1
|
Lai X, Liu S, Miao J, Shen R, Wang Z, Zhang Z, Gong H, Li M, Pan Y, Wang Q. Eubacterium siraeum suppresses fat deposition via decreasing the tyrosine-mediated PI3K/AKT signaling pathway in high-fat diet-induced obesity. MICROBIOME 2024; 12:223. [PMID: 39478562 PMCID: PMC11526712 DOI: 10.1186/s40168-024-01944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Obesity in humans can lead to chronic diseases such as diabetes and cardiovascular disease. Similarly, subcutaneous fat (SCF) in pigs affects feed utilization, and excessive SCF can reduce the feed efficiency of pigs. Therefore, identifying factors that suppress fat deposition is particularly important. Numerous studies have implicated the gut microbiome in pigs' fat deposition, but research into its suppression remains scarce. The Lulai black pig (LL) is a hybrid breed derived from the Laiwu pig (LW) and the Yorkshire pig, with lower levels of SCF compared to the LW. In this study, we focused on these breeds to identify microbiota that regulate fat deposition. The key questions were: Which microbial populations reduce fat in LL pigs compared to LW pigs, and what is the underlying regulatory mechanism? RESULTS In this study, we identified four different microbial strains, Eubacterium siraeum, Treponema bryantii, Clostridium sp. CAG:413, and Jeotgalibaca dankookensis, prevalent in both LW and LL pigs. Blood metabolome analysis revealed 49 differential metabolites, including tanshinone IIA and royal jelly acid, known for their anti-adipogenic properties. E. siraeum was strongly correlated with these metabolites, and its genes and metabolites were enriched in pathways linked to fatty acid degradation, glycerophospholipid, and glycerolipid metabolism. In vivo mouse experiments confirmed that E. siraeum metabolites curb weight gain, reduce SCF adipocyte size, increase the number of brown adipocytes, and regulate leptin, IL-6, and insulin secretion. Finally, we found that one important pathway through which E. siraeum inhibits fat deposition is by suppressing the phosphorylation of key proteins in the PI3K/AKT signaling pathway through the reduction of tyrosine. CONCLUSIONS We compared LW and LL pigs using fecal metagenomics, metabolomics, and blood metabolomics, identifying E. siraeum as a strain linked to fat deposition. Oral administration experiments in mice demonstrated that E. siraeum effectively inhibits fat accumulation, primarily through the suppression of the PI3K/AKT signaling pathway, a critical regulator of lipid metabolism. These findings provide a valuable theoretical basis for improving pork quality and offer insights relevant to the study of human obesity and related chronic metabolic diseases. Video Abstract.
Collapse
Affiliation(s)
- Xueshuang Lai
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Shuang Liu
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Jian Miao
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Ran Shen
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Zhen Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Zhe Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Huanfa Gong
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China
| | - Meng Li
- Jinan Laiwu Pig Industry Technology Research Institute Co., Ltd, Jinan, 271100, China
| | - Yuchun Pan
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China.
- Hainan Institute, Zhejiang University, Sanya, 310014, PR China.
| | - Qishan Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310030, PR China.
- Hainan Institute, Zhejiang University, Sanya, 310014, PR China.
| |
Collapse
|
2
|
Liu N, Chen Y, An T, Tao S, Lv B, Dou J, Deng R, Zhen X, Zhang Y, Lu C, Chang Z, Jiang G. Lysophosphatidylcholine trigger myocardial injury in diabetic cardiomyopathy via the TLR4/ZNF480/AP-1/NF-kB pathway. Heliyon 2024; 10:e33601. [PMID: 39040275 PMCID: PMC11260982 DOI: 10.1016/j.heliyon.2024.e33601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Diabetic cardiomyopathy (DC), a frequent complication of type 2 diabetes mellitus (T2DM), is mainly associated with severe adverse outcomes. Previous research has highlighted the role of Lysophosphatidylcholine (LPC) in inducing myocardial injury; however, the specific mechanisms through which LPC mediate such injury in DC remain elusive. The existing knowledge gap underscores the need for additional clarification. Consequently, this study aimed to explore the impact and underlying mechanisms of LPC on myocardial injury in DC. Methods A total of 55 patients diagnosed with T2DM and 62 healthy controls were involved. A combination of 16s rRNA sequencing, metabolomic analysis, transcriptomic RNA-sequencing (RNA-seq), and whole exome sequencing (WES) was performed on fecal and peripheral blood samples collected from the participants. Following this, correlation analysis was carried out, and the results were further validated through the mouse model of T2DM. Results Four LPC variants distinguishing T2DM patients from healthy controls were identified, all of which were upregulated in T2DM patients. Specifically, Lysopc (16:0, 2 N isoform) and LPC (16:0) exhibited a positive correlation with nuclear factor kappa B subunit 2 (NFKB2) and a negative correlation with Zinc finger protein 480 (ZNF480) Furthermore, the expression levels of Toll-like receptor 4 (TLR4), c-Jun, c-Fos, and NFKB2 were upregulated in the peripheral blood of T2DM patients and in the myocardial tissue of T2DM mice, whereas ZNF480 expression level was downregulated. Lastly, myocardial injury was identified in T2DM mice. Conclusions The results indicated that LPC could induce myocardial injury in DC through the TLR4/ZNF480/AP-1/NF-kB pathway, providing a precise target for the clinical diagnosis and treatment of DC.
Collapse
Affiliation(s)
- Nannan Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Chen
- College of Traditional Chinese Medicine, Xinjiang Medical University, City Urumqi, China
| | - Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Tao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Bohan Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Jinfang Dou
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Ruxue Deng
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianjie Zhen
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Caizhong Lu
- Guangming Traditional Chinese Medecine Hospital of Pudong New Area, Shanghai, China
| | - Zhongsheng Chang
- Guangming Traditional Chinese Medecine Hospital of Pudong New Area, Shanghai, China
| | - Guangjian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Sheng C, Huang W, Liao M, Yang P. The Role of Gut Microbiota in Thromboangiitis Obliterans: Cohort and Mendelian Randomization Study. Biomedicines 2024; 12:1459. [PMID: 39062030 PMCID: PMC11274368 DOI: 10.3390/biomedicines12071459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND AND AIMS Thromboangiitis obliterans (TAO), also known as Buerger's disease, is a rare vasculitis. Observational epidemiology studies have suggested a relationship between the gut microbiota and TAO. However, due to confounding factors and reverse causality, the causal relationship remains unclear. Based on the assumption of their association, this study sought specific gut microbiota causally linked to TAO. METHODS The case-control study was conducted at the Xiangya Hospital of Central South University from November 2022 to January 2023 including twelve TAO patients and nine healthy controls. We conducted a Mendelian randomization (MR) study using summary statistics from a genome-wide association study (GWAS) of gut microbiota and TAO. Considering the scale and accessibility of the data, the MiBioGen consortium served as the exposure, whereas the FinnGen consortium GWAS study served as the outcome. Finally, we compared the results of the MR with those of the case-control studies. RESULTS The inverse variance weighted (IVW) (OR = 0.119, 95% CI: 0.021-0.688, p = 0.017) and maximum likelihood (ML) (OR = 0.121, 95% CI: 0.020-0.742, p = 0.022) estimates suggest that Ruminiclostridium 5 has a suggestive protective effect on TAO while the IVW (OR = 5.383, 95% CI: 1.128-25.693, p = 0.035) and ML (OR = 5.658, 95% CI: 1.142-28.021, p = 0.034) estimates suggest that Eubacterium (xylanophilum group) has a suggestive risk effect on TAO, and the ML (OR = 0.055, 95% CI: 0.004-0.755, p = 0.030) estimates suggest that Lachnospira has a suggestive protective effect on TAO. No significant heterogeneity of instrumental variables or horizontal pleiotropy was found. The results of the case-control study showed that the TAO had a lower relative abundance of Ruminiclostridium 5 (p = 0.015) and Lachnospira (p = 0.048), and a higher relative abundance of Eubacterium (xylanophilum group) (p = 0.029) than the healthy controls. These results were consistent with the MR analysis. CONCLUSIONS Our study demonstrates that Ruminiclostridium 5, Lachnospira, and Eubacterium (xylanophilum group) are causally related to TAO, suggesting their potential significance for the prevention and treatment of TAO.
Collapse
Affiliation(s)
- Chang Sheng
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory, Pharmacogenetics Xiangya Hospital, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Mingmei Liao
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pu Yang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Li Z, Liu Z, Guo Y, Gao S, Tang Y, Li T, Xuan H. Propolis Alleviates Acute Lung Injury Induced by Heat-Inactivated Methicillin-Resistant Staphylococcus aureus via Regulating Inflammatory Mediators, Gut Microbiota and Serum Metabolites. Nutrients 2024; 16:1598. [PMID: 38892531 PMCID: PMC11175110 DOI: 10.3390/nu16111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Propolis has potential anti-inflammatory properties, but little is known about its efficacy against inflammatory reactions caused by drug-resistant bacteria, and the difference in efficacy between propolis and tree gum is also unclear. Here, an in vivo study was performed to study the effects of ethanol extract from poplar propolis (EEP) and poplar tree gum (EEG) against heat-inactivated methicillin-resistant Staphylococcus aureus (MRSA)-induced acute lung injury (ALI) in mice. Pre-treatment with EEP and EEG (100 mg/kg, p.o.) resulted in significant protective effects on ALI in mice, and EEP exerted stronger activity to alleviate lung tissue lesions and ALI scores compared with that of EEG. Furthermore, EEP significantly suppressed the levels of pro-inflammatory mediators in the lung, including TNF-α, IL-1β, IL-6, and IFN-γ. Gut microbiota analysis revealed that both EEP and EEG could modulate the composition of the gut microbiota, enhance the abundance of beneficial microbiota and reduce the harmful ones, and partly restore the levels of short-chain fatty acids. EEP could modulate more serum metabolites and showed a more robust correlation between serum metabolites and gut microbiota. Overall, these results support the anti-inflammatory effects of propolis in the treatment of ALI, and the necessity of the quality control of propolis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongzhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng 252059, China; (Z.L.); (Z.L.); (Y.G.); (S.G.); (Y.T.); (T.L.)
| |
Collapse
|
5
|
Li S, Han X, Liu N, Chang J, Liu G, Hu S. Lactobacillus plantarum attenuates glucocorticoid-induced osteoporosis by altering the composition of rat gut microbiota and serum metabolic profile. Front Immunol 2024; 14:1285442. [PMID: 38264658 PMCID: PMC10803555 DOI: 10.3389/fimmu.2023.1285442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Osteoporosis, one of the most common non-communicable human diseases worldwide, is one of the most prevalent disease of the adult skeleton. Glucocorticoid-induced osteoporosis(GIOP) is the foremost form of secondary osteoporosis, extensively researched due to its prevalence.Probiotics constitute a primary bioactive component within numerous foods, offering promise as a potential biological intervention for preventing and treating osteoporosis. This study aimed to evaluate the beneficial effects of the probiotic Lactobacillus plantarum on bone health and its underlying mechanisms in a rat model of glucocorticoid dexamethasone-induced osteoporosis, using the osteoporosis treatment drug alendronate as a reference. Methods We examined the bone microstructure (Micro-CT and HE staining) and analyzed the gut microbiome and serum metabolome in rats. Results and discussion The results revealed that L. plantarum treatment significantly restored parameters of bone microstructure, with elevated bone density, increased number and thickness of trabeculae, and decreased Tb.Sp. Gut microbiota sequencing results showed that probiotic treatment increased gut microbial diversity and the ratio of Firmicutes to Bacteroidota decreased. Beneficial bacteria abundance was significantly increased (Lachnospiraceae_NK4A136_group, Ruminococcus, UCG_005, Romboutsia, and Christensenellaceae_R_7_group), and harmful bacteria abundance was significantly decreased (Desulfovibrionaceae). According to the results of serum metabolomics, significant changes in serum metabolites occurred in different groups. These differential metabolites were predominantly enriched within the pathways of Pentose and Glucuronate Interconversions, as well as Propanoate Metabolism. Furthermore, treatment of L. plantarum significantly increased serum levels of Pyrazine and gamma-Glutamylcysteine, which were associated with inhibition of osteoclast formation and promoting osteoblast formation. Lactobacillus plantarum can protect rats from DEX-induced GIOP by mediating the "gut microbial-bone axis" promoting the production of beneficial bacteria and metabolites. Therefore L. plantarum is a potential candidate for the treatment of GIOP.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiang Chang
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
6
|
Liu Y, Chen LJ, Li XW, Yang JZ, Liu JL, Zhang KK, Li JH, Wang Q, Xu JT, Zhi X. Gut microbiota contribute to Methamphetamine-induced cardiotoxicity in mouse model. Chem Biol Interact 2023; 379:110512. [PMID: 37116852 DOI: 10.1016/j.cbi.2023.110512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Methamphetamine (METH) is a psychotropic drug known to cause cardiotoxicity. The gut-heart axis is emerging as an important pathway linking gut microbiota to cardiovascular disease, but the precise association between METH-induced cardiotoxicity and gut microbiota has yet to be elucidated. In this study, we established an escalating dose-multiple METH administration model in male BALB/c mice, examined cardiac injury and gut microbiota, and investigated the contribution of gut microbiota to cardiotoxicity induced by METH. Additionally, we treated mice with antibiotics and fecal microbiota transplantation (FMT) to assess the impact of gut microbiota on cardiotoxicity. Our results showed that METH exposure altered the p53 and PI3K/Akt signaling pathways and modulated the apoptosis pathway in heart tissue, accompanied by elevated levels of Bax/BCL-2 expression and cleaved caspase-3 proteins. METH exposure increased the diversity and richness of gut microbiota, and significantly changed the microbial community composition, accompanied by elevated abundance of Lactobacillus, Bifidobacterium, and decreased abundance of Bacteroides, norank_f_Muribaculaceae and Alistipes. Eliminating gut microbiota by antibiotics treatment alleviated METH-induced cardiotoxicity, while FMT treatment transferred similar cardiac injury manifestations from METH-exposed mice to healthy recipient mice. Our study unveils the crucial involvement of gut microbiota in the development of cardiotoxicity induced by METH and provides potential strategies for treating cardiac complications caused by METH.
Collapse
Affiliation(s)
- Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Jing-Tao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|