1
|
Jiang S, Wang X, Yu M, Tian J, Chang P, Zhu S. Bitter Peptides in Fermented Soybean Foods - A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01077-3. [PMID: 37410257 DOI: 10.1007/s11130-023-01077-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Fermented soybean foods with a long history are popular worldwide because of rich nutrition. However, many traditional fermented soybean foods have unacceptable bitterness, which mostly comes from the bitter peptides produced from the hydrolysis of soybean proteins. In this review, the bitter peptides in fermented soybean foods is briefly reviewed. The structural properties of bitter receptors and bitter peptides were reviewed. Bitterness is perceived through the binding between bitter compounds and specific sites of bitter receptors (25 hTAS2Rs), which further activate the downstream signal pathway mediated by G-protein. And it converts chemical signals into electrical signals, and transmit them to the brain. In addition, the influencing factors of bitter peptides in fermented soybean foods were summarized. The bitterness of fermented soybean foods primarily results from the raw materials, microbial metabolism during fermentation, unique techniques, and interactions of various flavor compounds. Moreover, the structure-bitterness relationship of bitter peptides was also discussed in this review. The bitterness degree of the bitter peptide is related to the polypeptide hydrophobicity, amino acids in the peptide, peptide molecular weight and polypeptide spatial structure. Studying the bitter peptides and their bitter characteristics in fermented soybean foods is beneficial for improving the sensory quality of fermented soybean foods and prompting more consumers accept them.
Collapse
Affiliation(s)
- Shaoping Jiang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Xiaodan Wang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China.
| | - Maosong Yu
- Tianjin haigang steel coil Co.,Ltd, Tianjin, 301600, China
| | - Jiaxue Tian
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Ping Chang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Shijie Zhu
- Changchun ZhuLaoLiu Food Co., Ltd, Changchun, 130507, China
| |
Collapse
|
2
|
Pollard CM, Suster MS, Cora N, Carbone AM, Lymperopoulos A. GRK5 is an essential co-repressor of the cardiac mineralocorticoid receptor and is selectively induced by finerenone. World J Cardiol 2022; 14:220-230. [PMID: 35582468 PMCID: PMC9048278 DOI: 10.4330/wjc.v14.i4.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the heart, aldosterone (Aldo) binds the mineralocorticoid receptor (MR) to exert damaging, adverse remodeling-promoting effects. We recently showed that G protein-coupled receptor-kinase (GRK)-5 blocks the cardiac MR by directly phosphorylating it, thereby repressing its transcriptional activity. MR antagonist (MRA) drugs block the cardiac MR reducing morbidity and mortality of advanced human heart failure. Non-steroidal MRAs, such as finerenone, may provide better cardio-protection against Aldo than classic, steroidal MRAs, like spironolactone and eplerenone.
AIM To investigate potential differences between finerenone and eplerenone at engaging GRK5-dependent cardiac MR phosphorylation and subsequent blockade.
METHODS We used H9c2 cardiomyocytes, which endogenously express the MR and GRK5.
RESULTS GRK5 phosphorylates the MR in H9c2 cardiomyocytes in response to finerenone but not to eplerenone. Unlike eplerenone, finerenone alone potently and efficiently suppresses cardiac MR transcriptional activity, thus displaying inverse agonism. GRK5 is necessary for finerenone’s inverse agonism, since GRK5 genetic deletion renders finerenone incapable of blocking cardiac MR transcriptional activity. Eplerenone alone does not fully suppress cardiac MR basal activity regardless of GRK5 expression levels. Finally, GRK5 is necessary for the anti-apoptotic, anti-oxidative, and anti-fibrotic effects of both finerenone and eplerenone against Aldo, as well as for the higher efficacy and potency of finerenone at blocking Aldo-induced apoptosis, oxidative stress, and fibrosis.
CONCLUSION Finerenone, but not eplerenone, induces GRK5-dependent cardiac MR inhibition, which underlies, at least in part, its higher potency and efficacy, compared to eplerenone, as an MRA in the heart. GRK5 acts as a co-repressor of the cardiac MR and is essential for efficient MR antagonism in the myocardium
Collapse
Affiliation(s)
- Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Alexandra M Carbone
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, United States
| |
Collapse
|
3
|
Impact of Aldosterone on the Failing Myocardium: Insights from Mitochondria and Adrenergic Receptors Signaling and Function. Cells 2021; 10:cells10061552. [PMID: 34205363 PMCID: PMC8235589 DOI: 10.3390/cells10061552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The mineralocorticoid aldosterone regulates electrolyte and blood volume homeostasis, but it also adversely modulates the structure and function of the chronically failing heart, through its elevated production in chronic human post-myocardial infarction (MI) heart failure (HF). By activating the mineralocorticoid receptor (MR), a ligand-regulated transcription factor, aldosterone promotes inflammation and fibrosis of the heart, while increasing oxidative stress, ultimately induding mitochondrial dysfunction in the failing myocardium. To reduce morbidity and mortality in advanced stage HF, MR antagonist drugs, such as spironolactone and eplerenone, are used. In addition to the MR, aldosterone can bind and stimulate other receptors, such as the plasma membrane-residing G protein-coupled estrogen receptor (GPER), further complicating it signaling properties in the myocardium. Given the salient role that adrenergic receptor (ARs)—particularly βARs—play in cardiac physiology and pathology, unsurprisingly, that part of the impact of aldosterone on the failing heart is mediated by its effects on the signaling and function of these receptors. Aldosterone can significantly precipitate the well-documented derangement of cardiac AR signaling and impairment of AR function, critically underlying chronic human HF. One of the main consequences of HF in mammalian models at the cellular level is the presence of mitochondrial dysfunction. As such, preventing mitochondrial dysfunction could be a valid pharmacological target in this condition. This review summarizes the current experimental evidence for this aldosterone/AR crosstalk in both the healthy and failing heart, and the impact of mitochondrial dysfunction in HF. Recent findings from signaling studies focusing on MR and AR crosstalk via non-conventional signaling of molecules that normally terminate the signaling of ARs in the heart, i.e., the G protein-coupled receptor-kinases (GRKs), are also highlighted.
Collapse
|
4
|
Ali DC, Naveed M, Gordon A, Majeed F, Saeed M, Ogbuke MI, Atif M, Zubair HM, Changxing L. β-Adrenergic receptor, an essential target in cardiovascular diseases. Heart Fail Rev 2021; 25:343-354. [PMID: 31407140 DOI: 10.1007/s10741-019-09825-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
β-Adrenergic receptors (βARs) belong to a large family of cell surface receptors known as G protein-coupled receptors (GPCRs). They are coupled to Gs protein (Gαs) for the activation of adenylyl cyclase (AC) yielding cyclic AMP (CAMP), and this provides valuable responses, which can affect the cardiac function such as injury. The binding of an agonist to βAR enhances conformation changes that lead to the Gαs subtype of heterotrimeric G protein which is the AC stimulatory G protein for activation of CAMP in the cells. However, cardiovascular diseases (CVD) have been reported as having an increased rate of death and β1AR, and β2AR are a promising tool that improves the regulatory function in the cardiovascular system (CVS) via signaling. It increases the Gα level, which activates βAR kinase (βARK) that affects and enhances the progression of heart failure (HF) through the activation of cardiomyocyte βARs. We also explained that an increase in GPCR kinases (GRKs) would practically improve the HF pathogenesis and this occurs via the desensitization of βARs, which causes the loss of contractile reserve. The consistency or overstimulation of catecholamines contributes to CVD such as stroke, HF, and cardiac hypertrophy. When there is a decrease in catecholamine responsiveness, it causes aging in old people because the reduction of βAR sensitivity and density in the myocardium enhances downregulation of βARs to AC in the human heart.
Collapse
Affiliation(s)
- Daniel Chikere Ali
- Department of Microbiological and Biochemical Pharmacy, School of Life Science, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, Jiangsu Province, People's Republic of China
| | - Andrew Gordon
- Department of Pharmacognosy, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, People's Republic of China
| | - Fatima Majeed
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, People's Republic of China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Punjab Province, Pakistan
| | - Michael I Ogbuke
- Department of Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, People's Republic of China
| | - Muhammad Atif
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab Province, Pakistan
| | - Hafiz Muhammad Zubair
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, People's Republic of China
| | - Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 810000, Qinghai Province, People's Republic of China.
| |
Collapse
|
5
|
Yu HZ, Fu MH, Ji XP, E-Ni RG. Progress in research of gastrointestinal motility regulation. Shijie Huaren Xiaohua Zazhi 2020; 28:1183-1191. [DOI: 10.11569/wcjd.v28.i23.1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal motility is an important part of the physiological function of the digestive tract, and its dysfunction is one of the key factors that cause different gastrointestinal motility disorders. These diseases seriously affect patients' normal life. With the development of scientific research and technology, well-designed research studies have been conducted on the regulatory mechanisms of gastrointestinal motility, which mainly include the regulation of gastrointestinal hormones, intestinal microflora, neurotransmitters, brain-gut peptides, interstitial cells of Cajal, and gastrointestinal electrical activities. In addition, current studies have proved that bitter taste receptors have certain regulatory effects on gastrointestinal motility. This paper primarily discusses the relevant pathways controlling gastrointestinal motility.
Collapse
Affiliation(s)
- Hong-Zhen Yu
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ming-Hai Fu
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Xiao-Ping Ji
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Rong-Gui E-Ni
- School of Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia Autonomous Region, China
| |
Collapse
|
6
|
Zdrazil B, Richter L, Brown N, Guha R. Moving targets in drug discovery. Sci Rep 2020; 10:20213. [PMID: 33214619 PMCID: PMC7677539 DOI: 10.1038/s41598-020-77033-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023] Open
Abstract
Drug Discovery is a lengthy and costly process and has faced a period of declining productivity within the last two decades resulting in increasing importance of integrative data-driven approaches. In this paper, data mining and integration is leveraged to inspect target innovation trends in drug discovery. The study highlights protein families and classes that have received more attention and those that have just emerged in the scientific literature, thus highlighting novel opportunities for drug intervention. In order to delineate the evolution of target-driven research interest from a biological perspective, trends in biological process annotations from Gene Ontology and disease annotations from DisGeNET are captured. The analysis reveals an increasing interest in targets related to immune system processes, and a recurrent trend for targets involved in circulatory system processes. At the level of diseases, targets associated with cancer-related pathologies, intellectual disability, and schizophrenia are increasingly investigated in recent years. The methodology enables researchers to capture trends in research attention in target space at an early stage during the drug discovery process. Workflows, scripts, and data used in this study are publicly available from https://github.com/BZdrazil/Moving_Targets. An interactive web application allows the customized exploration of target, biological process, and disease trends (available at https://rguha.shinyapps.io/MovingTargets/).
Collapse
Affiliation(s)
- Barbara Zdrazil
- Division of Drug Design and Medicinal Chemistry, Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Lars Richter
- Division of Drug Design and Medicinal Chemistry, Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Nathan Brown
- BenevolentAI, 4-8 Maple Street, London, W1T 5HD, UK
| | - Rajarshi Guha
- Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA, 02210, USA
| |
Collapse
|
7
|
Maning J, McCrink KA, Pollard CM, Desimine VL, Ghandour J, Perez A, Cora N, Ferraino KE, Parker BM, Brill AR, Aukszi B, Lymperopoulos A. Antagonistic Roles of GRK2 and GRK5 in Cardiac Aldosterone Signaling Reveal GRK5-Mediated Cardioprotection via Mineralocorticoid Receptor Inhibition. Int J Mol Sci 2020; 21:ijms21082868. [PMID: 32326036 PMCID: PMC7215681 DOI: 10.3390/ijms21082868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
Aldosterone (Aldo), when overproduced, is a cardiotoxic hormone underlying heart failure and hypertension. Aldo exerts damaging effects via the mineralocorticoid receptor (MR) but also activates the antiapoptotic G protein-coupled estrogen receptor (GPER) in the heart. G protein-coupled receptor (GPCR)-kinase (GRK)-2 and -5 are the most abundant cardiac GRKs and phosphorylate GPCRs as well as non-GPCR substrates. Herein, we investigated whether they phosphorylate and regulate cardiac MR and GPER. To this end, we used the cardiomyocyte cell line H9c2 and adult rat ventricular myocytes (ARVMs), in which we manipulated GRK5 protein levels via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and GRK2 activity via pharmacological inhibition. We report that GRK5 phosphorylates and inhibits the cardiac MR whereas GRK2 phosphorylates and desensitizes GPER. In H9c2 cardiomyocytes, GRK5 interacts with and phosphorylates the MR upon β2-adrenergic receptor (AR) activation. In contrast, GRK2 opposes agonist-activated GPER signaling. Importantly, GRK5-dependent MR phosphorylation of the MR inhibits transcriptional activity, since aldosterone-induced gene transcription is markedly suppressed in GRK5-overexpressing cardiomyocytes. Conversely, GRK5 gene deletion augments cardiac MR transcriptional activity. β2AR-stimulated GRK5 phosphorylates and inhibits the MR also in ARVMs. Additionally, GRK5 is necessary for the protective effects of the MR antagonist drug eplerenone against Aldo-induced apoptosis and oxidative stress in ARVMs. In conclusion, GRK5 blocks the cardiotoxic MR-dependent effects of Aldo in the heart, whereas GRK2 may hinder beneficial effects of Aldo through GPER. Thus, cardiac GRK5 stimulation (e.g., via β2AR activation) might be of therapeutic value for heart disease treatment via boosting the efficacy of MR antagonists against Aldo-mediated cardiac injury.
Collapse
Affiliation(s)
- Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Katie A. McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Celina M. Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Victoria L. Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Jennifer Ghandour
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Arianna Perez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Krysten E. Ferraino
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Barbara M. Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
| | - Beatrix Aukszi
- Department of Chemistry and Physics, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.M.); (K.A.M.); (C.M.P.); (V.L.D.); (J.G.); (A.P.); (N.C.); (K.E.F.); (B.M.P.); (A.R.B.)
- Correspondence: ; Tel.: +954-262-1338; Fax: +954-262-2278
| |
Collapse
|
8
|
Zeng Z, Mukherjee A, Varghese AP, Yang XL, Chen S, Zhang H. Roles of G protein-coupled receptors in inflammatory bowel disease. World J Gastroenterol 2020; 26:1242-1261. [PMID: 32256014 PMCID: PMC7109274 DOI: 10.3748/wjg.v26.i12.1242] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex disease with multiple pathogenic factors. Although the pathogenesis of IBD is still unclear, a current hypothesis suggests that genetic susceptibility, environmental factors, a dysfunctional immune system, the microbiome, and the interactions of these factors substantially contribute to the occurrence and development of IBD. Although existing and emerging drugs have been proven to be effective in treating IBD, none can cure IBD permanently. G protein-coupled receptors (GPCRs) are critical signaling molecules implicated in the immune response, cell proliferation, inflammation regulation and intestinal barrier maintenance. Breakthroughs in the understanding of the structures and functions of GPCRs have provided a driving force for exploring the roles of GPCRs in the pathogenesis of diseases, thereby leading to the development of GPCR-targeted medication. To date, a number of GPCRs have been shown to be associated with IBD, significantly advancing the drug discovery process for IBD. The associations between GPCRs and disease activity, disease severity, and disease phenotypes have also paved new avenues for the precise management of patients with IBD. In this review, we mainly focus on the roles of the most studied proton-sensing GPCRs, cannabinoid receptors, and estrogen-related GPCRs in the pathogenesis of IBD and their potential clinical values in IBD and some other diseases.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Arjudeb Mukherjee
- West China School of Medicine, Sichuan University, Chengdu 410061, Sichuan Province, China
| | | | - Xiao-Li Yang
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Sha Chen
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| | - Hu Zhang
- Department of Gastroenterology, Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 410061, Sichuan Province, China
| |
Collapse
|
9
|
De Angelis E, Pecoraro M, Rusciano MR, Ciccarelli M, Popolo A. Cross-Talk between Neurohormonal Pathways and the Immune System in Heart Failure: A Review of the Literature. Int J Mol Sci 2019; 20:ijms20071698. [PMID: 30959745 PMCID: PMC6480265 DOI: 10.3390/ijms20071698] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Heart failure is a complex clinical syndrome involving a multitude of neurohormonal pathways including the renin-angiotensin-aldosterone system, sympathetic nervous system, and natriuretic peptides system. It is now emerging that neurohumoral mechanisms activated during heart failure, with both preserved and reduced ejection fraction, modulate cells of the immune system. Indeed, these cells express angiotensin I receptors, adrenoceptors, and natriuretic peptides receptors. Ang II modulates macrophage polarization, promoting M2 macrophages phenotype, and this stimulation can influence lymphocytes Th1/Th2 balance. β-AR activation in monocytes is responsible for inhibition of free oxygen radicals production, and together with α2-AR can modulate TNF-α receptor expression and TNF-α release. In dendritic cells, activation of β2-AR inhibits IL-12 production, resulting in the inhibition of Th1 and promotion of Th2 differentiation. ANP induces the activation of secretion of superoxide anion in polymorphonucleated cells; reduces TNF-α and nitric oxide secretion in macrophages; and attenuates the exacerbated TH1 responses. BNP in macrophages can stimulate ROS production, up-regulates IL-10, and inhibits IL-12 and TNF-α release by dendritic cells, suggesting an anti-inflammatory cytokines profile induction. Therefore, different neurohormonal-immune cross-talks can determine the phenotype of cardiac remodeling, promoting either favorable or maladaptive responses. This review aims to summarize the available knowledge on neurohormonal modulation of immune responses, providing supportive rational background for further research.
Collapse
Affiliation(s)
- Elena De Angelis
- Department of Medicine, Surgery and Odontology, University of Salerno, via S.Allende 1, 84081 Baronissi (SA), Italy.
| | - Michela Pecoraro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Odontology, University of Salerno, via S.Allende 1, 84081 Baronissi (SA), Italy.
- Casa di Cura Montevergine, 83013 Mercogliano (AV), Italy.
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Odontology, University of Salerno, via S.Allende 1, 84081 Baronissi (SA), Italy.
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
| |
Collapse
|
10
|
Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: Therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol 2019; 11:47-56. [PMID: 30820275 PMCID: PMC6391623 DOI: 10.4330/wjc.v11.i2.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
The two ubiquitous, outside the retina, G protein-coupled receptor (GPCR) adapter proteins, β-arrestin-1 and -2 (also known as arrestin-2 and -3, respectively), have three major functions in cells: GPCR desensitization, i.e., receptor decoupling from G-proteins; GPCR internalization via clathrin-coated pits; and signal transduction independently of or in parallel to G-proteins. Both β-arrestins are expressed in the heart and regulate a large number of cardiac GPCRs. The latter constitute the single most commonly targeted receptor class by Food and Drug Administration-approved cardiovascular drugs, with about one-third of all currently used in the clinic medications affecting GPCR function. Since β-arrestin-1 and -2 play important roles in signaling and function of several GPCRs, in particular of adrenergic receptors and angiotensin II type 1 receptors, in cardiac myocytes, they have been a major focus of cardiac biology research in recent years. Perhaps the most significant realization coming out of their studies is that these two GPCR adapter proteins, initially thought of as functionally interchangeable, actually exert diametrically opposite effects in the mammalian myocardium. Specifically, the most abundant of the two β-arrestin-1 exerts overall detrimental effects on the heart, such as negative inotropy and promotion of adverse remodeling post-myocardial infarction (MI). In contrast, β-arrestin-2 is overall beneficial for the myocardium, as it has anti-apoptotic and anti-inflammatory effects that result in attenuation of post-MI adverse remodeling, while promoting cardiac contractile function. Thus, design of novel cardiac GPCR ligands that preferentially activate β-arrestin-2 over β-arrestin-1 has the potential of generating novel cardiovascular therapeutics for heart failure and other heart diseases.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
- Jackson Memorial Hospital, Miami, FL 33136, United States
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
- Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
11
|
Ivanov SM, Huber RG, Alibay I, Warwicker J, Bond PJ. Energetic Fingerprinting of Ligand Binding to Paralogous Proteins: The Case of the Apoptotic Pathway. J Chem Inf Model 2018; 59:245-261. [DOI: 10.1021/acs.jcim.8b00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan M. Ivanov
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix 07-01, 30 Biopolis Street, Singapore 138671, Singapore
| | - Roland G. Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix 07-01, 30 Biopolis Street, Singapore 138671, Singapore
| | - Irfan Alibay
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Jim Warwicker
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Peter J. Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix 07-01, 30 Biopolis Street, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
12
|
Parker BM, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA, Lymperopoulos A. Novel Insights into the Crosstalk between Mineralocorticoid Receptor and G Protein-Coupled Receptors in Heart Adverse Remodeling and Disease. Int J Mol Sci 2018; 19:ijms19123764. [PMID: 30486399 PMCID: PMC6320977 DOI: 10.3390/ijms19123764] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
The mineralocorticoid hormone aldosterone regulates sodium and potassium homeostasis but also adversely modulates the maladaptive process of cardiac adverse remodeling post-myocardial infarction. Through activation of its mineralocorticoid receptor (MR), a classic steroid hormone receptor/transcription factor, aldosterone promotes inflammation and fibrosis of the heart, the vasculature, and the kidneys. This is why MR antagonists reduce morbidity and mortality of heart disease patients and are part of the mainstay pharmacotherapy of advanced human heart failure. A plethora of animal studies using cell type⁻specific targeting of the MR gene have established the importance of MR signaling and function in cardiac myocytes, vascular endothelial and smooth muscle cells, renal cells, and macrophages. In terms of its signaling properties, the MR is distinct from nuclear receptors in that it has, in reality, two physiological hormonal agonists: not only aldosterone but also cortisol. In fact, in several tissues, including in the myocardium, cortisol is the primary hormone activating the MR. There is a considerable amount of evidence indicating that the effects of the MR in each tissue expressing it depend on tissue- and ligand-specific engagement of molecular co-regulators that either activate or suppress its transcriptional activity. Identification of these co-regulators for every ligand that interacts with the MR in the heart (and in other tissues) is of utmost importance therapeutically, since it can not only help elucidate fully the pathophysiological ramifications of the cardiac MR's actions, but also help design and develop novel better MR antagonist drugs for heart disease therapy. Among the various proteins the MR interacts with are molecules involved in cardiac G protein-coupled receptor (GPCR) signaling. This results in a significant amount of crosstalk between GPCRs and the MR, which can affect the latter's activity dramatically in the heart and in other cardiovascular tissues. This review summarizes the current experimental evidence for this GPCR-MR crosstalk in the heart and discusses its pathophysiological implications for cardiac adverse remodeling as well as for heart disease therapy. Novel findings revealing non-conventional roles of GPCR signaling molecules, specifically of GPCR-kinase (GRK)-5, in cardiac MR regulation are also highlighted.
Collapse
Affiliation(s)
- Barbara M Parker
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Shelby L Wertz
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Celina M Pollard
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Victoria L Desimine
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Jackson Memorial Hospital, Miami, FL 33136, USA.
| | - Katie A McCrink
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
- Present address: Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences (Pharmacology), College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
13
|
Qian W, Yu D, Zhang J, Hu Q, Tang C, Liu P, Ye P, Wang X, Lv Q, Chen M, Sheng L. Wogonin Attenuates Isoprenaline-Induced Myocardial Hypertrophy in Mice by Suppressing the PI3K/Akt Pathway. Front Pharmacol 2018; 9:896. [PMID: 30150938 PMCID: PMC6099096 DOI: 10.3389/fphar.2018.00896] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
Many studies have focused on identifying therapeutic targets of myocardial hypertrophy for the treatment of correlative cardiac events. Wogonin is a natural flavonoid compound that displays a potent anti-hypertrophic effect. Knowledge of its pharmacological mechanisms might reveal an effective way to search for therapeutic targets. Myocardial hypertrophy was replicated by the subcutaneous implantation of an isoprenaline mini-pump in mice or isoprenaline treatment of H9C2 cells. Pathologic changes in cardiac structure were assessed by echocardiographic and histological examinations. The signaling transduction in hypertrophy-promoting pathways and the genes involved were detected by western blot and RT-qPCR. Wogonin significantly attenuated isoprenaline-induced myocardial hypertrophy in vivo and in vitro by suppressing phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) hypertrophy-promoting pathway. Wogonin promoted the ubiquitination and degradation of PI3K catalytic subunit alpha (Pik3ca), the catalytic subunit of PI3K, which was upregulated by isoprenaline treatment. Wogonin also increased the expression of neural precursor cells expressing developmentally down-regulated gene 4-like (Nedd4l), the ubiquitin E3 ligase of Pik3ca. Therefore, wogonin targets Nedd4l to induce the degradation of Pik3ca, which reverses the over-activation of the PI3K/Akt pathway and consequently relieves the isoprenaline-induced myocardial hypertrophy.
Collapse
Affiliation(s)
- Weichun Qian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dongsheng Yu
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jia Zhang
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qiaoyun Hu
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Chuanfeng Tang
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Peiyu Liu
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoli Wang
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qiu Lv
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, China.,Neuroprotective Drug Discovery Key Laboratory, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Schreckenberg R, Bencsik P, Weber M, Abdallah Y, Csonka C, Gömöri K, Kiss K, Pálóczi J, Pipis J, Sárközy M, Ferdinandy P, Schulz R, Schlüter KD. Adverse Effects on β-Adrenergic Receptor Coupling: Ischemic Postconditioning Failed to Preserve Long-Term Cardiac Function. J Am Heart Assoc 2017; 6:e006809. [PMID: 29273639 PMCID: PMC5779008 DOI: 10.1161/jaha.117.006809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ischemic preconditioning (IPC) and ischemic postconditioning (IPoC) are currently among the most efficient strategies protecting the heart against ischemia/reperfusion injury. However, the effect of IPC and IPoC on functional recovery following ischemia/reperfusion is less clear, particularly with regard to the specific receptor-mediated signaling of the postischemic heart. The current article examines the effect of IPC or IPoC on the regulation and coupling of β-adrenergic receptors and their effects on postischemic left ventricular function. METHODS AND RESULTS The β-adrenergic signal transduction was analyzed in 3-month-old Wistar rats for each of the intervention strategies (Sham, ischemia/reperfusion, IPC, IPoC) immediately and 7 days after myocardial infarction. Directly after the infarction a cardioprotective potential was demonstrated for both IPC and IPoC: the infarct size was reduced, apoptosis and production of reactive oxygen species were lowered, and the myocardial tissue was preserved. Seven days after myocardial ischemia, only IPC hearts showed significant functional improvement. Along with a deterioration in fractional shortening, IPoC hearts no longer responded adequately to β-adrenergic stimulation. The stabilization of β-adrenergic receptor kinase-2 via increased phosphorylation of Mdm2 (an E3-ubiquitin ligase) was responsible for desensitization of β-adrenergic receptors and identified as a characteristic specific to IPoC hearts. CONCLUSIONS Immediately after myocardial infarction, rapid and transient activation of β-adrenergic receptor kinase-2 may be an appropriate means to protect the injured heart from excessive stress. In the long term, however, induction and stabilization of β-adrenergic receptor kinase-2, with the resultant loss of positive inotropic function, leads to the functional picture of heart failure.
Collapse
Affiliation(s)
- Rolf Schreckenberg
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Péter Bencsik
- Pharmahungary Group, Szeged, Hungary
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Martin Weber
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Yaser Abdallah
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Krisztina Kiss
- Pharmahungary Group, Szeged, Hungary
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - János Pálóczi
- Pharmahungary Group, Szeged, Hungary
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | | | - Márta Sárközy
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | |
Collapse
|
15
|
Zhang MY, Guo FF, Wu HW, Yu YY, Wei JY, Wang SF, Zhang YX, Xian MH, Wu QH, Zhao BC, Li SY, Yang HJ. DanHong injection targets endothelin receptor type B and angiotensin II receptor type 1 in protection against cardiac hypertrophy. Oncotarget 2017; 8:103393-103409. [PMID: 29262570 PMCID: PMC5732736 DOI: 10.18632/oncotarget.21900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/23/2017] [Indexed: 12/16/2022] Open
Abstract
Cardiac hypertrophy (CH) is an independent risk factor for cardiovascular diseases (CVDs). Mitigating or preventing CH is the most effective strategy for the treatment of CVDs. DanHong injection (DH) is a Chinese herbal medicine preparation (CHMP) widely used in clinical treatment of several CVDs in China. However, the direct targets and cellular mechanisms for these protective effects remain unclear. This study was designed to illustrate the direct targets of DH in protecting against CH and investigate CH molecular pathogenesis. A hypertrophic cell model was induced by endothelin-1 (ET-1) on human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Real time cellular analysis (RTCA) cardio system and high content analysis (HCA) were used to detect the changes in contractile function, morphology and protein level of hypertrophic hiPS-CMs. Agonist and antagonist assay on receptors were performed using calcium mobilization high-throughput screening (HTS). DH significantly attenuated CH by modulating myocardial contractility, suppressing cell area enlargement and down-regulating ET-1-induced brain natriuretic peptide (BNP), actinin alpha 2 (ACTN2) and cardiac muscle troponin T (TNNT2) protein expression (P < 0.05). Endothelin receptor type B (ETBR) and angiotensin II receptor type 1 (AT1R) were DH direct targets, with IC50 value of 25.67 μL/mL and 1.10 μL/mL, respectively. Proteomics analysis showed that proteins involved in cell cycle inhibition, RNA processing, mitochondrial translation and cytoskeleton are significant regulated by DH treatment. These data revealed that ETBR and AT1R are DH direct targets on protecting against CH, providing a strategy to explore direct targets of CHMPs.
Collapse
Affiliation(s)
- Min-Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fei-Fei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Wei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang-Yang Yu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jun-Ying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi-Feng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Xin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Hua Xian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-Hua Wu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | - Shi-You Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Hong-Jun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Kingma JG, Simard D, Rouleau JR. Influence of cardiac nerve status on cardiovascular regulation and cardioprotection. World J Cardiol 2017; 9:508-520. [PMID: 28706586 PMCID: PMC5491468 DOI: 10.4330/wjc.v9.i6.508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/22/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
Neural elements of the intrinsic cardiac nervous system transduce sensory inputs from the heart, blood vessels and other organs to ensure adequate cardiac function on a beat-to-beat basis. This inter-organ crosstalk is critical for normal function of the heart and other organs; derangements within the nervous system hierarchy contribute to pathogenesis of organ dysfunction. The role of intact cardiac nerves in development of, as well as protection against, ischemic injury is of current interest since it may involve recruitment of intrinsic cardiac ganglia. For instance, ischemic conditioning, a novel protection strategy against organ injury, and in particular remote conditioning, is likely mediated by activation of neural pathways or by endogenous cytoprotective blood-borne substances that stimulate different signalling pathways. This discovery reinforces the concept that inter-organ communication, and maintenance thereof, is key. As such, greater understanding of mechanisms and elucidation of treatment strategies is imperative to improve clinical outcomes particularly in patients with comorbidities. For instance, autonomic imbalance between sympathetic and parasympathetic nervous system regulation can initiate cardiovascular autonomic neuropathy that compromises cardiac stability and function. Neuromodulation therapies that directly target the intrinsic cardiac nervous system or other elements of the nervous system hierarchy are currently being investigated for treatment of different maladies in animal and human studies.
Collapse
|
17
|
Regoli D, Gobeil F. Kallikrein-kinin system as the dominant mechanism to counteract hyperactive renin-angiotensin system. Can J Physiol Pharmacol 2017; 95:1117-1124. [PMID: 28384411 DOI: 10.1139/cjpp-2016-0619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The renin-angiotensin system (RAS) generates, maintains, and makes worse hypertension and cardiovascular diseases (CVDs) through its biologically active component angiotensin II (Ang II), that causes vasoconstriction, sodium retention, and structural alterations of the heart and the arteries. A few endogenous vasodilators, kinins, natriuretic peptides, and possibly angiotensin (1-7), exert opposite actions and may provide useful therapeutic agents. As endothelial autacoids, the kinins are potent vasodilators, active natriuretics, and protectors of the endothelium. Indeed, the kallikrein-kinin system (KKS) is considered the dominant mechanism for counteracting the detrimental effects of the hyperactive RAS. The 2 systems, RAS and KKS, are controlled by the angiotensin-converting enzyme (ACE) that generates Ang II and inactivates the kinins. Inhibitors of ACE can reduce the impact of Ang II and potentiate the kinins, thus contributing to restore the cardiovascular homeostasis. In the last 20 years, ACE-inhibitors (ACE-Is) have become the drugs of first choice for the treatments of the major CVDs. ACE-Is not only reduce blood pressure, as sartans also do, but by protecting and potentiating the kinins, they can reduce morbidity and mortality and improve the quality of life for patients with CVDs. This paper provides a brief review of the literature on this topic.
Collapse
Affiliation(s)
- Domenico Regoli
- a Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernand Gobeil
- b Department of Pharmacology and Physiology, Université de Sherbrooke, Québec, QC J1H 5N4, Canada
| |
Collapse
|
18
|
Tsirkin VI, Nozdrachev AD, Korotaeva YV. The effect of histidine on the contractility and adrenoreactivity of the myocardium of nonpregnant and pregnant rats. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2015; 460:12-6. [PMID: 25773242 DOI: 10.1134/s0012496615010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Indexed: 11/22/2022]
Affiliation(s)
- V I Tsirkin
- Kazan State Medical University, ul. Derendyaeva 50, Kirov, 610017, Russia,
| | | | | |
Collapse
|
19
|
Danielewicz H. What the Genetic Background of Individuals with Asthma and Obesity Can Reveal: Is β2-Adrenergic Receptor Gene Polymorphism Important? PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2014; 27:104-110. [PMID: 25276484 DOI: 10.1089/ped.2014.0360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/16/2014] [Indexed: 12/31/2022]
Abstract
The goal of this review was to evaluate the association of β2-adrenergic receptor (ADRB2) gene polymorphisms with asthma and obesity. Asthma is the most common pediatric inflammatory disorder. The prevalence, severity, and hospitalization index for asthma have increased markedly in the last several decades. Interestingly, asthma is often diagnosed along with obesity. Genetic factors are essential for both conditions, and some of the candidate pleiotropic genes thought to be involved in the development of these diseases are ADRB2, vitamin D receptor (VDR), leptin (LEP), protein kinase C alpha (PRKCA), and tumor necrosis factor alpha (TNFα). The ADRB2 has been studied in multiple populations and more than 80 polymorphisms, mainly single-nucleotide polymorphisms, have been identified. For nonsynonymous Arg16Gly, Gln27Glu, and Thr164Ile, functional effects have been shown. In vivo, these polymorphisms have been evaluated to determine their association with both obesity and asthma, but the results are inconsistent and depend on the population studied or how the disease was defined. Currently, there are only few reports describing the genetic background for the comorbidity of asthma and obesity.
Collapse
Affiliation(s)
- Hanna Danielewicz
- 1st Department of Pediatrics, Allergy and Cardiology, Wroclaw Medical University , Wrocław, Poland
| |
Collapse
|
20
|
βArrestins in cardiac G protein-coupled receptor signaling and function: partners in crime or "good cop, bad cop"? Int J Mol Sci 2013; 14:24726-41. [PMID: 24351844 PMCID: PMC3876138 DOI: 10.3390/ijms141224726] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/12/2022] Open
Abstract
βarrestin (βarr)-1 and -2 (βarrs) (or Arrestin-2 and -3, respectively) are universal G protein-coupled receptor (GPCR) adapter proteins expressed abundantly in extra-retinal tissues, including the myocardium. Both were discovered in the lab of the 2012 Nobel Prize in Chemistry co-laureate Robert Lefkowitz, initially as terminators of signaling from the β-adrenergic receptor (βAR), a process known as functional desensitization. They are now known to switch GPCR signaling from G protein-dependent to G protein-independent, which, in the case of βARs and angiotensin II type 1 receptor (AT1R), might be beneficial, e.g., anti-apoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac GPCR signaling and function (or dysfunction in disease), remain unknown. The current consensus is that, whereas both βarr isoforms can desensitize and internalize cardiac GPCRs, they play quite different (even opposing in certain instances) roles in the G protein-independent signaling pathways they initiate in the cardiovascular system, including in the myocardium. The present review will discuss the current knowledge in the field of βarrs and their roles in GPCR signaling and function in the heart, focusing on the three most important, for cardiac physiology, GPCR types (β1AR, β2AR & AT1R), and will also highlight important questions that currently remain unanswered.
Collapse
|