1
|
Liu MM, Yang YJ, Guo ZZ, Zhong Y, Lei Y, Liu AL. A dual-readout sensing platform for the evaluation of cell viability integrating with optical and digital signals based on a closed bipolar electrode. Talanta 2023; 265:124881. [PMID: 37390672 DOI: 10.1016/j.talanta.2023.124881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Cell viability is essential for predicting drug toxicity and assessing drug effects in drug screening. However, the over/underestimation of cell viability measured by traditional tetrazolium colorimetric assays is inevitable in cell-based experiments. Hydrogen peroxide (H2O2) secreted by living cells may provide more comprehensive information about the cell state. Hence, it is significant to develop a simple and rapid approach for evaluating cell viability by measuring the excreted H2O2. In this work, we developed a dual-readout sensing platform based on optical and digital signals by integrating a light emitting diode (LED) and a light dependent resistor (LDR) into a closed split bipolar electrode (BPE), denoted as BP-LED-E-LDR, for evaluating cell viability by measuring the H2O2 secreted from living cells in drug screening. Additionally, the customized three-dimensional (3D) printed components were designed to adjust the distance and angle between the LED and LDR, achieving stable, reliable and highly efficient signal transformation. It only took 2 min to obtain response results. For measuring the exocytosis H2O2 from living cells, we observed a good linear relationship between the visual/digital signal and logarithmic function of MCF-7 cell counts. Furthermore, the fitted half inhibitory concentration curve of MCF-7 to doxorubicin hydrochloride obtained by the BP-LED-E-LDR device revealed a nearly identical tendency with the cell counting kit-8 assay, providing an attainable, reusable, and robust analytical strategy for evaluating cell viability in drug toxicology research.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yuan-Jie Yang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zi-Zhen Guo
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
2
|
Hierarchical Two-Dimensional Layered Double Hydroxide Coated Polydopamine Nanocarriers for Combined Chemodynamic and Photothermal Tumor Therapy. COATINGS 2021. [DOI: 10.3390/coatings11081008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The combination of chemodynamic therapy (CDT) and photothermal therapy (PTT) has proven to be successful in combating the challenges associated with cancer therapy. A combination of these therapies can maximize the benefits of each therapeutic modality through endogenous reduction-oxidation (redox) reaction and external laser power induction. In the current work, we have designed a copper-aluminum layered double hydroxide (CuAl-LDH) loaded doxorubicin (DOX) by a co-precipitation method; the surface was coated with polydopamine (PDA). The synthesized CuAl-LDH@DOX@PDA nanocarrier (NC) served as a Fenton-like catalyst with photothermal properties. It is well known that metal ion incorporated NCs can induce intracellular depletion of reduced glutathione (GSH) levels along with the reduction of Cu2+ to Cu+. The Cu+ ions in turn react with DOX leading to the generation of intracellular hydrogen peroxide (H2O2) molecules to produce the highly toxic hydroxyl radicals (•OH) through a Fenton-like reaction. The enhanced absorption of CuAl@DOX@PDA at 810 nm, greatly improved the photothermal efficiency in comparison with bare CuAl-LDH and CuAl-LDH@DOX. In vitro studies revealed the tremendous CDT/PTT efficacy of CuAl@DOX@PDA in suppressing A549 cancer cells. Furthermore, reactive oxygen species (ROS) assays and intracellular levels of various ROS cascade biomolecules support our findings in the efficient destruction of cancer cells through synergistic CDT/PTT therapy.
Collapse
|
3
|
Ferraz da Costa DC, Pereira Rangel L, Quarti J, Santos RA, Silva JL, Fialho E. Bioactive Compounds and Metabolites from Grapes and Red Wine in Breast Cancer Chemoprevention and Therapy. Molecules 2020; 25:E3531. [PMID: 32752302 PMCID: PMC7436232 DOI: 10.3390/molecules25153531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Phytochemicals and their metabolites are not considered essential nutrients in humans, although an increasing number of well-conducted studies are linking their higher intake with a lower incidence of non-communicable diseases, including cancer. This review summarizes the current findings concerning the molecular mechanisms of bioactive compounds from grapes and red wine and their metabolites on breast cancer-the most commonly occurring cancer in women-chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds, such as resveratrol, as well as their metabolites, are discussed with respect to structure and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical trials about the chemoprevention and therapy using these molecules is presented.
Collapse
Affiliation(s)
- Danielly C. Ferraz da Costa
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Luciana Pereira Rangel
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Julia Quarti
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Ronimara A. Santos
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (D.C.F.d.C.); (R.A.S.)
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Eliane Fialho
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
4
|
Saifullah B, Hussein MZB. Inorganic nanolayers: structure, preparation, and biomedical applications. Int J Nanomedicine 2015; 10:5609-33. [PMID: 26366081 PMCID: PMC4562743 DOI: 10.2147/ijn.s72330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.
Collapse
Affiliation(s)
- Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Zobir B Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
5
|
Subramanian AP, Jaganathan SK, Supriyanto E. Overview on in vitro and in vivo investigations of nanocomposite based cancer diagnosis and therapeutics. RSC Adv 2015. [DOI: 10.1039/c5ra11912j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nanodevices are synthesized using nanocomposites by the researchers around the globe. Most of their applications are related to in vivo visualization and therapy with anticancer drugs in the field of oncology.
Collapse
Affiliation(s)
- A. P. Subramanian
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - S. K. Jaganathan
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| | - Eko Supriyanto
- IJN-UTM Cardiovascular Engineering Centre
- Faculty of Biosciences and Medical Engineering
- Universiti Teknologi Malaysia
- Johor Bahru 81310
- Malaysia
| |
Collapse
|
6
|
Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, Hussein MZ. Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1029-36. [PMID: 25114509 PMCID: PMC4122184 DOI: 10.2147/dddt.s63753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis.
Collapse
Affiliation(s)
- Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohamed E El Zowalaty
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia ; Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia ; Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Thomas J Webster
- Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA ; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Benjamin M Geilich
- Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|