLMs), minipig (PLMs), monkey (MLMs), rabbit (RLMs), rat (RAMs), and mouse (MIMs) were used to investigate metabolic diversity among different species. Additionally, recombinant human supersomes were used to confirm that metabolic enzymes are involved in the biotransformation of mulberrin. We also evaluated the influence of mulberrin on protein expression by Western blot analysis. Mulberrin metabolism showed significant interspecies differences. We found four and two metabolites in phase I and II reaction systems, respectively. In phase I metabolism profiles of mulberrin for HLMs, PLMs and MLMs conformed to the classic Michaelis-Menten kinetics, RAMs and MIMs followed biphasic kinetics; phase II reaction of mulberrin in HLMs, DLMs, PLMs, MLMs, RLMs, RAMs and MIMs followed biphasic kinetics. UGT1A1 were the major CYP isoforms responsible for the metabolism of mulberrin. Mulberrin showed potent inhibitory effects against CYP3A4, CYP2C9, CYP2E1, UGT1A1, UGT1A3 and UGT2B7 with IC50 values of 54.21, 9.93, 39.12, 3.84, 2.01, 16.36 µM, respectively. According to Western blot analysis, mulberrin can upregulate the protein expression of CYP2C19, and downregulate the expression levels of CYP3A5 and CYP2C9 in HepG2 cells as concentration increased. The interspecies comparisons can help find other species with metabolic pathways similar to those in humans for future in vivo studies.
Collapse
Affiliation(s)
- Jiayin Hu
- The First Affiliated Hospital of Jinzhou Medical University
| | - Tingting Hu
- The First Affiliated Hospital of Jinzhou Medical University
| | - Zhe Guo
- The First Affiliated Hospital of Jinzhou Medical University
| | - Yonggui Song
- Jiangxi University of Traditional Chinese Medicine
| | - Lina Shan
- The First Affiliated Hospital of Jinzhou Medical University
| | - Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University
| |
Collapse
|
9
|
Nauwelaerts N, Ceulemans M, Deferm N, Eerdekens A, Lammens B, Armoudjian Y, Van Calsteren K, Allegaert K, de Vries L, Annaert P, Smits A. Case Report: Bosentan and Sildenafil Exposure in Human Milk - A Contribution From the ConcePTION Project. Front Pharmacol 2022; 13:881084. [PMID: 35784689 PMCID: PMC9240352 DOI: 10.3389/fphar.2022.881084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Quantitative information on disposition of maternal medicines in human milk remains a major knowledge gap. This case report presents the clinical and pharmacokinetic data of a single mother-infant pair exposed to bosentan and sildenafil for the treatment of pulmonary arterial hypertension (PAH) during lactation. Case presentation: A 43-year old mother was treated with sildenafil (20 mg, 3x/day) and bosentan (125 mg, 2x/day) for PAH. Her 21-months old infant received breastfeeding in combination with adequate complementary foods. Milk samples were collected over 24 h, at day 637 and 651 after delivery. The observed average steady-state concentrations of sildenafil (2.84 μg/L) and bosentan (49.0 μg/L) in human milk were low. The Daily Infant Dosage ingested by the nursing infant through human milk was 0.02 μg/kg/day for sildenafil and 0.29 μg/kg/day for bosentan at day 637, and 0.03 μg/kg/day and 0.60 μg/kg/day at day 651. The Relative Infant Dose calculated for an exclusively breastfed infant with an estimated milk intake of 150 ml/kg/day, was 0.06% for sildenafil and 0.24% for bosentan. General health outcome of the infant, reported by the mother, was uneventful until the sampling days. Conclusion: Low medicine concentrations were found in human milk expressed 21 months after delivery after maternal intake of 20 mg sildenafil three times daily and 125 mg bosentan twice daily. General health of the nursing infant until sampling was reported as optimal by the mother.
Collapse
Affiliation(s)
- Nina Nauwelaerts
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Michael Ceulemans
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- L-C&Y, KU Leuven Child & Youth Institute, Leuven, Belgium
- Teratology Information Service, Netherlands Pharmacovigilance Centre Lareb, ‘s Hertogenbosch, Netherlands
| | - Neel Deferm
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - An Eerdekens
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Kristel Van Calsteren
- Gynaecology and Obstetrics, UZ Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- L-C&Y, KU Leuven Child & Youth Institute, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Loes de Vries
- Teratology Information Service, Netherlands Pharmacovigilance Centre Lareb, ‘s Hertogenbosch, Netherlands
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- BioNotus GCV, Niel, Belgium
- *Correspondence: Pieter Annaert, ; Anne Smits,
| | - Anne Smits
- L-C&Y, KU Leuven Child & Youth Institute, Leuven, Belgium
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- *Correspondence: Pieter Annaert, ; Anne Smits,
| |
Collapse
|
10
|
Mykkänen AJH, Taskinen S, Neuvonen M, Paile-Hyvärinen M, Tarkiainen EK, Lilius T, Tapaninen T, Backman JT, Tornio A, Niemi M. Genomewide Association Study of Simvastatin Pharmacokinetics. Clin Pharmacol Ther 2022; 112:676-686. [PMID: 35652242 PMCID: PMC9540481 DOI: 10.1002/cpt.2674] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
Abstract
We investigated genetic determinants of single-dose simvastatin pharmacokinetics in a prospective study of 170 subjects and a retrospective cohort of 59 healthy volunteers. In a microarray-based genomewide association study with the prospective data, the SLCO1B1 c.521T>C (p.Val174Ala, rs4149056) single nucleotide variation showed the strongest, genomewide significant association with the area under the plasma simvastatin acid concentration-time curve (AUC; P = 6.0 × 10-10 ). Meta-analysis with the retrospective cohort strengthened the association (P = 1.6 × 10-17 ). In a stepwise linear regression candidate gene analysis among all 229 participants, SLCO1B1 c.521T>C (P = 1.9 × 10-13 ) and CYP3A4 c.664T>C (p.Ser222Pro, rs55785340, CYP3A4*2, P = 0.023) were associated with increased simvastatin acid AUC. Moreover, the SLCO1B1 c.463C>A (p.Pro155Thr, rs11045819, P = 7.2 × 10-6 ) and c.1929A>C (p.Leu643Phe, rs34671512, P = 5.3 × 10-4 ) variants associated with decreased simvastatin acid AUC. Based on these results and the literature, we classified the volunteers into genotype-predicted OATP1B1 and CYP3A4 phenotype groups. Compared with the normal OATP1B1 function group, simvastatin acid AUC was 273% larger in the poor (90% confidence interval (CI), 137%, 488%; P = 3.1 × 10-6 ), 40% larger in the decreased (90% CI, 8%, 83%; P = 0.036), and 67% smaller in the highly increased function group (90% CI, 46%, 80%; P = 2.4 × 10-4 ). Intermediate CYP3A4 metabolizers (i.e., heterozygous carriers of either CYP3A4*2 or CYP3A4*22 (rs35599367)), had 87% (90% CI, 39%, 152%, P = 6.4 × 10-4 ) larger simvastatin acid AUC than normal metabolizers. These data suggest that in addition to no function SLCO1B1 variants, increased function SLCO1B1 variants and reduced function CYP3A4 variants may affect the pharmacokinetics, efficacy, and safety of simvastatin. Care is warranted if simvastatin is prescribed to patients carrying decreased function SLCO1B1 or CYP3A4 alleles.
Collapse
Affiliation(s)
- Anssi J H Mykkänen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Taskinen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Maria Paile-Hyvärinen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - E Katriina Tarkiainen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuomas Lilius
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Tuija Tapaninen
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Weng Q, Chen C, Xiong J, Liu YN, Pan X, Cui J, Cai JP, Xu RA. Effect of Baicalein on the Pharmacokinetics of Cilostazol and Its Two Metabolites in Rat Plasma Using UPLC-MS/MS Method. Front Pharmacol 2022; 13:888054. [PMID: 35571101 PMCID: PMC9091372 DOI: 10.3389/fphar.2022.888054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the effect of baicalein on the pharmacokinetics of cilostazol (CLZ) and its two metabolites 3,4-dehydro cilostazol (3,4-CLZ) and 4'-trans-hydroxy cilostazol (4'-CLZ) in rats using a newly established ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. Ticagrelor was used as an internal standard (IS), then cilostazol and its two metabolites were separated by means of a UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) using gradient elution method with 0.4 ml/min of flow rate. Acetonitrile as organic phase and water with 0.1% formic acid as aqueous phase constructed the mobile phase. Selective reaction monitoring (SRM) mode and positive ion mode were preferentially chosen to detect the analytes. Twelve SD rats were divided into two groups (n = 6) when CLZ was administered orally (10 mg/kg) with or without oral baicalein (80 mg/kg). The selectivity, linearity, recovery, accuracy, precision, matrix effect and stability of UPLC-MS/MS assay were satisfied with the standards of United States Food and Drug Administration guidelines. In control group, AUC0-∞ and Cmax of CLZ were 2,169.5 ± 363.1 ng/ml*h and 258.9 ± 82.6 ng/ml, respectively. The corresponding results were 3,767.6 ± 1,049.8 ng/ml*h and 308.6 ± 87.9 ng/ml for 3, 4-CLZ, 728.8 ± 189.9 ng/ml*h and 100.3 ± 51.3 ng/ml for 4'-CLZ, respectively. After combination with baicalein, AUC0-∞ and Cmax of CLZ were 1.48, 1.38 times higher than the controls. Additionally, AUC0-∞ and Cmax were separately decreased by 36.12 and 19.54% for 3,4-CLZ, 13.11 and 44.37% for 4'-CLZ. Baicalein obviously alters the pharmacokinetic parameters of CLZ, 3,4-CLZ and 4'-CLZ in rats. These results suggested that there was a potential drug-drug interaction between baicalein and CLZ. Therefore, it must raise the awareness when concomitant use of CLZ with baicalein, the dosage regimen of CLZ should be taken into consideration, if this result is confirmed in clinical studies.
Collapse
Affiliation(s)
- Qinghua Weng
- The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, China
| | - Chaojie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhua Xiong
- The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinxin Pan
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jian-Ping Cai
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Zhang J, Wang R. Changes in CYP3A4 Enzyme Expression and Biochemical Markers Under Acute Hypoxia Affect the Pharmacokinetics of Sildenafil. Front Physiol 2022; 13:755769. [PMID: 35153825 PMCID: PMC8829446 DOI: 10.3389/fphys.2022.755769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
To investigate the effects of pathological, physiological, biochemical and metabolic enzymes CYP3A4 on the pharmacokinetics of sildenafil under acute hypoxia, rats were randomly divided into the plain group (50 m above sea level), acute plateau group 1 (2300 m above sea level), and acute plateau group 2 (4300 m above sea level), and blood samples and liver tissues were collected. Our results showed that the blood gas, physiological and biochemical indexes of rats changed under acute hypoxia, and the protein expression of CYP3A4 enzyme decreased. The process of absorption, distribution, metabolism and excretion of sildenafil in rats has changed. Compared with the P group, the area under the drug-time curve and the average resident in the H2 group increased to 213.32 and 72.34%, respectively. The half-life and peak concentration increased by 44.27 and 133.67%, respectively. The clearance rate and apparent distribution volume decreased to 69.13 and 46.75%, respectively. There were no statistical differences in the pharmacokinetic parameters between the P group and the H1 group. In conclusion, the pharmacokinetic changes of sildenafil have a multi-factor regulation mechanism, and changes in blood gas, pathology, and biochemical indicators and metabolic enzymes affect the absorption, distribution, excretion, and metabolism of sildenafil, respectively. This study provides experimental evidence and new ideas for the rational use of sildenafil under acute hypoxic conditions.
Collapse
Affiliation(s)
- Juanhong Zhang
- College of Life Science, Northwest Normal University, Lanzhou, China.,Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, 940th Hospital of Joint Logistics Support Force of CPLA, Lanzhou, China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Rong Wang
- College of Life Science, Northwest Normal University, Lanzhou, China.,Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, 940th Hospital of Joint Logistics Support Force of CPLA, Lanzhou, China.,School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Yuan LJ, Qian JC, Li XY, Cui J, Cai JP, Hu GX. Enzymatic activity on valsartan of 38 CYP2C9 variants from the Chinese population. Chem Biol Interact 2022; 353:109799. [PMID: 34998819 DOI: 10.1016/j.cbi.2022.109799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Valsartan is widely used for the treatment of moderate hypertension. However, previous studies have found that efficacy of the valsartan depends on the dose and intake. Cytochrome P450 (CYP) 2C9 metabolizes ∼15% of the clinical drugs. Genetic polymorphisms of CYP2C9 markedly affect the safety and effectiveness of many drugs, which might lead to adverse reactions and therapeutic failure. Twenty-four novel CYP2C9 variants (*36-*60) had been previously discovered via gene sequencing in the Han population. Our study aims to evaluate the impact of 38 CYP2C9 variants from the Chinese population on valsartan metabolism compared with CYP2C9*1 in vitro. METHODS Wild-type CYP2C9*1 and other CYP2C9 variants were expressed in Spodoptera frugiperda 21 insect cells. Incubations were performed at 37 °C with 20-2000 μM substrate for 30 min. The metabolite 4-OH valsartan was determined via UPLC-MS/MS. RESULTS Among the 38 CYP2C9 variants, the enzymatic activities of most variants were significantly altered compared with the wild-type. Three variants (CYP2C9*27, *40 and *49) exhibited increased intrinsic clearance values (134-153% relative clearance). However, 12 variants (CYP *8, *13, *16, *19, *33, *36, *42, *43, *45, *52, *54, *58) caused >90% decreases in the relative clearance of valsartan compared to CYP2C9*1. CONCLUSIONS Our research provides systematic data for evaluating the effects of CYP2C9 variants on valsartan metabolism in the Chinese population. These results will expand our understanding of the impact of CYP2C9 genetic polymorphisms on valsartan metabolism and will contribute to precision medicine.
Collapse
Affiliation(s)
- Ling-Jing Yuan
- Department of Pharmacy, Shaoxing Second Hospital, Shaoxing, Zhejiang, China; Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Chang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang-Yu Li
- Department of Pharmacy, Shaoxing Keqiao Women & Children΄s Hospital, Shaoxing, Zhejiang, China
| | - Ju Cui
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, PR China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, PR China.
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
14
|
Alwhaibi A, Alsanea S, Alrabiah Z, Alanazi FK, Al-Hadiya BM, Abou-Auda HS. Pharmacokinetic profile of sildenafil citrate in healthy Middle Eastern Males: Comparison with other ethnicities. Saudi Pharm J 2021; 29:1498-1505. [PMID: 35002388 PMCID: PMC8720797 DOI: 10.1016/j.jsps.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/28/2022] Open
Abstract
AIM 1) To investigate the pharmacokinetic profile of sildenafil citrate in Middle Eastern males and, 2) To highlight the impact of ethnicity on its pharmacokinetics parameters through comparing Middle Eastern data to the data estimated from different ethnic groups. METHOD The study was conducted on 24 Middle Eastern healthy male volunteers. Pharmacokinetic data including Cmax, Tmax, t1/2, AUC0-t, AUC0-∞ were estimated from blood samples collected at several time points within 24 h post-administration of a single 100-mg tablet of sildenafil citrate (Viagra®). Pharmacokinetic data of sildenafil generic 100-mg tablet (product B) was determined in the volunteers using the same analytical method. Pharmacokinetic data of other studies published on different ethnicities were obtained and compared to our Viagra®-related data. RESULTS Analysis of Middle Eastern data (mean ± SD) revealed Cmax = 398.9 ± 107.7 ng/ml; Tmax = 1.84 ± 0.22 h; t1/2 = 2.66 ± 0.97 h; AUC0-24 = 1475 ± 515.3 ng.h/ml; AUC0-∞ = 1556 ± 567.58 ng.h/ml. There was no significant difference between Viagra® and product B, confirming the bioequivalence of the two preparation as well as the reliability of utilized analytical method. Data comparisons between Middle Eastern and other ethnicities indicated that Iranian, Mexican, and Thai would potentially have twice the effect observed in Arabs and Caucasians, considering the same prescribed drug formulation and dose. CONCLUSION There is a considerable difference in the pharmacokinetic profile of sildenafil citrate between Middle Eastern and other ethnic groups. Ethnicity may predispose individuals to unwanted prolonged activity of sildenafil and adverse events. Thus, it should be taken in consideration by clinicians when recommending sildenafil dose.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ziyad Alrabiah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Badraddin M. Al-Hadiya
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Hisham S. Abou-Auda
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
van der Perk MEM, Broer L, Yasui Y, Robison LL, Hudson MM, Laven JSE, van der Pal HJ, Tissing WJE, Versluys B, Bresters D, Kaspers GJL, de Vries ACH, Lambalk CB, Overbeek A, Loonen JJ, Beerendonk CCM, Byrne J, Berger C, Clemens E, Dirksen U, Falck Winther J, Fosså SD, Grabow D, Muraca M, Kaiser M, Kepák T, Kruseova J, Modan-Moses D, Spix C, Zolk O, Kaatsch P, Krijthe JH, Kremer LCM, Brooke RJ, Baedke JL, van Schaik RHN, van den Anker JN, Uitterlinden AG, Bos AME, van Leeuwen FE, van Dulmen-den Broeder E, van der Kooi ALLF, van den Heuvel-Eibrink MM. Effect of Genetic Variation in CYP450 on Gonadal Impairment in a European Cohort of Female Childhood Cancer Survivors, Based on a Candidate Gene Approach: Results from the PanCareLIFE Study. Cancers (Basel) 2021; 13:4598. [PMID: 34572825 PMCID: PMC8470074 DOI: 10.3390/cancers13184598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Female childhood cancer survivors (CCSs) carry a risk of therapy-related gonadal dysfunction. Alkylating agents (AA) are well-established risk factors, yet inter-individual variability in ovarian function is observed. Polymorphisms in CYP450 enzymes may explain this variability in AA-induced ovarian damage. We aimed to evaluate associations between previously identified genetic polymorphisms in CYP450 enzymes and AA-related ovarian function among adult CCSs. METHODS Anti-Müllerian hormone (AMH) levels served as a proxy for ovarian function in a discovery cohort of adult female CCSs, from the pan-European PanCareLIFE cohort (n = 743; age (years): median 25.8, interquartile range (IQR) 22.1-30.6). Using two additive genetic models in linear and logistic regression, nine genetic variants in three CYP450 enzymes were analyzed in relation to cyclophosphamide equivalent dose (CED) score and their impact on AMH levels. The main model evaluated the effect of the variant on AMH and the interaction model evaluated the modifying effect of the variant on the impact of CED score on log-transformed AMH levels. Results were validated, and meta-analysis performed, using the USA-based St. Jude Lifetime Cohort (n = 391; age (years): median 31.3, IQR 26.6-37.4). RESULTS CYP3A4*3 was significantly associated with AMH levels in the discovery and replication cohort. Meta-analysis revealed a significant main deleterious effect (Beta (95% CI): -0.706 (-1.11--0.298), p-value = 7 × 10-4) of CYP3A4*3 (rs4986910) on log-transformed AMH levels. CYP2B6*2 (rs8192709) showed a significant protective interaction effect (Beta (95% CI): 0.527 (0.126-0.928), p-value = 0.01) on log-transformed AMH levels in CCSs receiving more than 8000 mg/m2 CED. CONCLUSIONS Female CCSs CYP3A4*3 carriers had significantly lower AMH levels, and CYP2B6*2 may have a protective effect on AMH levels. Identification of risk-contributing variants may improve individualized counselling regarding the treatment-related risk of infertility and fertility preservation options.
Collapse
Affiliation(s)
- M. E. Madeleine van der Perk
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Linda Broer
- Department of Internal Medicine, Rotterdam, ErasmusMC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (L.B.); (A.G.U.)
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
- Department of Oncology, Division of Survivorship, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Joop S. E. Laven
- Department of Obstetrics and Gynecology, Erasmus MC–University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Helena J. van der Pal
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Wim J. E. Tissing
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Birgitta Versluys
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Gertjan J. L. Kaspers
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
- Department of Pediatric Oncology-Haematology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Andrica C. H. de Vries
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Cornelis B. Lambalk
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.B.L.); (A.O.)
| | - Annelies Overbeek
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1105 AZ Amsterdam, The Netherlands; (C.B.L.); (A.O.)
| | - Jacqueline J. Loonen
- Department of Haematology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Catharina C. M. Beerendonk
- Department of Obstetrics and Gynaecology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Julianne Byrne
- Boyne Research Institute, 5 Bolton Square, East, Drogheda, A92 RY6K Co. Louth, Ireland;
| | - Claire Berger
- Department of Paediatric Oncology, University Hospital, 42 055 Saint-Etienne, France;
- Lyon University, Jean Monnet University, INSERM, U 1059, Sainbiose, 42023 Saint-Etienne, France
| | - Eva Clemens
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Uta Dirksen
- University Hospital Essen, Pediatrics III, West German Cancer Centre, 45147 Essen, Germany;
- German Cancer Research Centre, DKTK, Site Essen, 45147 Essen, Germany
| | - Jeanette Falck Winther
- Childhood Cancer Research Group, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health, Aarhus University and University Hospital, 8200 Aarhus, Denmark
| | - Sophie D. Fosså
- Department of Oncology, Oslo University Hospital, 0372 Oslo, Norway;
| | - Desiree Grabow
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.G.); (M.K.); (C.S.); (P.K.)
| | - Monica Muraca
- Epidemiology and Biostatistics Unit and DOPO Clinic, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Melanie Kaiser
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.G.); (M.K.); (C.S.); (P.K.)
| | - Tomáš Kepák
- University Hospital Brno, International Clinical Research Center (FNUSA-ICRC), Masaryk University, 656 91 Brno, Czech Republic;
| | | | - Dalit Modan-Moses
- The Edmond and Lily Safra Children’s Hospital, Chaim Sheba Medical Center, Tel Hashomer, and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.G.); (M.K.); (C.S.); (P.K.)
| | - Oliver Zolk
- Institute of Clinical Pharmacology, Brandenburg Medical School Theodor Fontane, Immanuel Klinik Rüdersdorf, 16816 Neuruppin, Germany;
| | - Peter Kaatsch
- Division of Childhood Cancer Epidemiology, German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.G.); (M.K.); (C.S.); (P.K.)
| | - Jesse H. Krijthe
- Department of Intelligent Systems, Delft University of Technology, 2628 BL Delft, The Netherlands;
| | - Leontien C. M. Kremer
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Russell J. Brooke
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
| | - Jessica L. Baedke
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (Y.Y.); (L.L.R.); (M.M.H.); (R.J.B.); (J.L.B.)
| | - Ron H. N. van Schaik
- Department of clinical chemistry, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - John N. van den Anker
- Division of Clinical Pharmacology, Children’s National Hospital, Washington, DC 20010, USA;
| | - André G. Uitterlinden
- Department of Internal Medicine, Rotterdam, ErasmusMC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (L.B.); (A.G.U.)
| | - Annelies M. E. Bos
- Department of Reproductive Medicine and Gynecology, University Medical Center Utrecht, 3584 CS Utrecht, The Netherlands;
| | - Flora E. van Leeuwen
- Department of Epidemiology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Eline van Dulmen-den Broeder
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | - Anne-Lotte L. F. van der Kooi
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
- Department of Obstetrics and Gynecology, Erasmus MC–University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (H.J.v.d.P.); (W.J.E.T.); (B.V.); (D.B.); (G.J.L.K.); (A.C.H.d.V.); (E.C.); (L.C.M.K.); (E.v.D.-d.B.); (A.-L.L.F.v.d.K.); (M.M.v.d.H.-E.)
| | | |
Collapse
|
16
|
Murtadha M, Raslan MA, Fahmy SF, Sabri NA. Changes in the Pharmacokinetics and Pharmacodynamics of Sildenafil in Cigarette and Cannabis Smokers. Pharmaceutics 2021; 13:pharmaceutics13060876. [PMID: 34199328 PMCID: PMC8231986 DOI: 10.3390/pharmaceutics13060876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sildenafil citrate, a widely-used oral therapy for erectile dysfunction, is a cytochrome P3A4 (CYP3A4) enzyme substrate. Studies have reported that this substrate has an inhibitory effect on CYP3A4 enzymes in long-term cigarette and cannabis smokers, which predominantly mediate the hepatic elimination of sildenafil. Cigarette and/or cannabis smoking could therefore alter the exposure of sildenafil. The aim of this study was to examine the effect of smoking cigarettes and/or cannabis on the pharmacokinetics, pharmacodynamics, safety and tolerability of sildenafil. Thirty-six healthy human subjects were equally divided into three groups: non-smokers, cigarette smokers and cannabis smokers. Each group was administered a single dose of sildenafil (50 mg tablets). The primary outcome measures included the maximum concentration of sildenafil in plasma (Cmax), the elimination half-life (t1/2) and the area under the plasma concentration time curve from zero to time (AUC0-t). The pharmacodynamics were assessed by the International Index of Erectile Function (IIEF-5). The exposure of sildenafil (AUC0-t) showed a statistically significant increase in cigarette smokers (1156 ± 542 ng·h/mL) of 61% (p < 0.05) while in cannabis smokers (967 ± 262 ng·h/mL), a non-significant increase in AUC0-t of 35% (p > 0.05) was observed relative to non-smokers (717 ± 311 ng·h/mL). Moreover, the Cmax of sildenafil increased by 63% (p < 0.05) and 22% (p > 0.05) in cigarette smokers and cannabis smokers, respectively. Cigarette smoking increases the exposure of sildenafil to a statistically significant level with no effect on its pharmacodynamics, safety and tolerability.
Collapse
Affiliation(s)
- Mohammed Murtadha
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
| | - Mohamed Ahmed Raslan
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
- Drug Research Center, Clinical Research and Bioanalysis Department, Cairo 11865, Egypt
| | - Sarah Farid Fahmy
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11865, Egypt; (M.M.); (M.A.R.); (S.F.F.)
- Correspondence:
| |
Collapse
|
17
|
Visual Side Effects Linked to Sildenafil Consumption: An Update. Biomedicines 2021; 9:biomedicines9030291. [PMID: 33809319 PMCID: PMC7998971 DOI: 10.3390/biomedicines9030291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors such as Viagra® (sildenafil citrate) have demonstrated efficacy in the treatment of erectile dysfunction (ED) by inducing cyclic guanosine monophosphate (cGMP) elevation followed by vasodilation and increased blood flow. It also exerts minor inhibitory action against PDE6, which is present exclusively in rod and cone photoreceptors. The effects of sildenafil on the visual system have been investigated in a wide variety of clinical and preclinical studies due to the fact that a high dose of sildenafil may cause mild and transient visual symptoms in some patients. A literature review was performed using PubMed, Cochrane Library and Clinical Trials databases from 1990 up to 2020, focusing on the pathophysiology of visual disorders induced by sildenafil. The aim of this review was not only to gather and summarize the information available on sildenafil clinical trials (CTs), but also to spot subpopulations with increased risk of developing undesirable visual side effects. This PDE inhibitor has been associated with transient and reversible ocular side effects, including changes in color vision and light perception, blurred vision, photophobia, conjunctival hyperemia and keratitis, and alterations in the electroretinogram (ERG). Sildenafil may induce a reversible increase in intraocular pressure (IOP) and a few case reports suggest it is involved in the development of nonarteritic ischemic optic neuropathy (NAION). Reversible idiopathic serous macular detachment, central serous retinopathy and ERG disturbances have been related to the significant impact of sildenafil on retinal perfusion. So far, sildenafil does not seem to cause permanent toxic effects on chorioretinal tissue and photoreceptors as long as the therapeutic dose is not exceeded and is taken under a physician’s direction to treat a medical condition. However, the recreational use of sildenafil can lead to harmful side effects, including vision changes.
Collapse
|