1
|
Duraloglu C, Baysal I, Yabanoglu-Ciftci S, Arica B. Nintedanib and miR-29b co-loaded lipoplexes in idiopathic pulmonary fibrosis: formulation, characterization, and in vitro evaluation. Drug Dev Ind Pharm 2024; 50:671-686. [PMID: 39099436 DOI: 10.1080/03639045.2024.2387166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE This study was aimed to develop a cationic lipoplex formulation loaded with Nintedanib and miR-29b (LP-NIN-miR) as an alternative approach in the combination therapy of idiopathic pulmonary dibrosis (IPF) by proving its additive anti-fibrotic therapeutic effects through in vitro lung fibrosis model. SIGNIFICANCE This is the first research article reported that the LP-NIN-MIR formulations in the treatment of IPF. METHODS To optimize cationic liposomes (LPs), quality by design (QbD) approach was carried out. Optimized blank LP formulation was prepared with DOTAP, CHOL, DOPE, and DSPE-mPEG 2000 at the molar ratio of 10:10:1:1. Nintedanib loaded LP (LPs-NIN) were produced by microfluidization method and were incubated with miR-29b at room temperature for 30 min to obtain LP-NIN-miR. To evaluate the cellular uptake of LP-NIN-miR, NIH/3T3 cells were treated with 20 ng.mL-1 transforming growth factor-β1 (TGF-β1) for 96 h to establish the in vitro IPF model and incubated with LP-NIN-miR for 48 h. RESULTS The hydrodynamic diameter, polydispersity index (PDI), and zeta potential of the LP-NIN-miR were 87.3 ± 0.9 nm, 0.184 ± 0.003, and +24 ± 1 mV, respectively. The encapsulation efficiencies of Nintedanib and miR-29b were 99.8% ± 0.08% and 99.7% ± 1.2%, respectively. The results of the cytotoxicity study conducted with NIH/3T3 cells indicated that LP-NIN-miR is a safe delivery system. CONCLUSIONS The outcome of the transfection study proved the additive anti-fibrotic therapeutic effect of LP-NIN-miR and suggested that lipoplexes are effective delivery systems for drug and nucleic acid to the NIH/3T3 cells in the treatment of IPF.
Collapse
Affiliation(s)
- Ceren Duraloglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey
| | | | - Betul Arica
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Dudhat K, Patel H. Preparation and evaluation of pirfenidone loaded chitosan nanoparticles pulmonary delivery for idiopathic pulmonary fibrosis. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disorder caused by abnormal extracellular matrix deposition, which results in increasing dyspnea and loss of pulmonary function. Pirfenidone (PFD) has antifibrotic properties that have been approved by the US FDA for the treatment of IPF. Pirfenidone is currently delivered orally, which has drawbacks like reduced bioavailability in the presence of food, gastrointestinal (dyspepsia and anorexia), and dermatological (photosensitivity) side-effects, large amount of dose, and elimination half-life of 2.4 h. This study aimed was to prepare inhalable powders containing PFD-loaded chitosan nanoparticles for sustained delivery of the drug to the lung.
Result
The quasi-solvent diffusion method was used with optimized 100 mg PFD and 100 mg chitosan (CS). An in-vitro drug release research found that increasing the amount of chitosan reduced the rate of drug release from nanoparticles. Entrapment of PFD into chitosan nanoparticles decreased with the increased concentration of stabilizer concentration. All batches produced nanoparticles with a spherical morphology confirmed by SEM and sizes ranging from 239.3 ± 1.8 to 928.7 ± 4.6 nm. The optimized nanoparticles exhibited a mean particle size of 467.33 ± 7.8 nm with a polydispersity index of 0.127 ± 0.022, zeta potential of + 34.8 ± 1.6 mV, % entrapment efficiency (39.45 ± 4.63%), % drug release after 12 h (94.78 ± 2.88%), and in-vitro deposition (81.49%). Results showed that the obtained powders had different aerosolization properties. The particle size of nanoparticles reduced, and the process yield, extra-fine particle fraction, geometric standard diameter, and fine particle fraction increased significantly. Stability study showed, there are no aggregation observed and stable for six month study.
Conclusion
Prepared pirfenidone-loaded chitosan nanoparticles can be result of 6 months of stability studies that give details that there was no significant aggregation of PFD-loaded CS NPs and the spherical shape particle with smooth surface as per SEM studies. Hence, PFD-loaded CS NPs can be a suitable alternative to the currently available therapy.
Graphical abstract
Collapse
|
3
|
Skurikhin E, Nebolsin V, Widera D, Ermakova N, Pershina O, Pakhomova A, Krupin V, Pan E, Zhukova M, Novikov F, Sandrikina L, Morozov S, Kubatiev A, Dygai A. Antifibrotic and Regenerative Effects of Treamid in Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21218380. [PMID: 33171668 PMCID: PMC7664690 DOI: 10.3390/ijms21218380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease characterized by interstitial fibrosis and progressive respiratory failure. Pirfenidone and nintedanib slow down but do not stop the progression of IPF. Thus, new compounds with high antifibrotic activity and simultaneously regenerative activity are an unmet clinical need. Recently, we showed that Treamid can help restoring the pancreas and testicular tissue in mice with metabolic disorders. We hypothesized that Treamid may be effective in antifibrotic therapy and regeneration of damaged lung tissue in pulmonary fibrosis. In this study, experiments were performed on male C57BL/6 mice with bleomycin-induced pulmonary fibrosis. We applied histological and immunohistochemical methods, ELISA, and assessed the expression of markers of endothelial and epithelial cells in primary cultures of CD31+ and CD326+ lung cells. Finally, we evaluated esterase activity and apoptosis of lung cells in vitro. Our data indicate that Treamid exhibits antifibrotic activity in mice with pulmonary fibrosis and has a positive effect on capillaries of the lungs. Treamid also increases the number of endothelial progenitor cells in the lungs of animals with pulmonary fibrosis. Lastly, Treamid increases esterase activity and decreases apoptosis of CD31+ lung cells in vitro. Based on these findings, we suggest that Treamid may represent a promising compound for the development of new antifibrotic agents, which are capable of stimulating regeneration of lung endothelium in IPF patients.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
- Correspondence: ; Tel.: +7-3822-418-375
| | | | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Whiteknights campus, Reading RG6 6AP, UK;
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Vyacheslav Krupin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Mariia Zhukova
- Siberian State Medical University, 634028 Tomsk, Russia;
| | - Fedor Novikov
- “PHARMENTERPRISES” Ltd., 143026 Moscow, Russia; (V.N.); (F.N.)
| | - Lubov Sandrikina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (S.M.); (A.K.)
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (S.M.); (A.K.)
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia; (N.E.); (O.P.); (A.P.); (V.K.); (E.P.); (L.S.); (A.D.)
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (S.M.); (A.K.)
| |
Collapse
|
4
|
Tian H, Zhou Y, Tang L, Wu F, Deng Z, Lin B, Huang P, Wei S, Zhao D, Zheng J, Zhong N, Ran P. High-dose N-acetylcysteine for long-term, regular treatment of early-stage chronic obstructive pulmonary disease (GOLD I-II): study protocol for a multicenter, double-blinded, parallel-group, randomized controlled trial in China. Trials 2020; 21:780. [PMID: 32917271 PMCID: PMC7488567 DOI: 10.1186/s13063-020-04701-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/27/2020] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The presence of increased oxidative stress and airway inflammation has been proven in subjects with chronic obstructive pulmonary disease (COPD). Several studies have demonstrated that drugs with antioxidant and anti-inflammatory properties such as N-acetylcysteine (NAC) can reduce the rate of exacerbations in patients with COPD. However, the beneficial effects of NAC in early-stage COPD are minimally discussed. We are investigating whether high-dose NAC has therapeutic effects in Chinese patients with early-stage COPD. METHOD AND ANALYSIS A randomized, double-blinded, placebo-controlled, parallel-group, multicenter clinical trial is evaluating the efficacy and safety of NAC for the long-term treatment of patients with early-stage COPD at 24 centers in China. Subjects aged 40-80 years and recruited by physicians or researchers with special training will be randomized to either NAC 600 mg twice daily group or matching placebo group for 2 years. Measurements will include forced expiratory volume in 1 s (FEV1), the number of COPD exacerbations, health-related quality, and pharmacoeconomic analysis. DISCUSSION Currently, there are no randomized controlled trials with high-dose N-acetylcysteine (600 mg twice daily) for patients with mild-to-moderate COPD (GOLD I-II). We designed this multicenter randomized controlled trial (RCT) to assess the effectiveness, safety, and cost-effectiveness of long-term treatment with high-dose N-acetylcysteine. The results of this trial may guide clinical practice and change the standard of early COPD management. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR-IIR-17012604 . Registered on 07 September 2017.
Collapse
Affiliation(s)
- Heshen Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Longhui Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Zhishan Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Bijia Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Peiyu Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Shaodan Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Dongxing Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Jingping Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Bisserier M, Hadri L. Lung-targeted SERCA2a Gene Therapy: From Discovery to Therapeutic Application in Bleomycin-Induced Pulmonary Fibrosis. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:149-156. [PMID: 32587955 PMCID: PMC7316402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by an accumulation of scar tissue within the lungs and the common presence of usual interstitial pneumonia. Unfortunately, only a few FDA-approved therapeutic options are currently available for the treatment of IPF and IPF remains associated with poor prognosis. Therefore, the identification of new pharmacological targets and strategies are critical for the treatment of IPF. This commentary aims to further discuss the role of sarcoplasmic reticulum Ca2+-ATPase 2a and its downstream signaling in IPF. Finally, this commentary offers new insights and perspectives regarding the therapeutic potential of AAV-mediated SERCA2A gene therapy as an emerging therapy for respiratory diseases.
Collapse
Affiliation(s)
| | - Lahouaria Hadri
- Correspondence should be addressed to Lahouaria Hadri, PhD, Cardiovascular Research Center, Box 1030, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029;
| |
Collapse
|
6
|
Wu AC, Kiley JP, Noel PJ, Amur S, Burchard EG, Clancy JP, Galanter J, Inada M, Jones TK, Kropski JA, Loyd JE, Nogee LM, Raby BA, Rogers AJ, Schwartz DA, Sin DD, Spira A, Weiss ST, Young LR, Himes BE. Current Status and Future Opportunities in Lung Precision Medicine Research with a Focus on Biomarkers. An American Thoracic Society/National Heart, Lung, and Blood Institute Research Statement. Am J Respir Crit Care Med 2019; 198:e116-e136. [PMID: 30640517 DOI: 10.1164/rccm.201810-1895st] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Thousands of biomarker tests are either available or under development for lung diseases. In many cases, adoption of these tests into clinical practice is outpacing the generation and evaluation of sufficient data to determine clinical utility and ability to improve health outcomes. There is a need for a systematically organized report that provides guidance on how to understand and evaluate use of biomarker tests for lung diseases. METHODS We assembled a diverse group of clinicians and researchers from the American Thoracic Society and leaders from the National Heart, Lung, and Blood Institute with expertise in various aspects of precision medicine to review the current status of biomarker tests in lung diseases. Experts summarized existing biomarker tests that are available for lung cancer, pulmonary arterial hypertension, idiopathic pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, sepsis, acute respiratory distress syndrome, cystic fibrosis, and other rare lung diseases. The group identified knowledge gaps that future research studies can address to efficiently translate biomarker tests into clinical practice, assess their cost-effectiveness, and ensure they apply to diverse, real-life populations. RESULTS We found that the status of biomarker tests in lung diseases is highly variable depending on the disease. Nevertheless, biomarker tests in lung diseases show great promise in improving clinical care. To efficiently translate biomarkers into tests used widely in clinical practice, researchers need to address specific clinical unmet needs, secure support for biomarker discovery efforts, conduct analytical and clinical validation studies, ensure tests have clinical utility, and facilitate appropriate adoption into routine clinical practice. CONCLUSIONS Although progress has been made toward implementation of precision medicine for lung diseases in clinical practice in certain settings, additional studies focused on addressing specific unmet clinical needs are required to evaluate the clinical utility of biomarkers; ensure their generalizability to diverse, real-life populations; and determine their cost-effectiveness.
Collapse
|
7
|
Shamskhou EA, Kratochvil MJ, Orcholski ME, Nagy N, Kaber G, Steen E, Balaji S, Yuan K, Keswani S, Danielson B, Gao M, Medina C, Nathan A, Chakraborty A, Bollyky PL, De Jesus Perez VA. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials 2019; 203:52-62. [PMID: 30852423 DOI: 10.1016/j.biomaterials.2019.02.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive lung disorder with limited therapeutic options. While interleukin-10 (IL-10) is a potent anti-inflammatory and anti-fibrotic cytokine, its utility in treating lung fibrosis has been limited by its short half-life. We describe an innovative hydrogel-based approach to deliver recombinant IL-10 to the lung for the prevention and reversal of pulmonary fibrosis in a mouse model of bleomycin-induced lung injury. Our studies show that a hyaluronan and heparin-based hydrogel system locally delivers IL-10 by capitalizing on the ability of heparin to reversibly bind IL-10 without bleeding or other complications. This formulation is significantly more effective than soluble IL-10 for both preventing and reducing collagen deposition in the lung parenchyma after 7 days of intratracheal administration. The anti-fibrotic effect of IL-10 in this system is dependent on suppression of TGF-β driven collagen production by lung fibroblasts and myofibroblasts. We conclude that hydrogel-based delivery of IL-10 to the lung is a promising therapy for fibrotic lung disorders.
Collapse
Affiliation(s)
- Elya A Shamskhou
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Mark E Orcholski
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nadine Nagy
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Gernot Kaber
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Emily Steen
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Swathi Balaji
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ke Yuan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Sundeep Keswani
- Department of Surgery, Division of Pediatric Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ben Danielson
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Max Gao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Carlos Medina
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Abinaya Nathan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ananya Chakraborty
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Paul L Bollyky
- Department of Medicine, Division of Infectious Disease, Stanford University, Stanford, CA, 94305, USA
| | - Vinicio A De Jesus Perez
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
8
|
Zhang X, Cai Y, Zhang W, Chen X. Quercetin ameliorates pulmonary fibrosis by inhibiting SphK1/S1P signaling. Biochem Cell Biol 2018; 96:742-751. [PMID: 29940125 DOI: 10.1139/bcb-2017-0302] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis is an agnogenic chronic disorder with high morbidity and low survival rate. Quercetin is a flavonoid found in a variety of herbs with anti-fibrosis function. In this study, bleomycin was employed to induce a pulmonary fibrosis mouse model. The quercetin administration ameliorated bleomycin-induced pulmonary fibrosis, evidenced by the expression level changes of hydroxyproline, fibronectin, α-smooth muscle actin, Collagen I, and Collagen III. Similar results were observed in transforming growth factor (TGF)-β-treated human embryonic lung fibroblast (HELF). The bleomycin or TGF-β administration caused the increase of sphingosine-1-phosphate (S1P) level in pulmonary tissue and HELF cells, as well as its activation-required kinase, sphingosine kinase 1 (SphK1), and its degradation enzyme, sphinogosine-1-phosphate lyase (S1PL). However, the increase of S1P, SphK1, and S1PL was attenuated by application of quercetin. In addition, the effect of quercetin on fibrosis was abolished by the ectopic expression of SphK1. The colocalization of SphK1/S1PL and fibroblast specific protein 1 (FSP1) suggested the roles of fibroblasts in pulmonary fibrosis. In summary, we demonstrated that quercetin ameliorated pulmonary fibrosis in vivo and in vitro by inhibiting SphK1/S1P signaling.
Collapse
Affiliation(s)
- Xingcai Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People’s Republic of China
| | - Yuli Cai
- Department of Joint Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People’s Republic of China
| | - Wei Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People’s Republic of China
| | - Xianhai Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, People’s Republic of China
| |
Collapse
|
9
|
Gu Y, Huang B, Yang Y, Qi M, Lu G, Xia D, Li H. Ibrutinib Exacerbates Bleomycin-Induced Pulmonary Fibrosis via Promoting Inflammation. Inflammation 2018. [PMID: 29532266 DOI: 10.1007/s10753-018-0745-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality rate. The etiology is unknown and treatment choices are limited. Thus, there is great interest to investigate novel agents for IPF therapy. Ibrutinib, BTK, and ITK irreversible inhibitor is a FDA-approved small molecule for the clinical therapy of B cell lymphoma. Its role in pulmonary fibrosis remains unknown. In this study, we investigated the anti-fibrotic activity of ibrutinib. Strikingly, ibrutinib did not inhibit but exacerbated bleomycin-induced pulmonary fibrosis by increased epithelial cell apoptosis, and inflammation in the lung. The upregulated TGF-β and EMT transformation also contributes to enhanced myofibroblast differentiation and ECM deposition. Our findings reveal the detrimental effects of ibrutinib against bleomycin-mediated fibrosis and added to the understanding of IPF pathogenesis.
Collapse
Affiliation(s)
- Yangyang Gu
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China.,Department of Respiratory Diseases, Jiaxing Second Hospital, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Bo Huang
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Yanfei Yang
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Mengdie Qi
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Guohua Lu
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Dajing Xia
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, 310058, China.,School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
10
|
Peyvandipour A, Saberian N, Shafi A, Donato M, Draghici S. A novel computational approach for drug repurposing using systems biology. Bioinformatics 2018; 34:2817-2825. [PMID: 29534151 PMCID: PMC6084573 DOI: 10.1093/bioinformatics/bty133] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/07/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
Motivation Identification of novel therapeutic effects for existing US Food and Drug Administration (FDA)-approved drugs, drug repurposing, is an approach aimed to dramatically shorten the drug discovery process, which is costly, slow and risky. Several computational approaches use transcriptional data to find potential repurposing candidates. The main hypothesis of such approaches is that if gene expression signature of a particular drug is opposite to the gene expression signature of a disease, that drug may have a potential therapeutic effect on the disease. However, this may not be optimal since it fails to consider the different roles of genes and their dependencies at the system level. Results We propose a systems biology approach to discover novel therapeutic roles for established drugs that addresses some of the issues in the current approaches. To do so, we use publicly available drug and disease data to build a drug-disease network by considering all interactions between drug targets and disease-related genes in the context of all known signaling pathways. This network is integrated with gene-expression measurements to identify drugs with new desired therapeutic effects based on a system-level analysis method. We compare the proposed approach with the drug repurposing approach proposed by Sirota et al. on four human diseases: idiopathic pulmonary fibrosis, non-small cell lung cancer, prostate cancer and breast cancer. We evaluate the proposed approach based on its ability to re-discover drugs that are already FDA-approved for a given disease. Availability and implementation The R package DrugDiseaseNet is under review for publication in Bioconductor and is available at https://github.com/azampvd/DrugDiseaseNet. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Adib Shafi
- Computer Science, Wayne State University, Detroit, MI, USA
| | - Michele Donato
- Computer Science, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Computer Science, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
11
|
Molina-Molina M, Machahua-Huamani C, Vicens-Zygmunt V, Llatjós R, Escobar I, Sala-Llinas E, Luburich-Hernaiz P, Dorca J, Montes-Worboys A. Anti-fibrotic effects of pirfenidone and rapamycin in primary IPF fibroblasts and human alveolar epithelial cells. BMC Pulm Med 2018; 18:63. [PMID: 29703175 PMCID: PMC5922028 DOI: 10.1186/s12890-018-0626-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/16/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Pirfenidone, a pleiotropic anti-fibrotic treatment, has been shown to slow down disease progression of idiopathic pulmonary fibrosis (IPF), a fatal and devastating lung disease. Rapamycin, an inhibitor of fibroblast proliferation could be a potential anti-fibrotic drug to improve the effects of pirfenidone. METHODS Primary lung fibroblasts from IPF patients and human alveolar epithelial cells (A549) were treated in vitro with pirfenidone and rapamycin in the presence or absence of transforming growth factor β1 (TGF-β). Extracellular matrix protein and gene expression of markers involved in lung fibrosis (tenascin-c, fibronectin, collagen I [COL1A1], collagen III [COL3A1] and α-smooth muscle actin [α-SMA]) were analyzed. A cell migration assay in pirfenidone, rapamycin and TGF-β-containing media was performed. RESULTS Gene and protein expression of tenascin-c and fibronectin of fibrotic fibroblasts were reduced by pirfenidone or rapamycin treatment. Pirfenidone-rapamycin treatment did not revert the epithelial to mesenchymal transition pathway activated by TGF-β. However, the drug combination significantly abrogated fibroblast to myofibroblast transition. The inhibitory effect of pirfenidone on fibroblast migration in the scratch-wound assay was potentiated by rapamycin combination. CONCLUSIONS These findings indicate that the combination of pirfenidone and rapamycin widen the inhibition range of fibrogenic markers and prevents fibroblast migration. These results would open a new line of research for an anti-fibrotic combination therapeutic approach.
Collapse
Affiliation(s)
- M. Molina-Molina
- Department of Pneumology, Bellvitge University Hospital, Barcelona, Spain
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Research Network in Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - C. Machahua-Huamani
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
| | - V. Vicens-Zygmunt
- Department of Pneumology, Bellvitge University Hospital, Barcelona, Spain
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
| | - R. Llatjós
- Department of Pathology, Bellvitge University Hospital, Barcelona, Spain
| | - I. Escobar
- Department of Thoracic Surgery, Bellvitge University Hospital, Barcelona, Spain
| | - E. Sala-Llinas
- Research Network in Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Department of Penumology, Son Espases University Hospital, Palma de Mallorca, Spain
| | - P. Luburich-Hernaiz
- Servei de Diagnostic per la Imatge El Prat (SDPI El Prat) Department of Radiology, Bellvitge University Hospital, Barcelona, Spain
| | - J. Dorca
- Department of Pneumology, Bellvitge University Hospital, Barcelona, Spain
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Research Network in Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - A. Montes-Worboys
- Department of Pneumology, Bellvitge University Hospital, Barcelona, Spain
- Pneumology Research Group, IDIBELL, University of Barcelona, Barcelona, Spain
- Research Network in Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
- Laboratori de Pneumologia Experimental (Lab. 4126). IDIBELL, Pavelló de Govern. Campus de Bellvitge, Universitat de Barcelona, Hospital de Bellvitge, Carrer de la Feixa Llarga, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
12
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
13
|
Karo-Atar D, Bordowitz A, Wand O, Pasmanik-Chor M, Fernandez IE, Itan M, Frenkel R, Herbert DR, Finkelman FD, Eickelberg O, Munitz A. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol 2016; 9:240-53. [PMID: 26153764 PMCID: PMC4703942 DOI: 10.1038/mi.2015.56] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/14/2015] [Indexed: 02/04/2023]
Abstract
Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels of IL-13 receptors in the lungs of bleomycin-treated mice and to some extent in idiopathic pulmonary fibrosis patients. Transcriptional profiling demonstrated an epithelial cell-associated gene signature that was homeostatically dependent on IL-13Rα1 expression. IL-13Rα1 regulated a striking array of genes in the lung following bleomycin administration and Il13ra1 deficiency resulted in exacerbated bleomycin-induced disease. Increased pathology in bleomycin-treated Il13ra1(-/-) mice was due to IL-13Rα1 expression in structural and hematopoietic cells but not due to increased responsiveness to IL-17, IL-4, IL-13, increased IL-13Rα2 or type 1 IL-4R signaling. These data highlight underappreciated protective roles for IL-13Rα1 in lung injury and homeostasis.
Collapse
Affiliation(s)
- D Karo-Atar
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - A Bordowitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - O Wand
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - M Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - I E Fernandez
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - M Itan
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - R Frenkel
- Department of Math, Physics and Computer Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - D R Herbert
- Division of Experimental Medicine, University of California, San Francisco, California, USA
| | - F D Finkelman
- Division of Allergy, Immunology and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA,Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - O Eickelberg
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - A Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel,()
| |
Collapse
|
14
|
Togami K, Miyao A, Miyakoshi K, Kanehira Y, Tada H, Chono S. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis. Biol Pharm Bull 2015; 38:270-6. [PMID: 25747986 DOI: 10.1248/bpb.b14-00659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Kohei Togami
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy
| | | | | | | | | | | |
Collapse
|
15
|
Total Glucosides of Danggui Buxue Tang Attenuate BLM-Induced Pulmonary Fibrosis via Regulating Oxidative Stress by Inhibiting NOX4. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:645814. [PMID: 26347805 PMCID: PMC4548145 DOI: 10.1155/2015/645814] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/22/2015] [Accepted: 07/14/2015] [Indexed: 11/17/2022]
Abstract
Pulmonary fibrosis (PF) is a serious chronic lung disease with unknown pathogenesis. Researches have confirmed that oxidative stress which is regulated by NADPH oxidase-4 (NOX4), a main source of reactive oxygen species (ROS), is an important molecular mechanism underlying PF. Previous studies showed that total glucosides of Danggui Buxue Tang (DBTG), an extract from a classical traditional Chinese herbal formula, Danggui Buxue Tang (DBT), attenuated bleomycin-induced PF in rats. However, the mechanisms of DBTG are still not clear. We hypothesize that DBTG attenuates PF through regulating the level of oxidative stress by inhibiting NOX4. And we found that fibrosis indexes hydroxyproline (HYP) and type I collagen (Col-I) were lower in DBTG groups compared with the model group. In addition, the expression of transforming growth factor-β1 (TGF-β1) and expression of alpha smooth muscle actin (α-SMA) were also much more decreased than the model group. For oxidative stress indicators, DBTG blunted the decrease of superoxide dismutase (SOD) activity, total antioxidant capacity (T-AOC), and the increase in malondialdehyde (MDA), 8-iso-prostaglandin in lung homogenates. Treatment with DBTG restrained the expression of NOX4 compared to the model group. Present study confirms that DBTG inhibits BLM-induced PF by modulating the level of oxidative stress via suppressing NOX4.
Collapse
|
16
|
Ni S, Wang D, Qiu X, Pang L, Song Z, Guo K. Bone marrow mesenchymal stem cells protect against bleomycin-induced pulmonary fibrosis in rat by activating Nrf2 signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7752-7761. [PMID: 26339340 PMCID: PMC4555668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED Pulmonary fibrosis is a progressive and lethal disorder. Although the precise mechanisms of pulmonary fibrosis are not fully understood, oxidant/antioxidant may play an important role in many of the processes of inflammation and fibrosis. Keap1-Nrf2-ARE pathway represents one of the most important cellular defense mechanisms against oxidative stress. Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration. In the present study, we investigated bone marrow mesenchymal stem cells (BMSCs) for the treatment of bleomycin-induced pulmonary fibrosis. Our results showed that BMSCs administration significantly ameliorated the bleomycin mediated histological alterations and blocked collagen deposition with parallel reduction in the hydroxyproline level. The gene expression levels of NAD(P)H quinine oxidoreductase 1 (NQO1), gama-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2), attenuated by bleomycin, were increased up to basal levels after BMSCs transplantation. BMSCs significantly increased superoxide dismutase (SOD) activity and inhibited malondialdehyde (MDA) production in the injured lung. The present study provides evidence that BMSCs may be a potential therapeutic reagent for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Shirong Ni
- Department of Hematology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
- Department of Pathophysiology, Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Dexuan Wang
- Department of Pediatrics, The Second Affiliated & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Xiaoxiao Qiu
- Department of Pathophysiology, Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Lingxia Pang
- Teaching Center of Medical Functional Experiment, Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Zhangjuan Song
- Department of Pathophysiology, Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Kunyuan Guo
- Department of Hematology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
17
|
Wollin L, Wex E, Pautsch A, Schnapp G, Hostettler KE, Stowasser S, Kolb M. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur Respir J 2015; 45:1434-45. [PMID: 25745043 PMCID: PMC4416110 DOI: 10.1183/09031936.00174914] [Citation(s) in RCA: 602] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/05/2015] [Indexed: 12/21/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disease characterised by fibrosis of the lung parenchyma and loss of lung function. Although the pathogenic pathways involved in IPF have not been fully elucidated, IPF is believed to be caused by repetitive alveolar epithelial cell injury and dysregulated repair, in which there is uncontrolled proliferation of lung fibroblasts and differentiation of fibroblasts into myofibroblasts, which excessively deposit extracellular matrix (ECM) proteins in the interstitial space. A number of profibrotic mediators including platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and transforming growth factor-β are believed to play important roles in the pathogenesis of IPF. Nintedanib is a potent small molecule inhibitor of the receptor tyrosine kinases PDGF receptor, FGF receptor and vascular endothelial growth factor receptor. Data from in vitro studies have shown that nintedanib interferes with processes active in fibrosis such as fibroblast proliferation, migration and differentiation, and the secretion of ECM. In addition, nintedanib has shown consistent anti-fibrotic and anti-inflammatory activity in animal models of lung fibrosis. These data provide a strong rationale for the clinical efficacy of nintedanib in patients with IPF, which has recently been demonstrated in phase III clinical trials. Nintedanib interferes with processes active in fibrosis, e.g. fibroblast proliferation, migration anddifferentiationhttp://ow.ly/Iae9z
Collapse
Affiliation(s)
- Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eva Wex
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Gisela Schnapp
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Susanne Stowasser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | | |
Collapse
|
18
|
Protein kinase D is increased and activated in lung epithelial cells and macrophages in idiopathic pulmonary fibrosis. PLoS One 2014; 9:e101983. [PMID: 25000413 PMCID: PMC4084945 DOI: 10.1371/journal.pone.0101983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/12/2014] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.
Collapse
|
19
|
Abstract
Treatment of tuberculosis (TB) remains challenging, with lengthy treatment durations and complex drug regimens that are toxic and difficult to administer. Similar to the vast majority of antibiotics, drugs for Mycobacterium tuberculosis are directed against microbial targets. Although more effective drugs that target the bacterium may lead to faster cure of patients, it is possible that a biological limit will be reached that can be overcome only by adopting a fundamentally new treatment approach. TB regimens might be improved by including agents that target host pathways. Recent work on host-pathogen interactions, host immunity, and host-directed interventions suggests that supplementing anti-TB therapy with host modulators may lead to shorter treatment times, a reduction in lung damage caused by the disease, and a lower risk of relapse or reinfection. We undertook this review to identify molecular pathways of the host that may be amenable to modulation by small molecules for the treatment of TB. Although several approaches to augmenting standard TB treatment have been proposed, only a few have been explored in detail or advanced to preclinical and clinical studies. Our review focuses on molecular targets and inhibitory small molecules that function within the macrophage or other myeloid cells, on host inflammatory pathways, or at the level of TB-induced lung pathology.
Collapse
|
20
|
Kasabova M, Joulin-Giet A, Lecaille F, Gilmore BF, Marchand-Adam S, Saidi A, Lalmanach G. Regulation of TGF-β1-driven differentiation of human lung fibroblasts: emerging roles of cathepsin B and cystatin C. J Biol Chem 2014; 289:16239-51. [PMID: 24790080 DOI: 10.1074/jbc.m113.542407] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lung matrix homeostasis partly depends on the fine regulation of proteolytic activities. We examined the expression of human cysteine cathepsins (Cats) and their relative contribution to TGF-β1-induced fibroblast differentiation into myofibroblasts. Assays were conducted using both primary fibroblasts obtained from patients with idiopathic pulmonary fibrosis and human lung CCD-19Lu fibroblasts. Pharmacological inhibition and genetic silencing of Cat B diminished α-smooth muscle actin expression, delayed fibroblast differentiation, and led to an accumulation of intracellular 50-kDa TGF-β1. Moreover, the addition of Cat B generated a 25-kDa mature form of TGF-β1 in Cat B siRNA-pretreated lysates. Inhibition of Cat B decreased Smad 2/3 phosphorylation but had no effect on p38 MAPK and JNK phosphorylation, indicating that Cat B mostly disturbs TGF-β1-driven canonical Smad signaling pathway. Although mRNA expression of cystatin C was stable, its secretion, which was inhibited by brefeldin A, increased during TGF-β1-induced differentiation of idiopathic pulmonary fibrosis and CCD-19Lu fibroblasts. In addition, cystatin C participated in the control of extracellular Cats, because its gene silencing restored their proteolytic activities. These data support the notion that Cat B participates in lung myofibrogenesis as suggested for stellate cells during liver fibrosis. Moreover, we propose that TGF-β1 promotes fibrosis by driving the effective cystatin C-dependent inhibition of extracellular matrix-degrading Cats.
Collapse
Affiliation(s)
- Mariana Kasabova
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Alix Joulin-Giet
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Fabien Lecaille
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Brendan F Gilmore
- the Queen's University Belfast, School of Pharmacy, McClay Research Centre, Belfast, BT9 7BL, United Kingdom
| | - Sylvain Marchand-Adam
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Ahlame Saidi
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| | - Gilles Lalmanach
- From the INSERM U1100, Pathologies Pulmonaires: Protéolyse et Aérosolthérapie, Equipe 2: Mécanismes Protéolytiques dans l'Inflammation, Centre d'Etude des Pathologies Respiratoires, Université François Rabelais, Faculté de Médecine, F-37032 Tours, France and
| |
Collapse
|
21
|
Bosmann M, Ward PA. Protein-based therapies for acute lung injury: targeting neutrophil extracellular traps. Expert Opin Ther Targets 2014; 18:703-14. [PMID: 24670033 DOI: 10.1517/14728222.2014.902938] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the acute onset of noncardiac respiratory insufficiency associated with bilateral lung infiltrations. During the past decade, mechanical ventilation strategies using low tidal volumes have reduced the mortality of ALI/ARDS to ∼ 20 - 40%. However, ALI/ARDS continues to be a major factor in global burden of diseases, with no pharmacological agents currently available. AREAS COVERED In this review, we discuss several inflammatory proteins involved in the molecular pathogenesis of ALI/ARDS. The complement cleavage product, C5a, is a peptide acting as a potent anaphylatoxin. C5a may trigger the formation of neutrophil extracellular traps (NETs) and release of histone proteins to the extracellular compartment during ALI/ARDS. NETs may activate platelets to release TGF-β, which is involved in tissue remodeling during the later phases of ALI/ARDS. Interception of C5a signaling or blockade of extracellular histones has recently shown promising beneficial effects in small animal models of ALI/ARDS. EXPERT OPINION Novel protein-based strategies for the treatment of ALI/ARDS may inspire the hopes of scientists, clinicians, and patients. Although neutralization of extracellular histones/NETs, C5a, and TGF-β is effective in experimental models of ALI/ARDS, controlled clinical trials will be necessary for further evaluation in future.
Collapse
Affiliation(s)
- Markus Bosmann
- University Medical Center, Center for Thrombosis and Hemostasis , Langenbeckstrasse 1, Mainz, 55131 , Germany +49 6131 17 8277 ; +49 6131 17 6238 ;
| | | |
Collapse
|
22
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and invariably fatal disease with a median survival of less than three years from diagnosis. The last decade has seen an exponential increase in clinical trial activity in IPF and this in turn has led to important developments in the treatment of this terrible disease. Previous therapeutic approaches based around regimens including corticosteroids and azathioprine have, when tested in randomized clinical trials, been shown to be harmful in IPF. By contrast, compounds with anti-fibrotic actions have been shown to be beneficial. Subsequently, the novel anti-fibrotic agent pirfenidone has, in many parts of the world, become the first treatment ever to be licensed for use in IPF. This exciting development, coupled with ongoing clinical trials of a range of other novel compounds, is bringing hope to patients and their clinicians and raises the prospect that, in the future, it may become possible to successfully arrest the development of progressive scarring in IPF.
Collapse
Affiliation(s)
- Hannah V. Woodcock
- NIHR Respiratory Biomedical Research Unit, Royal Brompton HospitalSydney Street, London, SW3 6NPUK
- Centre for Inflammation and Tissue Repair, University College London, Rayne Institute5 University Road, London, WC1E 6JJUK
| | - Toby M. Maher
- NIHR Respiratory Biomedical Research Unit, Royal Brompton HospitalSydney Street, London, SW3 6NPUK
- Centre for Leucocyte Biology, Imperial College LondonSir Alexander Fleming Building, London, SW3UK
| |
Collapse
|
23
|
Gomer RH. New approaches to modulating idiopathic pulmonary fibrosis. Curr Allergy Asthma Rep 2014; 13:607-12. [PMID: 23959780 DOI: 10.1007/s11882-013-0377-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Until recently, idiopathic pulmonary fibrosis (IPF) has been a devastating and generally fatal disease with no effective therapeutic. New developments in understanding the biology of the disease include a growing consensus that the lesions are mainly composed of cells that originated from resident fibroblasts. New developments in therapeutics include recommendations against several treatment regimes that have been previously used. On a positive note, the orally available drug pirfenidone has been approved for use in IPF in China, Japan, India, and the European Union, but not yet in the United States. Other possibilities for managing IPF include managing gastrointestinal reflux, and limiting excessive salt intake. A variety of potential therapeutics for IPF are in clinical trials; for instance, in a Phase 1b trial, intravenous injections of a recombinant version of the normal human serum protein Serum Amyloid P (SAP, also known as PTX2) improved lung function in IPF patients.
Collapse
|
24
|
Meyer KC. Diagnosis and management of interstitial lung disease. TRANSLATIONAL RESPIRATORY MEDICINE 2014; 2:4. [PMID: 25505696 PMCID: PMC4215823 DOI: 10.1186/2213-0802-2-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/17/2013] [Indexed: 12/24/2022]
Abstract
The complex tasks of making a confident diagnosis of a specific form of interstitial lung disease (ILD) and formulating a patient-centered, personalized management plan in an attempt to achieve remission or stabilization of the disease process can pose formidable challenges to clinicians. When patients are evaluated for suspected ILD, an accurate diagnosis of the specific form of ILD that a patient has developed must be made to provide the patient with useful prognostic information and to formulate an appropriate management plan that can relieve symptoms and restore or significantly improve quality of life. A well-performed patient history and physical examination provides invaluable information that can be combined with appropriate laboratory testing, imaging, and, if needed, tissue biopsy to reach a confident ILD diagnosis, and high-resolution computed tomography (HRCT) of the thorax is usually a key component of the diagnostic evaluation. If treatment is indicated, many forms of ILD can respond significantly to immunosuppressive anti-inflammatory therapies. However, ILD accompanied by extensive fibrosis may be difficult to treat, and the identification of an effective pharmacologic therapy for idiopathic pulmonary fibrosis (IPF) has remained elusive despite the completion of many phase 3 clinical trials over the past decade. Nonetheless, patients with IPF or advanced forms of non-IPF ILD can benefit significantly from detection and treatment of various co-morbid conditions that are often found in patients (especially the elderly patient), and supportive care (oxygen therapy, pulmonary rehabilitation) can have a beneficial impact on quality of life and symptom palliation. Finally, lung transplantation is an option for patients with progressive, advanced disease that does not respond to other therapies, but only a relatively small subset of patients with end-stage ILD are able to meet wait listing requirements and eventually undergo successful lung transplantation.
Collapse
Affiliation(s)
- Keith C Meyer
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin USA
| |
Collapse
|
25
|
Camelo A, Dunmore R, Sleeman MA, Clarke DL. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol 2014; 4:173. [PMID: 24454287 PMCID: PMC3887273 DOI: 10.3389/fphar.2013.00173] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive disease of unknown etiology characterized by a dysregulated wound healing response that leads to fatal accumulation of fibroblasts and extracellular matrix (ECM) in the lung, which compromises tissue architecture and lung function capacity. Injury to type II alveolar epithelial cells is thought to be the key event for the initiation of the disease, and so far both genetic factors, such as mutations in telomerase and MUC5B genes as well as environmental components, like cigarette smoking, exposure to asbestos and viral infections have been implicated as potential initiating triggers. The injured epithelium then enters a state of senescence-associated secretory phenotype whereby it produces both pro-inflammatory and pro-fibrotic factors that contribute to the wound healing process in the lung. Immune cells, like macrophages and neutrophils as well as activated myofibroblasts then perpetuate this cascade of epithelial cell apoptosis and proliferation by release of pro-fibrotic transforming growth factor beta and continuous deposition of ECM stiffens the basement membrane, altogether having a deleterious impact on epithelial cell function. In this review, we describe the role of the epithelium as both a physical and immunological barrier between environment and self in the homeostatic versus diseased lung and explore the potential mechanisms of epithelial cell injury and the impact of loss of epithelial cell permeability and function on cytokine production, inflammation, and myofibroblast activation in the fibrotic lung.
Collapse
Affiliation(s)
- Ana Camelo
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| | - Rebecca Dunmore
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| | - Matthew A Sleeman
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| | - Deborah L Clarke
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd Cambridge, UK
| |
Collapse
|
26
|
Wu H, Li Y, Wang Y, Xu D, Li C, Liu M, Sun X, Li Z. Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis via modulating angiotensin-converting enzyme 2/ angiotensin-(1-7) axis in rats. Int J Med Sci 2014; 11:578-86. [PMID: 24782646 PMCID: PMC4003542 DOI: 10.7150/ijms.8365] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/08/2014] [Indexed: 12/31/2022] Open
Abstract
Pulmonary fibrosis (PF) is a common complication in those interstitial lung diseases patients, which will result in poor prognosis and short survival. Traditional therapeutic methods such as glucocorticoid and cytotoxic drugs are insufficient for treating PF and may cause severe side effects. Recent studies showed that traditional Chinese herbal abstraction such as Tanshinone IIA (TIIA) was displayed significant anti-PF effects in animal models. However, the exact mechanisms underlying the protective effects of TIIA were not fully understood. Here we further investigated the protective effects of TIIA and its mechanisms underlying. PF models of rat were induced by bleomycin (BLM); TIIA was administered subsequently. The PF changes were identified by histopathological analyses. The results showed that BLM resulted in severe PF and alveolar inflammation; together with significant elevation of transforming growth factor-β 1 (TGF-β1). Angiotensin-converting enzyme 2 (ACE-2) together with angiotensin-(1-7) [ANG-(1-7)] were both greatly reduced after BLM administration. TIIA treatment notably attenuated BLM induced PF and inflammation, decreased expression of TGF-β1 and reversed ACE-2 and ANG-(1-7) production in rat lungs. Thus we may draw the conclusion that TIIA may exert protective effects on BLM induced PF in rats, and the ACE-2/ANG-(1-7) axis may ascribe to those protective effects.
Collapse
Affiliation(s)
- Huajie Wu
- 1. Department of Pediatrics of Xijing Hospital, Fourth Military Medical University; ; 3. Lung Injury and Repair Center, Fourth Military Medical University
| | - Yan Li
- 4. Medical Examination Center of Beijing Military General Hospital
| | - Yanxia Wang
- 2. Department of Pathophysiology, Fourth Military Medical University; ; 3. Lung Injury and Repair Center, Fourth Military Medical University
| | - Dunquan Xu
- 2. Department of Pathophysiology, Fourth Military Medical University
| | - Congcong Li
- 5. Department of Respiratory Medicine, Tangdu Hospital, Fourth Military Medical University
| | - Manling Liu
- 2. Department of Pathophysiology, Fourth Military Medical University
| | - Xin Sun
- 1. Department of Pediatrics of Xijing Hospital, Fourth Military Medical University
| | - Zhichao Li
- 2. Department of Pathophysiology, Fourth Military Medical University; ; 3. Lung Injury and Repair Center, Fourth Military Medical University
| |
Collapse
|
27
|
Zhu B, Ma AQ, Yang L, Dang XM. Atorvastatin attenuates bleomycin-induced pulmonary fibrosis via suppressing iNOS expression and the CTGF (CCN2)/ERK signaling pathway. Int J Mol Sci 2013; 14:24476-91. [PMID: 24351828 PMCID: PMC3876122 DOI: 10.3390/ijms141224476] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022] Open
Abstract
Pulmonary fibrosis is a progressive and fatal lung disorder with high mortality rate. To date, despite the fact that extensive research trials are ongoing, pulmonary fibrosis continues to have a poor response to available medical therapy. Statins, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, known for its broad pharmacological activities, remains a remedy against multiple diseases. The present study investigated the antifibrotic potential of atorvastatin against bleomycin-induced lung fibrosis and to further explore the possible underlying mechanisms. Our results showed that atorvastatin administration significantly ameliorated the bleomycin mediated histological alterations and blocked collagen deposition with parallel reduction in the hydroxyproline level. Atorvastatin reduced malondialdehyde (MDA) level and lung indices. Atorvastatin also markedly decreased the expression of inducible nitric oxide synthase (iNOS) in lung tissues and, thus, prevented nitric oxide (NO) release in response to bleomycin challenge. Furthermore, atorvastatin exhibited target down-regulation of connective tissue growth factor (CTGF (CCN2)) and phosphorylation extracellular regulated protein kinases (p-ERK) expression. Taken together, atorvastatin significantly ameliorated bleomycin-induced pulmonary fibrosis in rats, via the inhibition of iNOS expression and the CTGF (CCN2)/ERK signaling pathway. The present study provides evidence that atorvastatin may be a potential therapeutic reagent for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; E-Mails: (B.Z.); (L.Y.); (X.-M.D.)
| | - Ai-Qun Ma
- Department of Cardiology, the First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-1899-1232-787; Fax: +86-29-8526-1809
| | - Lan Yang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; E-Mails: (B.Z.); (L.Y.); (X.-M.D.)
| | - Xiao-Min Dang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; E-Mails: (B.Z.); (L.Y.); (X.-M.D.)
| |
Collapse
|
28
|
Wang Z, Zhang X, Kang Y, Zeng Y, Liu H, Chen X, Ma L. Stem cell therapy for idiopathic pulmonary fibrosis: How far are we from the bench to the bedside? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.68a2004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|