1
|
Tan SY, Foo CN, Ng FL, Tan CH, Lim YM. Gene expression Profiling of maslinic Acid-treated MCF-7 breast cancer cells using Nanostring nCounter Pancancer pathway Panel. Gene 2024:149043. [PMID: 39486662 DOI: 10.1016/j.gene.2024.149043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Breast cancer remains a significant global health concern, impacting millions of women every year. Maslinic acid (MA), a pentacyclic triterpene has been found to exert promising anticancer effect in various cancers, including breast cancer, yet the underlying mechanisms remain unclear. This study aims to elucidate the anticancer properties of MA via gene expression profiles in breast cancer cells. Cytotoxicity assay results revealed that MCF-7 exerts the highest sensitivity after 72 h of MA treatment followed by T-47D and MDA-MB-231. MCF-7 were then selected for in-depth analysis using the Nanostring nCounter Pancancer Pathway Panel to analyze the differential expression of genes (DEGs). Across three time points (24, 48, and 72 h), 20 significant DEGs were identified, of which 5 were upregulated and 15 were downregulated. In silico analysis indicated that these DEGs were involved in Pathway of Cancer, Focal Adhesion-PI3K-mTOR Signaling Pathway, PI3K-Akt, and Ras Signaling Pathway. The regulation of these DEGs contributes to several cellular activities such as apoptosis, inhibition of cell proliferation, cell cycle and survival, reduction of glycolysis, angiogenesis, and DNA repair. Additionally, the unfolded protein response emerged as a noteworthy biological process in this study. This study unravels the molecular mechanisms underpinning the therapeutic potential of MA against breast cancer.
Collapse
Affiliation(s)
- Soon Yan Tan
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia
| | - Chai Nien Foo
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia; Department of Population Medicine, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia
| | - Foong Leng Ng
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia; Department of Chinese Medicine, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia
| | - Chee Hong Tan
- Quiliniq Lifesciences Sdn. Bhd, Unit 1-2, Menara Oval Damansara, Taman Tun Dr. Ismail. 60000 Kuala Lumpur, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia; Department of Pre-clinical Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
2
|
Fahmy SA, Sedky NK, Hassan HAFM, Abdel-Kader NM, Mahdy NK, Amin MU, Preis E, Bakowsky U. Synergistic Enhancement of Carboplatin Efficacy through pH-Sensitive Nanoparticles Formulated Using Naturally Derived Boswellia Extract for Colorectal Cancer Therapy. Pharmaceutics 2024; 16:1282. [PMID: 39458611 PMCID: PMC11510476 DOI: 10.3390/pharmaceutics16101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Carboplatin (Cp) is a potent chemotherapeutic agent, but its effectiveness is constrained by its associated side effects. Frankincense, an oleo-gum resin from the Boswellia sacra tree, has demonstrated cytotoxic activity against cancer cells. This study explored the synergistic potential of nanoparticles formulated from Boswellia sacra methanolic extract (BME), to enhance the therapeutic efficacy of Cp at reduced doses. Nanoparticles were prepared via the nanoprecipitation method, loaded with Cp, and coated with positively charged chitosan (CS) for enhanced cell interaction, yielding Cp@CS/BME NPs with an average size of 160.2 ± 4.6 nm and a zeta potential of 12.7 ± 1.5 mV. In vitro release studies revealed a pH-sensitive release profile, with higher release rates at pH 5.4 than at pH 7.4, highlighting the potential for targeted drug delivery in acidic tumor environments. In vitro studies on HT-29 and Caco-2 colorectal cancer cell lines demonstrated the nanoformulation's ability to significantly increase Cp uptake and cytotoxic activity. Apoptosis assays further confirmed increased induction of cell death with Cp@CS/BME NPs. Cell-cycle analysis revealed that treatment with Cp@CS/BME NPs led to a significant increase in the sub-G1 phase, indicative of enhanced apoptosis, and a marked decrease in the G1-phase population coupled with an increased G2/M-phase arrest in both cell lines. Further gene expression analysis demonstrated a substantial downregulation of the anti-apoptotic gene Bcl-2 and an upregulation of the pro-apoptotic genes Bax, PUMA, and BID following treatment with Cp@CS/BME NPs. Thus, this study presents a promising and innovative strategy for enhancing the therapeutic efficacy of chemotherapeutic agents using naturally derived ingredients while limiting the side effects.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (M.U.A.); (E.P.)
| | - Nada K. Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt; (N.K.S.); (N.M.A.-K.)
| | - Hatem A. F. M. Hassan
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Nour M. Abdel-Kader
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt; (N.K.S.); (N.M.A.-K.)
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (M.U.A.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (M.U.A.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; (M.U.A.); (E.P.)
| |
Collapse
|
3
|
Cao H, Li Z, Jin T, He S, Liu S, Li L, Wang Y, Gong Y, Wang G, Yang F, Dong W. Maslinic acid supplementation prevents di(2-ethylhexyl) phthalate-induced apoptosis via PRDX6 in peritubular myoid cells of Chinese forest musk deer. J Environ Sci (China) 2024; 143:47-59. [PMID: 38644023 DOI: 10.1016/j.jes.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 04/23/2024]
Abstract
Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Gang Wang
- Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
4
|
Spivak AY, Kuzmina US, Nedopekina DA, Dubinin MV, Khalitova RR, Davletshin EV, Vakhitova YV, Belosludtsev KN, Vakhitov VA. Synthesis and comparative analysis of the cytotoxicity and mitochondrial effects of triphenylphosphonium and F16 maslinic and corosolic acid hybrid derivatives. Steroids 2024; 209:109471. [PMID: 39002922 DOI: 10.1016/j.steroids.2024.109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The cytotoxic profile and antiproliferative and mitochondrial effects of triterpene acid conjugates with mitochondriotropic lipophilic triphenylphosphonium (TPP+) and F16 cations were evaluated. Maslinic and corosolic acids chosen as the investigation objects were synthesized from commercially available oleanolic and ursolic acids. Study of the cytotoxic activity of TPP+ and F16 triterpenoid derivatives against six tumor cell lines demonstrated a comparable synergistic effect in the anticancer activity, which was most pronounced in the case of MCF-7 mammary adenocarcinoma cells and Jurkat and THP-1 leukemia cells. The corosolic and maslinic acid hybrid derivatives caused changes in the progression of tumor cell cycle phases when present in much lower doses than their natural triterpene acid precursors. The treatment of tumor cell lines with the conjugates resulted in the cell cycle arrest in the G1 phase and increase in the cell population in the subG1 phase. The cationic derivatives of the acids were markedly superior to their precursors as inducers of hyperproduction of reactive oxygen species and more effectively decreased the mitochondrial potential in isolated rat liver mitochondria. We concluded that the observed cytotoxic effect of TPP+ and F16 triterpenoid conjugates is attributable to the ability of these compounds to initiate mitochondrial dysfunctions. Their cytotoxicity, antiproliferative action, and mitochondrial effects depend little on the type of cationic groups used.
Collapse
Affiliation(s)
- Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Ulyana Sh Kuzmina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia.
| | - Rezeda R Khalitova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 141, 450075 Ufa, Russia
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Vener A Vakhitov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya 71, 450054 Ufa, Russia
| |
Collapse
|
5
|
Tian S, Zhao Y, Deng S, Hou L, Song J, Wang M, Bu M. Lupeol-3-carbamate Derivatives: Synthesis and Biological Evaluation as Potential Antitumor Agents. Molecules 2024; 29:3990. [PMID: 39274838 PMCID: PMC11396318 DOI: 10.3390/molecules29173990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
In the following study, a series of new lupeol-3-carbamate derivatives were synthesized, and the structures of all the newly derived compounds were characterized. The new compounds were screened to determine their anti-proliferative activity against human lung cancer cell line A549, human liver cancer cell line HepG2, and human breast cancer cell line MCF-7. Most of the compounds were found to show better anti-proliferative activity in vitro than lupeol. Among them, obvious anti-proliferation activity (IC50 = 5.39~9.43 μM) was exhibited by compound 3i against all three tumor cell lines. In addition, a salt reaction was performed on compound 3k (IC50 = 13.98 μM) and it was observed that the anti-proliferative activity and water solubility of compound 3k·CH3I (IC50 = 3.13 μM), were significantly enhanced subsequent to the salt formation process. The preliminary mechanistic studies demonstrated that apoptosis in HepG2 cells was induced by compound 3k·CH3I through the inhibition of the PI3K/AKT/mTOR pathway. In conclusion, a series of new lupeol-3-carbamate derivatives were synthesized via the structural modification of the C-3 site of lupeol, thus laying a theoretical foundation for the design of this new anticancer drug.
Collapse
Affiliation(s)
- Shuang Tian
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yinxu Zhao
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Liman Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Juan Song
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Ming Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
6
|
Yu L, Qin JY, Sun C, Peng F, Chen Y, Wang SJ, Tang J, Lin ZW, Wu LJ, Li J, Cao XY, Li WQ, Xie XF, Peng C. Xianglian Pill combined with 5-fluorouracil enhances antitumor activity and reduces gastrointestinal toxicity in gastric cancer by regulating the p38 MAPK/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117988. [PMID: 38428657 DOI: 10.1016/j.jep.2024.117988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/06/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Perioperative or postoperative adjuvant chemotherapy based on 5-fluorouracil (5-FU) is a common first-line adjuvant therapy for gastric cancer (GC). However, drug resistance and the side effects of 5-FU have reduced its efficacy. Among these side effects, gastrointestinal (GI) toxicity is one of the most common. Xianglian Pill (XLP) is a Chinese patent medicine that is commonly used for the treatment of diarrhoea. It can reduce inflammation and has a protective effect on the intestinal mucosa. Recent studies have shown that many components of XLP can inhibite tumor cell growth. However, the therapeutic effect of XLP in combination with 5-FU on GC is unclear. AIM OF THE STUDY To investigate whether the combination of XLP and 5-FU can enhance anti-GC activity while reducing GI toxicity. MATERIALS AND METHODS XLP was administered orally during intraperitoneal injection of 5-FU in GC mice model. Mice were continuously monitored for diarrhea and xenograft tumor growth. After 2 weeks, the mice were sacrificed and serum was collected to determine interleukin-6 levels. Pathological changes, the expression of pro-inflammatory factors and p38 mitogen-activated protein kinase (MAPK) in GI tissue were determined by Western blot analysis. Pathological changes, apoptosis levels and p38 MAPK expression levels in xenograft tissues were also determined. RESULTS The results showed that XLP could alleviate GI mucosal injury caused by 5-FU, alleviated diarrhea, and inhibited the expression of nuclear factor (NF)-κB and myeloid differentiation primary response-88. Besides, XLP could promote the 5-FU-induced apoptosis of GC cells and enhance the inhibitory effect of 5-FU on tumor xenografts. Further study showed that XLP administration could regulate the expression of p38 MAPK. CONCLUSIONS XLP in combination with 5-FU could alleviate its GI side effects and enhance its inhibitory effect on xenograft tumor. Moreover, these effects were found to be related to the regulation of the p38 MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Lei Yu
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Jun-Yuan Qin
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Chen Sun
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Fu Peng
- School of Pharmacy, West China School of Pharmacy, Sichuan University, Chengdu, 610075, China.
| | - Yan Chen
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Su-Juan Wang
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Jun Tang
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Zi-Wei Lin
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Liu-Jun Wu
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Jing Li
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Xiao-Yu Cao
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Wen-Qing Li
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China
| | - Xiao-Fang Xie
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China.
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization of Chinese Herbal Medicine of MOE, Chengdu, 610075, China.
| |
Collapse
|
7
|
Denner TC, Heise NV, Hoenke S, Csuk R. Synthesis of Rhodamine-Conjugated Lupane Type Triterpenes of Enhanced Cytotoxicity. Molecules 2024; 29:2346. [PMID: 38792206 PMCID: PMC11123818 DOI: 10.3390/molecules29102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Various conjugates with rhodamines were prepared by starting with betulinic acid (BA) and platanic acid (PA). The molecules homopiperazine and piperazine, which were identified in earlier research, served as linkers between the rhodamine and the triterpene. The pentacyclic triterpene's ring A was modified with two acetyloxy groups in order to possibly boost its cytotoxic activity. The SRB assays' cytotoxicity data showed that conjugates 13-22, derived from betulinic acid, had a significantly higher cytotoxicity. Of these hybrids, derivatives 19 (containing rhodamine B) and 22 (containing rhodamine 101) showed the best values with EC50 = 0.016 and 0.019 μM for A2780 ovarian carcinoma cells. Additionally, based on the ratio of EC50 values, these two compounds demonstrated the strongest selectivity between malignant A2780 cells and non-malignant NIH 3T3 fibroblasts. A375 melanoma cells were used in cell cycle investigations, which showed that the cells were halted in the G1/G0 phase. Annexin V/FITC/PI staining demonstrated that the tumor cells were affected by both necrosis and apoptosis.
Collapse
Affiliation(s)
| | | | | | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes, Str. 2, 06120 Halle (Saale), Germany
| |
Collapse
|
8
|
Grudzińska M, Stachnik B, Galanty A, Sołtys A, Podolak I. Progress in Antimelanoma Research of Natural Triterpenoids and Their Derivatives: Mechanisms of Action, Bioavailability Enhancement and Structure Modifications. Molecules 2023; 28:7763. [PMID: 38067491 PMCID: PMC10707933 DOI: 10.3390/molecules28237763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is one of the most dangerous forms of skin cancer, characterized by early metastasis and rapid development. In search for effective treatment options, much attention is given to triterpenoids of plant origin, which are considered promising drug candidates due to their well described anticancer properties and relatively low toxicity. This paper comprehensively summarizes the antimelanoma potential of natural triterpenoids, that are also used as scaffolds for the development of more effective derivatives. These include betulin, betulinic acid, ursolic acid, maslinic acid, oleanolic acid, celastrol and lupeol. Some lesser-known triterpenoids that deserve attention in this context are 22β-hydroxytingenone, cucurbitacins, geoditin A and ganoderic acids. Recently described mechanisms of action are presented, together with the results of preclinical in vitro and in vivo studies, as well as the use of drug delivery systems and pharmaceutical technologies to improve the bioavailability of triterpenoids. This paper also reviews the most promising structural modifications, based on structure-activity observations. In conclusion, triterpenoids of plant origin and some of their semi-synthetic derivatives exert significant cytotoxic, antiproliferative and chemopreventive effects that can be beneficial for melanoma treatment. Recent data indicate that their poor solubility in water, and thus low bioavailability, can be overcome by complexing with cyclodextrins, or the use of nanoparticles and ethosomes, thus making these compounds promising antimelanoma drug candidates for further development.
Collapse
Affiliation(s)
- Marta Grudzińska
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Łazarza 16, 31-530 Kraków, Poland
| | - Bogna Stachnik
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Agnieszka Sołtys
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.G.); (B.S.); (A.S.); (I.P.)
| |
Collapse
|
9
|
Cao X, Du ZR, Liu X, Wang X, Li C, Zhou SN, Liu JR, Xu PY, Ye JL, Zhao Q, Zhao F, Wong KH, Dong XL. Low and high doses of oral maslinic acid protect against Parkinson's disease via distinct gut microbiota-related mechanisms. Biomed Pharmacother 2023; 165:115100. [PMID: 37418977 DOI: 10.1016/j.biopha.2023.115100] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
The use of oral agents that can modify the gut microbiota (GM) could be a novel preventative or therapeutic option for Parkinson's disease (PD). Maslinic acid (MA), a pentacyclic triterpene acid with GM-dependent biological activities when it is taken orally, has not yet been reported to be effective against PD. The present study found both low and high dose MA treatment significantly prevented dopaminergic neuronal loss in a classical chronic PD mouse model by ameliorating motor functions and improving tyrosine hydroxylase expressions in the substantia nigra pars compacta (SNpc) and increasing dopamine and its metabolite homovanillic acid levels in the striatum. However, the effects of MA in PD mice were not dose-responsive, since similar beneficial effects for low and high doses of MA were observed. Further mechanism studies indicated that low dose MA administration favored probiotic bacterial growth in PD mice, which helped to increase striatal serotonin, 5-hydroxyindole acetic acid, and γ-aminobutyric acid levels. High dose MA treatment did not influence GM composition in PD mice but significantly inhibited neuroinflammation as indicated by reduced levels of tumor necrosis factor alpha and interleukin 1β in the SNpc; moreover, these effects were mainly mediated by microbially-derived acetic acid in the colon. In conclusion, oral MA at different doses protected against PD via distinct mechanisms related to GM. Nevertheless, our study lacked in-depth investigations of the underlying mechanisms involved; future studies will be designed to further delineate the signaling pathways involved in the interactive actions between different doses of MA and GM.
Collapse
Affiliation(s)
- Xu Cao
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Zhong-Rui Du
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; BioNanotechnology Institute, Ludong University, Yantai, China
| | - Xin Liu
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiong Wang
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Chong Li
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sai-Nan Zhou
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jia-Rui Liu
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Ping-Yi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Li Ye
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qing Zhao
- Department of Neurology, Linzi Maternal & Child Health Hospital of Zibo, Zibo, China
| | - Fang Zhao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Ka-Hing Wong
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiao-Li Dong
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
10
|
Goncalves BG, Banerjee IA. A computational and laboratory approach for the investigation of interactions of peptide conjugated natural terpenes with EpHA2 receptor. J Mol Model 2023; 29:204. [PMID: 37291458 DOI: 10.1007/s00894-023-05596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
CONTEXT Ephrin type A receptor 2 (EphA2) is a well-known drug target for cancer treatment due to its overexpression in numerous types of cancers. Thus, it is crucial to determine the binding interactions of this receptor with both the ligand-binding domain (LBD) and the kinase-binding domain (KBD) through a targeted approach in order to modulate its activity. In this work, natural terpenes with inherent anticancer properties were conjugated with short peptides YSAYP and SWLAY that are known to bind to the LBD of EphA2 receptor. We examined the binding interactions of six terpenes (maslinic acid, levopimaric acid, quinopimaric acid, oleanolic, polyalthic, and hydroxybetulinic acid) conjugated to the above peptides with the ligand-binding domain (LBD) of EphA2 receptor computationally. Additionally, following the "target-hopping approach," we also examined the interactions of the conjugates with the KBD. Our results indicated that most of the conjugates showed higher binding interactions with the EphA2 kinase domain compared to LBD. Furthermore, the binding affinities of the terpenes increased upon conjugating the peptides with the terpenes. In order to further investigate the specificity toward EphA2 kinase domain, we also examined the binding interactions of the terpenes conjugated to VPWXE (x = norleucine), as VPWXE has been shown to bind to other RTKs. Our results indicated that the terpenes conjugated to SWLAY in particular showed high efficacy toward binding to the KBD. We also designed conjugates where in the peptide portion and the terpenes were separated by a butyl (C4) group linker to examine if the binding interactions could be enhanced. Docking studies showed that the conjugates with linkers had enhanced binding with the LBD compared to those without linkers, though binding remained slightly higher without linkers toward the KBD. As a proof of concept, maslinate and oleanolate conjugates of each of the peptides were then tested with F98 tumor cells which are known to overexpress EphA2 receptor. Results indicated that the oleanolate-amido-SWLAY conjugates were efficacious in reducing the cell proliferation of the tumor cells and may be potentially developed and further studied for targeting tumor cells overexpressing the EphA2 receptor. To test if these conjugates could bind to the receptor and potentially function as kinase inhibitors, we conducted SPR analysis and ADP-Glo assay. Our results indicated that OA conjugate with SWLAY showed the highest inhibition. METHODS Docking studies were carried out using AutoDock Vina, v.1.2.0; Molecular Dynamics and MMGBSA calculations were carried out through Schrodinger Software DESMOND.
Collapse
Affiliation(s)
- Beatriz G Goncalves
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
11
|
Dubinin MV, Nedopekina DA, Ilzorkina AI, Semenova AA, Sharapov VA, Davletshin EV, Mikina NV, Belsky YP, Spivak AY, Akatov VS, Belosludtseva NV, Liu J, Belosludtsev KN. Conjugation of Triterpenic Acids of Ursane and Oleanane Types with Mitochondria-Targeting Cation F16 Synergistically Enhanced Their Cytotoxicity against Tumor Cells. MEMBRANES 2023; 13:563. [PMID: 37367767 DOI: 10.3390/membranes13060563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
The present work shows the cytotoxic effects of novel conjugates of ursolic, oleanolic, maslinic, and corosolic acids with the penetrating cation F16 on cancer cells (lung adenocarcinoma A549 and H1299, breast cancer cell lines MCF-7 and BT474) and non-tumor human fibroblasts. It has been established that the conjugates have a significantly enhanced toxicity against tumor-derived cells compared to native acids and also demonstrate selectivity to some cancer cells. The toxic effect of the conjugates is shown to be due to ROS hyperproduction in cells, induced by the effect on mitochondria. The conjugates caused dysfunction of isolated rat liver mitochondria and, in particular, a decrease in the efficiency of oxidative phosphorylation, a decrease in the membrane potential, and also an overproduction of ROS by organelles. The paper discusses how the membranotropic- and mitochondria-targeted effects of the conjugates may be related to their toxic effects.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Darya A Nedopekina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Anna I Ilzorkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Alena A Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Vyacheslav A Sharapov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Eldar V Davletshin
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Natalia V Mikina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Yuri P Belsky
- Centre of Preclinical Translational Research, Almazov National Medical Research Centre, St. Petersburg 197371, Russia
| | - Anna Yu Spivak
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Vladimir S Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Natalia V Belosludtseva
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Jiankang Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| |
Collapse
|
12
|
García-Serrano P, Brenes-Álvarez M, Romero C, Medina E, García-García P, Brenes M. Physicochemical and microbiological assessment of commercial dehydrated black olives. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
|
13
|
Ooi KX, Poo CL, Subramaniam M, Cordell GA, Lim YM. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154631. [PMID: 36621168 DOI: 10.1016/j.phymed.2022.154631] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Natural products have long been regarded as a source of anticancer compounds with low toxicity. Evidence revealed that maslinic acid (MA), a widely distributed pentacyclic triterpene in common foodstuffs, exhibited pronounced inhibitory effects against various cancer cell lines. Most cancer cells thrive by acquiring cancer hallmarks, as coined by Hanahan and Weinberg in 2000 and 2011. PURPOSE This represents the first systematic review concerning the anticancer properties of MA as these cancer hallmarks are targeted. It aims to summarize the antineoplastic activities of MA, discuss the diverse mechanisms of action based on the effects of MA exerted on each hallmark. METHODS A comprehensive literature search was conducted using the search terms "maslinic," "cancer," "tumor," and "neoplasm," to retrieve articles from the databases MEDLINE, EMBASE, Web of Science, and Scopus published up to September 2022. Study selection was conducted by three reviewers independently from title and abstract screening until full-text evaluation. Data extraction was done by one reviewer and counterchecked by the second reviewer. RESULTS Of the 330 articles assessed, 40 papers met the inclusion criteria and revealed that MA inhibited 16 different cancer cell types. MA impacted every cancer hallmark by targeting multiple pathways. CONCLUSION This review provides insights regarding the inhibitory effects of MA against various cancers and its remarkable biological properties as a pleiotropic bioactive compound, which encourage further investigations.
Collapse
Affiliation(s)
- Kai Xin Ooi
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Chin Long Poo
- Herbal Medicine Research Centre, Institute for Medical Research, Setia Alam, 40170, Selangor, Malaysia
| | - Menaga Subramaniam
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia; Department of Pre-Clinical Sciences, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia.
| |
Collapse
|
14
|
Heise NV, Heisig J, Höhlich L, Hoenke S, Csuk R. Synthesis and cytotoxicity of diastereomeric benzylamides derived from maslinic acid, augustic acid and bredemolic acid. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
15
|
Maslinic Acid Inhibits the Growth of Malignant Gliomas by Inducing Apoptosis via MAPK Signaling. JOURNAL OF ONCOLOGY 2022; 2022:3347235. [PMID: 35799612 PMCID: PMC9256398 DOI: 10.1155/2022/3347235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Background Gliomas are primary malignant brain tumors. Despite recent advances in surgery and clinical neuro-oncology, the prognosis of patients with glioma is still poor. Therefore, there is an urgent need to find new therapeutic drugs. Methods Here, we have studied the anticancer effect of maslinic acid in glioma and explored its potential molecular mechanism. CCK-8, Ki67 immunofluorescence, and colony formation tests are used to detect the proliferation of glioma cells. Transwell and migration experiments are used to detect the function of cell invasion and migration, and RNA-seq was performed to identify differentially expressed genes. Western blot analysis helps us identify important signaling pathways. Finally, the anticancer effect of maslinic acid was confirmed in vivo through tumor xenografting experiments. Results Our experiments obtained high-throughput data on the treatment of maslinic acid in glioma. We found that maslinic acid significantly inhibits the proliferation, invasion, and migration of glioma cells and promotes the apoptosis of glioma cells via suppressing MAPK signaling. Conclusions This is the first time to analyze the mechanism of maslinic acid against glioma based on transcription. Our experiments show that maslinic acid may be a useful natural product for the treatment of glioma.
Collapse
|
16
|
Ortiz-Arrabal O, Chato-Astrain J, Crespo PV, Garzón I, Mesa-García MD, Alaminos M, Gómez-Llorente C. Biological Effects of Maslinic Acid on Human Epithelial Cells Used in Tissue Engineering. Front Bioeng Biotechnol 2022; 10:876734. [PMID: 35662841 PMCID: PMC9159156 DOI: 10.3389/fbioe.2022.876734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
In the present work, we evaluated the potential of maslinic acid (MA) to improve currently available keratinocyte culture methods for use in skin tissue engineering. Results showed that MA can increase cell proliferation and WST-1 activity of human keratinocytes after 24, 48, and 72 h, especially at the concentration of 5 μg/ml, without affecting cell viability. This effect was associated to a significant increase of KI-67 protein expression and upregulation of several genes associated to cell proliferation (PCNA) and differentiation (cytokeratins, intercellular junctions and basement membrane related genes). When human keratinocytes were isolated from skin biopsies, we found that MA at the concentration of 5 μg/ml significantly increased the efficiency of the explant and the cell dissociation methods. These results revealed the positive effects of MA to optimize human keratinocyte culture protocols for use in skin tissue engineering.
Collapse
Affiliation(s)
- Olimpia Ortiz-Arrabal
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Doctoral Program in Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Pascual Vicente Crespo
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
| | - María Dolores Mesa-García
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus Universitario de Cartuja, Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Granada, Spain
- *Correspondence: María Dolores Mesa-García, ; Miguel Alaminos,
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- *Correspondence: María Dolores Mesa-García, ; Miguel Alaminos,
| | - Carolina Gómez-Llorente
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus Universitario de Cartuja, Granada, Spain
- Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Granada, Spain
| |
Collapse
|
17
|
Hoenke S, Serbian I, Csuk R. A Malaprade cleavage, a McMurry ring closure and an intramolecular aldol contraction of maslinic acid’s ring A. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|