1
|
Luo S, Xu J, Mo C, Gong W, Li C, Hou X, Ou M. High-throughput sequencing reveals twelve cell death pattern prognostic target genes as potential drug-response-associated genes in the treatment of colorectal cancer cells with palmatine hydrochloride. ONCOLOGIE 2024. [DOI: 10.1515/oncologie-2024-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Objectives
Palmatine Hydrochloride (PaH), an isoquinoline alkaloid from Phellodendron amurense and Coptis chinensis, has analgesic, anti-inflammatory, and anticancer properties. This study aimed to assess PaH’s effectiveness against SW480 colorectal cancer (CRC) cells and explore its molecular mechanisms.
Methods
PaH’s effects on SW480 CRC cells were evaluated using MTT assays for proliferation, scratch assays for migration, and flow cytometry for apoptosis. Differentially expressed genes (DEGs) were identified through high-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assessed DEG roles. Prognostic significance related to programmed cell death (PCD) was analyzed using R-Package with TCGA data. RT-qPCR validated key genes identified.
Results
PaH significantly inhibited SW480 cell growth, invasion, and apoptosis. The MTT assay showed inhibition rates increased from 5.49 % at 25 μg/mL to 52.48 % at 400 μg/mL. Scratch assays indicated reduced cell invasion over 24, 48, and 72 h. Apoptosis rose from 12.36 % in controls to 45.54 % at 400 μg/mL. Sequencing identified 3,385 significant DEGs, primarily in cancer pathways (p=0.004). Among 35 PCD-related DEGs, Lasso Cox regression highlighted 12 key genes, including TERT, TGFBR1, WNT4, and TP53. RT-qPCR confirmed TERT and TGFBR1 downregulation (0.614-fold, p=0.008; 0.41-fold, p<0.001) and TP53 and WNT4 upregulation (5.634-fold, p<0.001; 5.124-fold, p=0.002).
Conclusions
PaH inhibits CRC cell proliferation, migration, and invasion by modulating key PCD genes, suggesting its potential as a CRC therapeutic agent.
Collapse
Affiliation(s)
- Sha Luo
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Jiajun Xu
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Chune Mo
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Weiwei Gong
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Chunhong Li
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Xianliang Hou
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| | - Minglin Ou
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases , The Second Affiliated Hospital of Guilin Medical University , Guilin, 541199 , China
| |
Collapse
|
2
|
Balkrishna A, Tiwari A, Maity M, Tomer M, Varshney Y, Dev R, Sinha S, Varshney A. Co-administration of Ayurvedic medicines Arshogrit and Jatyadi Ghrit, attenuate croton oil-induced hemorrhoids in rat model of recto-anal inflammation by modulating TNF-α and IL-1β levels. Drug Dev Ind Pharm 2024; 50:938-951. [PMID: 39565131 DOI: 10.1080/03639045.2024.2432595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/25/2024] [Accepted: 11/17/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE To study the efficacy of co-administration of Arshogrit (AG) and Jatyadi Ghrit (JG), two herb-based Ayurvedic medicines, in rat model of croton oil-induced hemorrhoids. SIGNIFICANCE Hemorrhoids refer to a pathological condition affecting the recto-anal region causing pain, swelling, bleeding and protrusion. The available therapies for hemorrhoids are symptomatic or invasive but are expensive and associated with adverse effects. Hence, there exists a need for efficacious and safer pharmacotherapies. METHODS Ultra high performance liquid chromatography detected nine phytocompounds in AG and seven in JG. Seven fatty acids were additionally identified in JG by Gas Chromatography-Mass Spectrometry analysis. The in-vivo efficacy of the co-administration of AG, which was administered orally at the doses of 20, 60 and 200 mg/kg/day and JG, which was topically applied (100 mg/animal/day) was evaluated in Wistar rats by inducing hemorrhoids development with the application of croton oil preparation (COP) in the recto-anal area. Prednisolone was employed as the standard drug and was administered orally at the dose of 1 mg/kg/day. RESULTS AG and JG were able to attenuate the croton oil-induced macro and microscopic anomalies. Gross pathological observation demonstrated remarkable decrease in croton oil-induced swelling, hemorrhage and formation of pseudomembrane, with the escalating doses of AG. Microscopic observation revealed alleviation in the histopathological lesions (necrosis, inflammation, hemorrhage/congestion, degeneration and dilatation of blood vessels). AG and JG additionally reduced COP-induced increase in the serum levels of pro-inflammatory cytokines. CONCLUSION This study convincingly demonstrates that co-administration of AG and JG is a potential therapy against hemorrhoids, warranting further investigations.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Patanjali UK Trust, Glasgow, United Kingdom
- Vedic Acharya Samaj Foundation, Inc., Groveland, FL, USA
| | - Aakanksha Tiwari
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Madhulina Maity
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Yash Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Wang A, Guan B, Yu L, Liu Q, Hou Y, Li Z, Sun D, Xu H. Palmatine protects against atherosclerosis by gut microbiota and phenylalanine metabolism. Pharmacol Res 2024; 209:107413. [PMID: 39293583 DOI: 10.1016/j.phrs.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Accumulating evidence illuminated that gut microbiota directly modulates the development of atherosclerosis (AS) through interactions with metaflammation. The natural bioactive isoquinoline alkaloid palmatine (PAL), which is extracted from one of the herbs (Coptis chinensis) of the anti-AS formular, is of particular interest due to its pharmacological properties. ApoE-/- mice were administered PAL or vehicle; plaque areas, and stability were assessed by histopathological and immunohistochemistry analysis, serum glycolysis and lipid levels, and inflammation levels were also evaluated. 16S rRNA sequencing and metabolomics analysis were employed to evaluate microbial composition and serum metabolites. Microbial culture experiments were designed to reveal the target microbiota and associated metabolites. Cell culture and transcriptome were performed to elucidate the function of microbial metabolites on THP-1. PAL reduced the area of plaque and necrotic core, improving inflammatory infiltration within plaques, improving glycolipid metabolism, and reducing the levels of serum inflammatory cytokines in a dose-dependent manner. PAL treatment reshaped the composition of the gut microbiota, especially, reducing the relative abundance of Desulfovibrio piger (D. piger) in a dose-dependent manner and serum level of hippuric acid (HA). D. piger was able to convert phenylalanine into 3-phenylpropionic acid (precursor of HA). Finally, we verified HA accelerated the progression of AS and increased the secretions of inflammatory cytokines in vivo and in vitro. In conclusion, PAL exhibited anti-AS effects by regulating the gut microbiota-phenylalanine metabolism axis.
Collapse
Affiliation(s)
- Anlu Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Baoyi Guan
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Linghua Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiyu Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuanlong Hou
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ziguang Li
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Daming Sun
- Laboratory of Metabolism and Drug Target Discovery, State Key Laboratory of Natural Medicines, College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
4
|
Wang S, Liu W, Wei B, Wang A, Wang Y, Wang W, Gao J, Jin Y, Lu H, Ka Y, Yue Q. Traditional herbal medicine: Therapeutic potential in acute gouty arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118182. [PMID: 38621464 DOI: 10.1016/j.jep.2024.118182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute gouty arthritis (AGA) is characterized by a rapid inflammatory reaction caused by the build-up of monosodium urate (MSU) crystals in the tissues surrounding the joints. This condition often associated with hyperuricemia (HUA), is distinguished by its symptoms of intense pain, active inflammation, and swelling of the joints. Traditional approaches in AGA management often fall short of desired outcomes in clinical settings. However, recent ethnopharmacological investigations have been focusing on the potential of Traditional Herbal Medicine (THM) in various forms, exploring their therapeutic impact and targets in AGA treatment. AIM OF THE REVIEW This review briefly summarizes the current potential pharmacological mechanisms of THMs - including active ingredients, extracts, and prescriptions -in the treatment of AGA, and discusses the relevant potential mechanisms and molecular targets in depth. The objective of this study is to offer extensive information and a reference point for the exploration of targeted AGA treatment using THMs. MATERIALS AND METHODS This review obtained scientific publications focused on in vitro and in vivo studies of anti-AGA THMs conducted between 2013 and 2023. The literature was collected from various journals and electronic databases, including PubMed, Elsevier, ScienceDirect, Web of Science, and Google Scholar. The retrieval and analysis of relevant articles were guided by keywords such as "acute gouty arthritis and Chinese herbal medicine," "acute gouty arthritis herbal prescription," "acute gouty arthritis and immune cells," "acute gouty arthritis and inflammation," "acute gouty arthritis and NOD-like receptor thermoprotein domain associated protein 3 (NLRP3)," "acute gouty arthritis and miRNA," and "acute gouty arthritis and oxidative stress." RESULTS We found that AGA has a large number of therapeutic targets, highlighting the effectiveness the potential of THMs in AGA treatment through in vitro and in vivo studies. THMs and their active ingredients can mitigate AGA symptoms through a variety of therapeutic targets, such as influencing macrophage polarization, neutrophils, T cells, natural killer (NK) cells, and addressing factors like inflammation, NLRP3 inflammasome, signaling pathways, oxidative stress, and miRNA multi-target interactions. The anti-AGA properties of THMs, including their active components and prescriptions, were systematically summarized and categorized based on their respective therapeutic targets. CONCLUSION phenolic, flavonoid, terpenoid and alkaloid compounds in THMs are considered the key ingredients to improve AGA. THMs and their active ingredients achieve enhanced efficacy through interactions with multiple targets, of which NLRP3 is a main therapeutic target. Nonetheless, given the intricate composition of traditional Chinese medicine (TCM), additional research is required to unravel the underlying mechanisms and molecular targets through which THMs alleviate AGA.
Collapse
Affiliation(s)
- Siwei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| | - Bowen Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Aihua Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yiwen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jingyue Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yue Jin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Hang Lu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yuxiu Ka
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Qingyun Yue
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| |
Collapse
|
5
|
Yang J, Zhao H, Qu S. Phytochemicals targeting mitophagy: Therapeutic opportunities and prospects for treating Alzheimer's disease. Biomed Pharmacother 2024; 177:117144. [PMID: 39004063 DOI: 10.1016/j.biopha.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and the leading cause of age-related cognitive decline. Recent studies have established a close relationship between mitophagy and the pathogenesis of AD. Various phytochemicals have shown promising therapeutic effects in mitigating the onset and progression of AD. This review offers a comprehensive overview of the typical features of mitophagy and the underlying mechanisms leading to its occurrence in AD, highlighting its significance in the disease's pathogenesis and progression. Additionally, we examine the therapeutic mechanisms of synthetic drugs that induce mitophagy in AD. Finally, we summarize recent advances in research on phytochemicals that regulate mitophagy in the treatment of AD, potentially guiding the development of new anti-AD drugs.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
6
|
Xiang G, Yang L, Qin J, Wang S, Zhang Y, Yang S. Revealing the potential bioactive components and mechanism of Qianhua Gout Capsules in the treatment of gouty arthritis through network pharmacology, molecular docking and pharmacodynamic study strategies. Heliyon 2024; 10:e30983. [PMID: 38770346 PMCID: PMC11103544 DOI: 10.1016/j.heliyon.2024.e30983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Recent clinical studies have confirmed the effectiveness of Qianhua Gout Capsules (QGC) in the treatment of gouty arthritis (GA). However, the specific regulatory targets and mechanisms of action of QGC are still unclear. To address this gap, we utilized network pharmacology, molecular docking, and pharmacodynamic approaches to investigate the bioactive components and associated mechanisms of QGC in the treatment of GA. By employing UPLC-Q Exactive-MS, we identified the compounds present in QGC, with active ingredients defined as those with oral bioavailability ≥30 % and drug similarity ≥0.18. Subsequently, the targets of these active compounds were determined using the TCMSP database, while GA-related targets were identified from DisGeNET, GeneCards, TTD, OMIM, and DrugBank databases. Further analysis including PPI analysis, GO analysis, and KEGG pathway enrichment was conducted on the targets. Validation of the predicted results was performed using a GA rat model, evaluating pathological changes, inflammatory markers, and pathway protein expression. Our results revealed a total of 130 components, 44 active components, 16 potential shared targets, GO-enriched terms, and 47 signaling pathways related to disease targets. Key active ingredients included quercetin, kaempferol, β-sitosterol, luteolin, and wogonin. The PPI analysis highlighted five targets (PPARG, IL-6, MMP-9, IL-1β, CXCL-8) with the highest connectivity, predominantly enriched in the IL-17 signaling pathway. Molecular docking experiments demonstrated strong binding of CXCL8, IL-1β, IL-6, MMP9, and PPARG targets with the top five active compounds. Furthermore, animal experiments confirmed the efficacy of QGC in treating GA in rats, showing reductions in TNF-α, IL-6, and MDA levels, and increases in SOD levels in serum. In synovial tissues, QGC treatment upregulated CXCL8 and PPARG expression, while downregulating IL-1β, MMP9, and IL-6 expression. In conclusion, this study applied a network pharmacology approach to uncover the composition of QGC, predict its pharmacological interactions, and demonstrate its in vivo efficacy, providing insights into the anti-GA mechanisms of QGC. These findings pave the way for future investigations into the therapeutic mechanisms underlying QGC's effectiveness in the treatment of GA.
Collapse
Affiliation(s)
- Gelin Xiang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Hendra R, Agustha A, Frimayanti N, Abdulah R, Teruna HY. Antifungal Potential of Secondary Metabolites Derived from Arcangelisia flava (L.) Merr.: An Analysis of In Silico Enzymatic Inhibition and In Vitro Efficacy against Candida Species. Molecules 2024; 29:2373. [PMID: 38792233 PMCID: PMC11123860 DOI: 10.3390/molecules29102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Considering the escalating resistance to conventional antifungal medications, it is critical to identify novel compounds that can efficiently counteract this challenge. The purpose of this research was to elucidate the fungicidal properties of secondary metabolites derived from Arcangelisia flava, with a specific focus on their efficacy against Candida species. This study utilized a combination approach comprising laboratory simulations and experiments to discern and evaluate the biologically active constituents present in the dichloromethane extract of A. flava. The in vitro experiments demonstrated that compounds 1 (palmatine) and 2 (fibraurin) exhibited antifungal properties. The compounds exhibited minimum inhibitory concentrations (MICs) ranging from 15.62 to 62.5 µg/mL against Candida sp. Moreover, compound 1 demonstrated a minimum fungicidal concentration (MFC) of 62.5 µg/mL against Candida glabrata and C. krusei. In contrast, compound 2 exhibited an MFC of 125 µg/mL against both Candida species. Based on a molecular docking study, it was shown that compounds 1 and 2 have a binding free energy of -6.6377 and -6.7075 kcal/mol, respectively, which indicates a strong affinity and specificity for fungal enzymatic targets. This study utilized pharmacophore modeling and Density Functional Theory (DFT) simulations to better understand the interaction dynamics and structural properties crucial for antifungal activity. The findings underscore the potential of secondary metabolites derived from A. flava to act as a foundation for creating novel and highly efficient antifungal treatments, specifically targeting fungal diseases resistant to existing treatment methods. Thus, the results regarding these compounds can provide references for the next stage in antifungal drug design. Further investigation is necessary to thoroughly evaluate these natural substances' clinical feasibility and safety characteristics, which show great potential as antifungal agents.
Collapse
Affiliation(s)
- Rudi Hendra
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru 28291, Indonesia; (A.A.); (H.Y.T.)
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 40600, Indonesia;
| | - Aulia Agustha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru 28291, Indonesia; (A.A.); (H.Y.T.)
| | - Neni Frimayanti
- Sekolah Tinggi Ilmu Farmasi Riau, Pekanbaru 28293, Indonesia;
| | - Rizky Abdulah
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 40600, Indonesia;
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Sumedang 45363, Indonesia
| | - Hilwan Yuda Teruna
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru 28291, Indonesia; (A.A.); (H.Y.T.)
| |
Collapse
|
8
|
Zhao Z, Ma R, Ma Y, Zhao L, Wang L, Fang Y, Zhang Y, Wu X, Wang X. Discovery of Nine Dipeptidyl Peptidase-4 Inhibitors from Coptis chinensis Using Virtual Screening, Bioactivity Evaluation, and Binding Studies. Molecules 2024; 29:2304. [PMID: 38792165 PMCID: PMC11123979 DOI: 10.3390/molecules29102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of this study was to identify multiple alkaloids in Coptis chinensis that demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay, surface plasmon resonance (SPR), and a molecular dynamics simulation technique was employed. The results showed that nine alkaloids in Coptis chinensis directly inhibited DPP-4, with IC50 values of 3.44-53.73 μM. SPR-based binding studies revealed that these alkaloids display rapid binding and dissociation characteristics when interacting with DPP-4, with KD values ranging from 8.11 to 29.97 μM. A molecular dynamics analysis revealed that equilibrium was rapidly reached by nine DPP-4-ligand systems with minimal fluctuations, while binding free energy calculations showed that the ∆Gbind values for the nine test compounds ranged from -31.84 to -16.06 kcal/mol. The most important forces for the binding of these alkaloids with DPP-4 are electrostatic interactions and van der Waals forces. Various important amino acid residues, such as Arg125, His126, Phe357, Arg358, and Tyr547, were involved in the inhibition of DPP-4 by the compounds, revealing a mechanistic basis for the further optimization of these alkaloids as DPP-4 inhibitors. This study confirmed nine alkaloids as direct inhibitors of DPP-4 and characterized their binding features, thereby providing a basis for further research and development on novel DPP-4 inhibitors.
Collapse
Affiliation(s)
- Zixi Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Ruonan Ma
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Yuqing Ma
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Liqiang Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Lele Wang
- School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China; (L.W.); (Y.F.)
| | - Yuzhen Fang
- School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China; (L.W.); (Y.F.)
| | - Yuxin Zhang
- School of Pharmacy, Minzu University of China, Haidian District, Beijing 100081, China; (L.W.); (Y.F.)
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| | - Xing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Fengtai District, Beijing 100069, China; (Z.Z.); (R.M.); (Y.M.); (L.Z.)
| |
Collapse
|
9
|
Xin L, Tan GY, Zhang Q, Zhang Q. Protective Effects of Phellodendron Species on Bone Health: A Novel Perspective on Their Potentials in Treating Osteoporosis and Osteoarthritis. Chin J Integr Med 2024; 30:379-384. [PMID: 38157118 DOI: 10.1007/s11655-023-3751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 01/03/2024]
Abstract
Phellodendron (PN) species, traditionally used in Chinese medicine for centuries, hold promise as a potential treatment for osteoporosis (OP) and osteoarthritis (OA) due to their bioactive compounds. The bioactive compounds, including berberine and palmatine, exhibit anti-inflammatory, antioxidant, and bone-protective properties, contributing to their potential therapeutic benefits in promoting bone health and preventing bone loss. However, challenges such as the need for standardized preparation and dosing, limited clinical studies, and potential interactions with other medications hinder their clinical use. Nonetheless, the rich history of PN species in Chinese medicine provides a promising foundation for future investigation into their potential as alternative treatments for OP and OA. Further research is needed to fully understand the underlying mechanisms of action and explore the clinical implications of PN for bone health.
Collapse
Affiliation(s)
- Li Xin
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guo-Yao Tan
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiang Zhang
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
10
|
Lin L, Yan J, Sun J, Zhang J, Liao B. Screening and evaluation of metabolites binding PRAS40 from Erxian decoction used to treat spinal cord injury. Front Pharmacol 2024; 15:1339956. [PMID: 38318139 PMCID: PMC10839085 DOI: 10.3389/fphar.2024.1339956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Objective: The PRAS40 is an essential inhibitory subunit of the mTORC1 complex, which regulates autophagy. It has been suggested that Erxian Decoction (EXD) could treat spinal cord injury (SCI) via the autophagy pathway. However, the mechanism of whether EXD acts through PRAS40 remains unclear. Methods: With the help of immobilized PRAS40, isothermal titration calorimetry (ITC) and molecular docking, the bioactive metabolites in the EXD were screened. To establish in vitro SCI models, PC12 cells were exposed to hydrogen peroxide (H2O2) and then treated with the identified EXD substances. Furthermore, Western blot assay was carried out to identify potential molecular mechanisms involved. For assessing the effect of metabolites in vivo, the SCI model rats were first pretreated with or without the metabolite and then subjected to the immunohistochemistry (IHC) staining, Basso, Beattie & Bresnahan (BBB) locomotor rating scale, and H&E staining. Results: The immobilized PRAS40 isolated indole, 4-nitrophenol, terephthalic acid, palmatine, sinapinaldehyde, and 3-chloroaniline as the potential ligands binding to PRAS40. Furthermore, the association constants of palmatine and indole as 2.84 × 106 M-1 and 3.82 × 105 M-1 were elucidated via ITC due to the drug-like properties of these two metabolites. Molecular docking results also further demonstrated the mechanism of palmatine binding to PRAS40. Western blot analysis of PC12 cells demonstrated that palmatine inhibited the expression of p-mTOR by binding to PRAS40, activating the autophagic flux by markedly increasing LC3. The injection of palmatine (10μM and 20 μM) indicated notably increased BBB scores in the SCI rat model. Additionally, a dose-dependent increase in LC3 was observed by IHC staining. Conclusion: This research proved that EXD comprises PRAS40 antagonists, and the identified metabolite, palmatine, could potentially treat SCI by activating the autophagic flux.
Collapse
Affiliation(s)
- Li Lin
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jingchuan Yan
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jin Sun
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jianfeng Zhang
- Department of Pharmacy, Eighth Hospital of Xi’an City, Xi’an, Shaanxi, China
| | - Bo Liao
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Tuzimski T, Petruczynik A. New trends in the practical use of isoquinoline alkaloids as potential drugs applicated in infectious and non-infectious diseases. Biomed Pharmacother 2023; 168:115704. [PMID: 37862968 DOI: 10.1016/j.biopha.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
In the last years, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding permanently. Isoquinoline alkaloids have always attracted scientific interest due to either their positive or negative effects on human organism. The present review describes research on isoquinoline alkaloids isolated from different plant species. Alkaloids are one of the most important classes of plant derived compounds among these isoquinoline alkaloids possess varied biological activities such as anticancer, antineurodegenerative diseases, antidiabetic, antiinflammatory, antimicrobial, and many others. The use of plants against different disorders is entrenched in traditional medicine around the globe. Recent progress in modern therapeutics has stimulated the use of natural products worldwide for various ailments and diseases. The review provides a collection of information on the capabilities of some isoquinoline alkaloids, its potential for the treatment of various diseases and is designed to be a guide for future research on different biologically active isoquinoline alkaloids and plant species containing them. The authors are aware that they were not able to cover the whole area of the topic related to biological activity of isoquinoline alkaloids. This review is intended to suggest directions for further research and can also help other researchers in future studies.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
12
|
Tian XC, Guo JF, Yan XM, Shi TL, Nie S, Zhao SW, Bao YT, Li ZC, Kong L, Su GJ, Mao JF, Lin J. Unique gene duplications and conserved microsynteny potentially associated with resistance to wood decay in the Lauraceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1122549. [PMID: 36968354 PMCID: PMC10030967 DOI: 10.3389/fpls.2023.1122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Wood decay resistance (WDR) is marking the value of wood utilization. Many trees of the Lauraceae have exceptional WDR, as evidenced by their use in ancient royal palace buildings in China. However, the genetics of WDR remain elusive. Here, through comparative genomics, we revealed the unique characteristics related to the high WDR in Lauraceae trees. We present a 1.27-Gb chromosome-level assembly for Lindera megaphylla (Lauraceae). Comparative genomics integrating major groups of angiosperm revealed Lauraceae species have extensively shared gene microsynteny associated with the biosynthesis of specialized metabolites such as isoquinoline alkaloids, flavonoid, lignins and terpenoid, which play significant roles in WDR. In Lauraceae genomes, tandem and proximal duplications (TD/PD) significantly expanded the coding space of key enzymes of biosynthesis pathways related to WDR, which may enhance the decay resistance of wood by increasing the accumulation of these compounds. Among Lauraceae species, genes of WDR-related biosynthesis pathways showed remarkable expansion by TD/PD and conveyed unique and conserved motifs in their promoter and protein sequences, suggesting conserved gene collinearity, gene expansion and gene regulation supporting the high WDR. Our study thus reveals genomic profiles related to biochemical transitions among major plant groups and the genomic basis of WDR in the Lauraceae.
Collapse
Affiliation(s)
- Xue-Chan Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jing-Fang Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Mei Yan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shuai Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Tao Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhi-Chao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lei Kong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guang-Ju Su
- National Tree Breeding Station for Nanmu in Zhuxi, Forest Farm of Zhuxi County, Hubei, China
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Ai G, Huang R, Xie J, Zhong L, Wu X, Qin Z, Su Z, Chen J, Yang X, Dou Y. Hypouricemic and nephroprotective effects of palmatine from Cortex Phellodendri Amurensis: A uric acid modulator targeting Keap1-Nrf2/NLRP3 axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115775. [PMID: 36198377 DOI: 10.1016/j.jep.2022.115775] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Palmatine (Pal) is a major bioactive alkaloid originated from ancient Chinese herbal medicine Cortex Phellodendri Amurensis (CPA), which has long been applied to treat hyperuricemia (HUA)-related diseases. Pal possesses potent anti-inflammatory and anti-oxidant effects against metabolic diseases. However, its potential beneficial effect against PO (potassium oxonate)/HX (hypoxanthine)-induced HUA remains elusive. AIM OF THE STUDY This study aimed to investigate the potential pharmacological effect and mechanism of Pal on PO/HX-induced HUA in mice. MATERIAL AND METHODS A mouse model of HUA was established by co-administration of PO/HX once daily for 7 consecutive days. The HUA mice were orally given three doses (25, 50 and 100 mg/kg) of Pal daily for a week. Febuxostat (Feb, 5 mg/kg) was given as a positive control. At the scheduled termination of the experiment, the whole blood, liver and kidney were collected for subsequent analyses. The concentrations of uric acid (UA), creatinine (CRE) and blood urea nitrogen (BUN), and activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) were evaluated. Histopathological alterations of the kidney were detected by H&E staining. The inflammatory and oxidative stress status was detected by assay kits. Additionally, key proteins involved in the urate transporter, Keap1-Nrf2 and TXNIP/NLRP3 signaling pathways were evaluated by immunohistochemistry and Western blotting. Finally, molecular docking was employed to probe the binding characteristics of Pal and target proteins Keap1, NLRP3, URAT1 and HO-1. RESULTS Administration of Pal substantially decreased the elevated kidney weight, lowered UA, CRE and BUN levels, and attenuated abnormal histopathological alterations. Meanwhile, treatment with Pal also dramatically lowered hepatic XOD and ADA activities. Besides, Pal treatment effectively mitigated the renal inflammatory and oxidative stress markers. Further mechanistic investigation indicated Pal distinctly downregulated the protein levels of GLUT9 and URAT1, while up-regulated the expression levels of OAT1 and ABCG2. Pal also restored Nrf2 activation, promoted subsequent expression of anti-oxidative enzymes, and downregulated the expressions of TXNIP, NLRP3, apoptosis-associated speck-like (ASC), caspase-1, IL-1β and IL-18. Molecular docking analysis also indicated Pal firmly bound with Keap1, NLRP3, URAT1 and HO-1. CONCLUSIONS These findings indicated that Pal exhibited favorable anti-HUA effect via modulating the expressions of transporter-related proteins and suppressing XOD activity. Furthermore, Pal also alleviated HUA-induced kidney injury, which was at least partially related to restoring Keap1-Nrf2 pathway and inhibiting TXNIP/NLRP3 inflammasome. Our investigation was envisaged to provide experimental support for the traditional application of CPA and CPA-containing classical herbal formulas in the management of HUA-related diseases and might provide novel dimension to the clinical application of Pal.
Collapse
Affiliation(s)
- Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510006, PR China
| | - Linjiang Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaobo Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510006, PR China.
| | - Yaoxing Dou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; The Second Clinical Medical College of Guangzhou University of Chinese Medicine/Post-Doctoral Research Station, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Pei H, Zeng J, He Z, Zong Y, Zhao Y, Li J, Chen W, Du R. Palmatine ameliorates LPS-induced HT-22 cells and mouse models of depression by regulating apoptosis and oxidative stress. J Biochem Mol Toxicol 2023; 37:e23225. [PMID: 36169195 DOI: 10.1002/jbt.23225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/13/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Depression is one of the most common neuropsychiatric disorders that is characterized by low mood, lack of motivation, slow thinking, and recurrent suicidal thoughts. The mechanism of action of palmatine in depression has been rarely reported and remains unclear. The present study examined the neuroprotective effects of palmatine on lipopolysaccharide (LPS)-induced oxidative stress, apoptosis, and depression-like behavior. In this study, cell apoptosis was evaluated by CCK-8, flow cytometry, and Hoechst 33258 staining in LPS-induced HT-22 cells. Meanwhile, reactive oxygen species (ROS) and mitochondrial membrane potential were detected in vitro. In vivo, we investigated depressive-like behaviors in mice by an open field test (OFT) and elevated plus-maze test (EPM). Additionally, the levels of superoxide dismutases (SOD), TNF-α, IL-1β, and IL-6 were detected by enzyme-linked immunosorbent assay. The hematoxylin-eosin staining and TUNEL staining were used to evaluate the pathology of the hippocampus. The expression of Nrf2/HO-1 and BAX/Bcl-2 pathways in the hippocampus were assessed by Western blot analysis. Palmatine could significantly reduce apoptosis and ROS levels, and improve mitochondrial damage. Moreover, palmatine significantly improves movement time and central square crossing time in OFT, and improves open arms and movement time in EMP. And the levels of SOD, TNF-α, IL-1β, and IL-6 were significantly decreased after palmatine treatment. More importantly, palmatine improved neuronal apoptosis in the hippocampus, and depression through BAX/Bcl-2 and Nrf2/HO-1 signaling pathways. We provide evidence that palmatine further alleviates the depressive-like behavior of LPS-induced by improving apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jianning Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education of China, Changchun, China.,Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer of China, Changchun, China
| |
Collapse
|
15
|
Wang L, Zhang D, Zhan W, Zeng Z, Yin J, Wang K, Wang H, Song L, Gu Z, Guo C, Zhong Q, Wang W, Rong X, Bei W, Guo J. Chinese medicine Fufang Zhenzhu Tiaozhi capsule ameliorates coronary atherosclerosis in diabetes mellitus-related coronary heart disease minipigs. Biomed Pharmacother 2022; 156:113831. [PMID: 36228370 DOI: 10.1016/j.biopha.2022.113831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND Diabetes mellitus-related coronary heart disease (DM-CHD) is the most common cause of death in diabetic patients. Various studies have shown that Chinese medicine Fufang-Zhenzhu-Tiaozhi capsule (FTZ) has therapeutic effects on cardiovascular diseases. More research is required to determine the mechanism of FTZ protection against coronary atherosclerosis. OBJECTIVE To investigate the unique mechanism of FTZ in treatment of DM-CHD minipigs with coronary atherosclerosis. METHODS High-fat/high-sucrose/high-cholesterol diet combined with streptozotocin and coronary balloon injury were used to induce DM-CHD minipig model, which was then randomly divided into: DM-CHD model, DM-CHD treated with FTZ or positive drug (Metformin + Atorvastatin, M+A). After twenty-two weeks, ultrasonography, electrocardiography, and image detection were employed to detect cardiac functions and assess coronary artery stenosis and plaque. Human umbilical vein endothelial cells (HUVECs) were treated high glucose or/and FTZ. Pigs tissues and treated-cells were collected for further testing. RESULTS In DM-CHD minipigs, FTZ treatment significantly reduced disordered glycolipid metabolism similar as M+A administration. FTZ and M+A also alleviated coronary stenosis and myocardial injury. In addition, IκB and NF-κB phosphorylation levels, as well as the protein levels of IL-1β, Bax, cleave-Caspase 3, Bcl-2, and α-SMA were dramatically increased in the DM-CHD coronary artery, whereas CD31 and VE-cadherin expressions were decreased. Similar to M+A, FTZ reversed these protein levels in the DM-CHD coronary artery. Furthermore, FTZ ameliorated the damage and high migration activity of HUVECs induced by high glucose. CONCLUSIONS FTZ improves coronary atherosclerosis through modulating inflammation, alleviating apoptosis, and inhibiting EndMT of coronary artery to protects against DM-CHD.
Collapse
Affiliation(s)
- Lexun Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dongxing Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjing Zhan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhihuan Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, Guangdong, China
| | - Jianying Yin
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ke Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Song
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhanhui Gu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Caijuan Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qin Zhong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weixuan Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weijian Bei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), SATCM Level 3 Lab of Lipid Metabolism, Guangzhou 510006, China; Guangdong TCM Key Laboratory of Metabolic Diseases, Guangzhou 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou 510006, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Phytotherapeutic applications of alkaloids in treating breast cancer. Biomed Pharmacother 2022; 155:113760. [DOI: 10.1016/j.biopha.2022.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
|
17
|
Pei H, Zeng J, Chen W, He Z, Du R. Network pharmacology and molecular docking integrated strategy to investigate the pharmacological mechanism of palmatine in Alzheimer's disease. J Biochem Mol Toxicol 2022; 36:e23200. [PMID: 35997646 DOI: 10.1002/jbt.23200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The key molecular mechanism of palmatine in the treatment of Alzheimer's disease (AD) was investigated in this article. METHODS Network pharmacology techniques constructed drug-target-disease relationship networks and predictive pathways of action. At the cellular level, lipopolysaccharide (LPS) was used to induce Raw 264.7 cells to establish an inflammation model, and interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α indicators were examined. Apoptosis was detected using Hoechst 33258. At the animal level, LPS was used to induce AD animal model, and behavioral performance were examined by water maze, and serum biochemical indexes were measured by ELISA. And the expression of PI3K and P-AKT was observed by immunohistochemistry. Finally, molecular level validation was performed using the molecular docking technique. RESULTS The result of Network pharmacological was predicted that palmatine may treat AD mainly through the PI3K pathway. Palmatine has no significant effect on Raw264.7 cells viability within 0.05 mg/ml, Palmatine can significantly induce Raw264.7 cells to secret IL-6 and IL1-β in a concentration-dependent manner, but it has not obvious impact on NO and TNF-α. Palmatine has a significant restorative effect on the cell viability of Raw264.7 in a concentration of 0.1 mg/ml. Palmatine can be concentration-dependent to downregulate the secretion of LPS-induced IL-6. At the same time, Palmatine also has a significant effect on the level of TNF-α induced by LPS, it also can slightly downregulate the secretion of IL-1β. The results of Hoechst33258 showed that cells in the 0.025 mg/ml and 0.5 mg/ml delivery groups increased with different degrees of bright blue fluorescence, and apoptosis rate decreased. Animal experiments showed that palmatine effectively improved the learning and memory ability of AD mice. The immunohistochemical results exhibited that the expression of PI3K and P-AKT in the model group decreased, but they were obvious reversed by palmatine The molecular docking results showed that palmatine and key targets had good docking, among which the binding to ERBB2, CDC42, MDM2, and mTOR was the most likely. CONCLUSION Palmatine has neuroprotective effects. Palmatine could effectively ameliorate memory impairment in AD mice by promoting the PI3K-AKT pathway. Molecular docking results showed that palmatine has a better binding ability with mTOR.
Collapse
Affiliation(s)
- Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Jianning Zeng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center for High-Efficiency Breeding and Product Development Technology of Sika Deer, Jilin, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Du
- Engineering Research Center for High-Efficiency Breeding and Product Development Technology of Sika Deer, Jilin, China
| |
Collapse
|
18
|
Lin GS, Zhao MM, Fu QC, Zhao SY, Ba TT, Yu HX. Palmatine attenuates hepatocyte injury by promoting autophagy via the AMPK/mTOR pathway after alcoholic liver disease. Drug Dev Res 2022; 83:1613-1622. [PMID: 35976121 DOI: 10.1002/ddr.21981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/23/2022] [Accepted: 07/16/2022] [Indexed: 11/08/2022]
Abstract
Alcoholic liver disease is one of the diseases with the highest fatality rate worldwide. The cellular process of autophagy which recycles damaged organelles to maintain protein and organelle homeostasis is found to positively influence survival during hepatic insufficiency, although the mechanism is poorly understood. Palmatine (PLT) has a variety of biological functions, such as broad-spectrum antibacterial action, neuroprotective, antioxidant stress, and antiviral and anti-inflammatory activities. However, it is not known whether PLT has a protective effect against alcoholic liver injury. Here, we investigated the protective effect of PLT in a cellular model of alcohol-induced acute liver injury and further explored its mechanism of action. In this study, we show for the first time that PLT attenuates alcohol-induced hepatocyte injury by promoting autophagy to play an essential protective role. As PLT treatment induced a brief increase in LC3-II conversion and p62 degradation, it also upregulated the expression of ATG5 and ATG7. The expression levels of the proapoptotic proteins Bax, Caspase 3, and Caspase 9 significantly decreased, while the antiapoptotic protein levels of Bcl-2 upregulated after treatment with PLT. However, in presence of the autophagy inhibitor, 3-methyladenine, the effect of PLT in inhibiting ethanol-induced hepatocyte injury reversed significantly. Mechanistically, the protective effects of PLT may be mediated by promoting the activation of the AMP-activated protein kinase/mammalian target of rapamycin signaling pathway. Therefore, we believe that the development of alcoholic liver injuries may be controlled by PLT by inhibiting hepatocyte apoptosis through the autophagy pathway. The study lays a solid theoretical and practical basis for future animal models and clinical studies of PLT.
Collapse
Affiliation(s)
- Guo-Shuai Lin
- Department of Infectious Disease, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Mao-Mao Zhao
- Department of Infectious Disease, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Qi-Chao Fu
- Department of Gastroenterology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Shu-Yi Zhao
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Tao-Tao Ba
- Department of Infectious Disease, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hong-Xia Yu
- Department of Infectious Disease, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
19
|
Li S, Li X, Wang H, Jia X, Mao H, Dong F, Zhao T, Gao Y, Zhang C, Bai R, Liu R, Yan L, Ji Y, Zhang N, Wang W. The Hypoglycemic Effect of JinQi Jiangtang Tablets Is Partially Dependent on the Palmatine-Induced Activation of the Fibroblast Growth Factor Receptor 1 Signaling Pathway. Front Pharmacol 2022; 13:895724. [PMID: 35935824 PMCID: PMC9354937 DOI: 10.3389/fphar.2022.895724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
JinQi Jiangtang tablet (JQJTT) is a Chinese patent medicine that has been shown to be beneficial for patients with diabetes both preclinically and clinically; however, the molecular mechanism underlying the effects of JQJTT remains unclear. In this study, surface plasmon resonance fishing was employed to identify JQJTT constituent molecules that can specifically bind to fibroblast growth factor receptor 1 (FGFR1), leading to the retrieval of palmatine (PAL), a key active ingredient of JQJTT. In vivo and in vitro experiments demonstrated that PAL can significantly stimulate FGFR1 phosphorylation and upregulate glucose transporter type 1 (GLUT-1) expression, thereby facilitating glucose uptake in insulin resistance (IR) HepG2 cells as well as alleviating hyperglycemia in diabetic mice. Our results revealed that PAL functions as an FGFR1 activator and that the hypoglycemic effect of JQJTT is partially dependent on the PAL-induced activation of the FGFR1 pathway. In addition, this study contributed to the understanding the pharmacodynamic basis and mechanism of action of JQJTT and provided a novel concept for future research on PAL.
Collapse
Affiliation(s)
- Siming Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Xiaoling Li
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - HeMeng Wang
- College of Life Sciences, Tarim University, Alar, China
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xinhang Jia
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Haoyang Mao
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Fangxin Dong
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Tingting Zhao
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Yuan Gao
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Chen Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Ruisong Bai
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Ruihao Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Lijun Yan
- School of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Yubin Ji
- School of Pharmacy, Harbin University of Commerce, Harbin, China
- *Correspondence: Yubin Ji, ; Wenfei Wang,
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Wenfei Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- *Correspondence: Yubin Ji, ; Wenfei Wang,
| |
Collapse
|
20
|
Song Y, Xu C, Wu J, Shu J, Sheng H, Shen Y. Palmatine alleviates LPS-induced acute lung injury via interfering the interaction of TAK1 and TAB1. Biochem Pharmacol 2022; 202:115120. [PMID: 35760111 DOI: 10.1016/j.bcp.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Acute lung injury (ALI) is a severe clinical disease marked by uncontrolled inflammation response which lacks effective medicines. Accumulative evidence has indicated that macrophages are therapeutic targets for treating ALI because of its critical role in the inflammatory response.Palmatine (PAL), an isoquinoline alkaloid extracted from natural plants, exhibits effective anti-inflammatory, anti-tumor, and anti-oxidation activities. Here we reported that PAL alleviated LPS-induced acute lung injury and attenuated inflammatory cell infiltration especially neutrophils. Moreover, PAL also attenuated the production of TNF-α, CXCL-1, CXCL-2 and nitric oxide in bronchoalveolar lavage fluid. In addition, PAL remarkably reduced LPS-induced expression of TNF-α, CXCL-1 and CXCL-2 in bone marrow derived macrophages (BMDMs) and alveolar macrophages (AMs). Treatment with PAL inhibited the phosphorylation and interaction of TAK1/TAB1, which in turn attenuated the p38 MAPK and NF-κB signal pathways in BMDMs. Our results indicated that PAL ameliorated LPS-induced ALI by inhibiting macrophage activation through inhibiting NF-κB and p38 MAPK pathways, suggesting that PAL has anti-inflammation effect on ALI.
Collapse
Affiliation(s)
- Yunduan Song
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China; Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Chunyan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Jiaoxiang Wu
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao tong University School of Medicine, 1111 Xianxia Road, Changning, Shanghai 200336, PR. China; Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shu
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao tong University School of Medicine, 1111 Xianxia Road, Changning, Shanghai 200336, PR. China
| | - Huiming Sheng
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao tong University School of Medicine, 1111 Xianxia Road, Changning, Shanghai 200336, PR. China.
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China.
| |
Collapse
|
21
|
Wang X, Wang S, Hou A, Yu H, Zhang J, Zheng S, Zhang S, Lv J, Dong J, Yang L, Jiang H, Kuang H. The effect of anti-alcoholic gastric ulcer of before and after vinegar processed Yuanhu Zhitong prescription based on spectral effect relationship. Biomed Chromatogr 2022; 36:e5410. [PMID: 35577531 DOI: 10.1002/bmc.5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to screen out the active ingredients of Yuanhu Zhitong prescription before and after vinegar processed to play an anti-alcoholic gastric ulcer through spectrum-effect relationship. First, the fingerprint of 16 batches of Yuanhu Zhitong prescription was studied by UPLC-QDA method. Secondly, gastric lesion was induced by anhydrous ethanol. The degree of gastric mucosa injury was evaluated by HE staining and the contents of malondialdehyde and tumor necrosis factor alpha and superoxide dismutase were detected by ELISA kit. 16 batches of Yuanhu Zhitong prescription were analyzed by spectrum-effect relationship method. Finally, ADME was used to evaluate the bioavailability of potential compounds. The results showed that the UPLC-QDA method could successfully establish the fingerprint of Yuanhu Zhitong prescription. HE staining and biochemical indicators showed that YZP had obvious anti-alcoholic gastric ulcer action. Coptisine chloride, Corydaline, Berberine chloride, Palmatine, Imperatorin and Phellopterin were screened by spectrum-effect method, and all of them had good bioavailability. The results of this study suggest that YZP plays an anti-ulcer role by exerting anti-oxidant and anti-inflammatory effects through six main active components.
Collapse
Affiliation(s)
- Xuejiao Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Song Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Ajiao Hou
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Huan Yu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Jiaxu Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Senwang Zheng
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Shihao Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Jiahao Lv
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Jiaojiao Dong
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Liu Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Hai Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, PR China
| |
Collapse
|
22
|
Li Q, Xin M, Wu X, Lei B. A nano-phytochemical ophthalmic solution for marked improvement of corneal wound healing in healthy or diabetic mice. Nanomedicine (Lond) 2021; 17:151-165. [PMID: 34927467 DOI: 10.2217/nnm-2021-0417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: To formulate a novel nano-phytochemical ophthalmic solution to promote corneal wound healing. Methods: Dipotassium glycyrrhizinate (DG) and palmatine (PAL) were used to formulate this formulation marked as DG-PAL, and its efficacy and mechanisms for promoting corneal wound healing were evaluated in mice. Results: DG-PAL was easily fabricated with excellent physical profiles. In in vivo efficiency evaluations, DG-PAL demonstrated an excellent promoting effect on corneal epithelial/nerve wound healing in both healthy and diabetic mice. These effects were involved in the DG-PAL-induced decreased expression levels of HMGB1 and its signaling-related factors in the corneas and trigeminal neurons of the healthy or diabetic mice. Conclusion: DG-PAL possibly represents a promising ophthalmic solution for promoting corneal wound healing.
Collapse
Affiliation(s)
- Qiqi Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China.,College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Meng Xin
- Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Grabarska A, Wróblewska-Łuczka P, Kukula-Koch W, Łuszczki JJ, Kalpoutzakis E, Adamczuk G, Skaltsounis AL, Stepulak A. Palmatine, a Bioactive Protoberberine Alkaloid Isolated from Berberis cretica, Inhibits the Growth of Human Estrogen Receptor-Positive Breast Cancer Cells and Acts Synergistically and Additively with Doxorubicin. Molecules 2021; 26:molecules26206253. [PMID: 34684834 PMCID: PMC8538708 DOI: 10.3390/molecules26206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Palmatine (PLT) is a natural isoquinoline alkaloid that belongs to the class of protoberberines and exhibits a wide spectrum of pharmacological and biological properties, including anti-cancer activity. The aim of our study was to isolate PLT from the roots of Berberis cretica and investigate its cytotoxic and anti-proliferative effects in vitro alone and in combination with doxorubicine (DOX) using human ER+/HER2− breast cancer cell lines. The alkaloid was purified by column chromatography filled with silica gel NP and Sephadex LH-20 resin developed in the mixture of methanol: water (50:50 v/v) that provided high-purity alkaloid for bioactivity studies. The purity of the alkaloid was confirmed by high resolution mass measurement and MS/MS fragmentation analysis in the HPLC-ESI-QTOF-MS/MS-based analysis. It was found that PLT treatment inhibited the viability and proliferation of breast cancer cells in a dose-dependent manner as demonstrated by MTT and BrdU assays. PLT showed a quite similar growth inhibition on breast cancer cells with IC50 values ranging from 5.126 to 5.805 µg/mL. In contrast, growth of normal human breast epithelial cells was not affected by PLT. The growth inhibitory activity of PLT was related to the induction of apoptosis, as determined by Annexin V/PI staining. Moreover, PLT sensitized breast cancer cells to DOX. Isobolographic analysis revealed synergistic and additive interactions between studied agents. Our studies suggest that PLT can be a potential candidate agent for preventing and treating breast cancer.
Collapse
Affiliation(s)
- Aneta Grabarska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81448-6350
| | - Paula Wróblewska-Łuczka
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (P.W.-Ł.); (J.J.Ł.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Jarogniew J. Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (P.W.-Ł.); (J.J.Ł.)
| | - Eleftherios Kalpoutzakis
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (E.K.); (A.L.S.)
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Alexios Leandros Skaltsounis
- Laboratory of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15771 Athens, Greece; (E.K.); (A.L.S.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| |
Collapse
|
24
|
The Potential Effect of Rhizoma coptidis on Polycystic Ovary Syndrome Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5577610. [PMID: 34306142 PMCID: PMC8282388 DOI: 10.1155/2021/5577610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022]
Abstract
Background Rhizoma coptidis (RC) showed a significant effect on PCOS, but its mechanism in PCOS remains unclear. Methods The components of RC were searched by TCMSP. The Smiles number of the active ingredients was queried through PubChem, and the predicted targets were obtained from the SwissTargetPrediction database. The DrugBank, GeneCards, and DisGeNET databases were retrieved to acquire the related targets of PCOS. Then, the network of compound-target was constructed. The core targets were analyzed using protein-protein interaction (PPI) analysis, and the binding activities were verified by molecular docking. The enriched pathways of key targets were examined by GO and KEGG. Results 13 components and 250 targets of RC on PCOS were screened. The core network was filtered based on topological parameters, and the key components were palmatine, berberine, berberrubine, quercetin, and epiberberine. The key targets included DRD2, SLC6A4, CDK2, DPP4, ESR1, AKT2, PGR, and AKT1. Molecular docking displayed that the active ingredients of RC had good binding activities with potential targets of PCOS. After enrichment analysis, 30 functional pathways were obtained, including neuroactive ligand-receptor interaction, dopaminergic synapse, and cAMP signaling pathway. Conclusion In summary, this study clarified the potential effect of RC on PCOS, which is helpful to provide references for clinical practice. It is also conducive to the secondary development of RC and its monomer components.
Collapse
|
25
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|