1
|
Rabie MA, Sayed RH, Venkatesan JK, Madry H, Cucchiarini M, El Sayed NS. Intra-articular injection of rAAV-hFGF-2 ameliorates monosodium iodoacetate-induced osteoarthritis in rats via inhibiting TLR-4 signaling and activating TIMP-1. Toxicol Appl Pharmacol 2023; 459:116361. [PMID: 36584762 DOI: 10.1016/j.taap.2022.116361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Osteoarthritis (OA) is a chronic debilitating degenerative disorder leading to structural, and functional anomaly of the joint. The present study tests the hypothesis that overexpression of the basic fibroblast growth factor (FGF-2) via direct rAAV-mediated gene transfer suppresses monosodium iodoacetate (MIA)-induced knee OA in rats relative to control (reporter rAAV-lacZ vector) gene transfer by intra-articular injection. Rats were treated with 20 μl rAAV-hFGF-2 on weekly basis; on days 7, 14, and 21 after single intra-articular injection of MIA (3 mg/50 μl saline). FGF-2 reduced knee joint swelling and improved motor performance and muscle coordination as evidenced by increased distance travelled, mean speed, rearing frequency in open field test (OFT) as well as fall-off latency in rotarod test together with reduced immobility time in OFT. Moreover, FGF-2 attenuated MIA-related radiological and histological alterations. Indeed, FGF-2 decreased knee joint inflammatory biomarker as demonstrated by reduced mRNA expression of toll like receptor (TLR)-4 and its downstream mediators such as tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and high motility group box (HMGB) 1. In parallel, FGF-2 attenuated knee joint degradation biomarkers as reflected by the downregulation of ADAMTS-5 mRNA expression and matrix metalloproteinase 13 (MMP-13) content together with the up-regulation of tissue inhibitor of metalloproteinase (TIMP)-1 mRNA expression. These findings suggest a potential therapeutic role for FGF-2 against MIA-induced knee OA in rats via inhibition of TLR4 signaling and activating TIMP-1, resulting in down-regulation of ADAMTS-5 and MMP-13.
Collapse
Affiliation(s)
- Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg. 37, D-66421 Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg. 37, D-66421 Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg. 37, D-66421 Homburg/Saar, Germany
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Li G, Cheng T, Yu X. The Impact of Trace Elements on Osteoarthritis. Front Med (Lausanne) 2022; 8:771297. [PMID: 35004740 PMCID: PMC8732765 DOI: 10.3389/fmed.2021.771297] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease characterized by cartilage degradation, synovial inflammation, subchondral sclerosis and osteophyte formation. It has a multifactorial etiology with potential contributions from heredity, endocrine function, abnormal mechanical load and nutrition. Of particular considerations are trace element status. Several trace elements, such as boron and magnesium are essential for normal development of the bone and joint in human. While cadmium correlates with the severity of OA. The present review focuses on the roles of trace elements (boron, cadmium, copper, iron, magnesium, manganese, selenium, zinc) in OA and explores the mechanisms by which they act.
Collapse
Affiliation(s)
- Guoyong Li
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Abo-zalam HB, Abdelsalam RM, Abdel-Rahman RF, Abd-Ellah MF, Khattab MM. In Vivo Investigation of the Ameliorating Effect of Tempol against MIA-Induced Knee Osteoarthritis in Rats: Involvement of TGF-β1/SMAD3/NOX4 Cue. Molecules 2021; 26:molecules26226993. [PMID: 34834085 PMCID: PMC8618489 DOI: 10.3390/molecules26226993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is a complex disease characterized by structural, functional, and metabolic deteriorations of the whole joint and periarticular tissues. In the current study, we aimed to investigate the possible effects of tempol on knee OA induced by the chemical chondrotoxic monosodium iodoacetate (MIA) which closely mimics both the pain and structural changes associated with human OA. Rats were administrated oral tempol (100 mg/kg) one week post-MIA injection (3 mg/50 μL saline) at the right knee joints for 21 consecutive days. Tempol improved motor performance and debilitated the MIA-related radiological and histological alterations. Moreover, it subsided the knee joint swelling. Tempol decreased the cartilage degradation-related biomarkers as matrix metalloproteinase-13, bone alkaline phosphatase (bone ALP), and fibulin-3. The superoxide dismutase mimetic effect of tempol was accompanied by decreased NADPH oxidase 4 (NOX4), inflammatory mediators, nuclear factor-kappa B (NF-κB), over-released transforming growth factor-β1 (TGF-β1). Tempol decreased the expression of chemokine (C-C motif) ligand 2 (CCL2). On the molecular level, tempol reduced the phosphorylated protein levels of p38 mitogen-activated protein kinase (MAPK), and small mother against decapentaplegic 3 homologs (SMAD3). These findings suggest the promising role of tempol in ameliorating MIA-induced knee OA in rats via collateral suppression of the catabolic signaling cascades including TGF-β1/SMAD3/NOX4, and NOX4/p38MAPK/NF-κB and therefore modulation of oxidative stress, catabolic inflammatory cascades, chondrocyte metabolic homeostasis.
Collapse
Affiliation(s)
- Hagar B. Abo-zalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
- Correspondence: or ; Tel.: +20-102-082-9562
| | - Rania M. Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.A.); (M.M.K.)
- Department of Biology, Faculty of Pharmacy, New Giza University, Cairo 12613, Egypt
| | - Rehab F. Abdel-Rahman
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Mohamed F. Abd-Ellah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt;
| | - Mahmoud M. Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.A.); (M.M.K.)
| |
Collapse
|
4
|
Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E, Majouga A. Copper Coordination Compounds as Biologically Active Agents. Int J Mol Sci 2020; 21:E3965. [PMID: 32486510 PMCID: PMC7312030 DOI: 10.3390/ijms21113965] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/24/2022] Open
Abstract
Copper-containing coordination compounds attract wide attention due to the redox activity and biogenicity of copper ions, providing multiple pathways of biological activity. The pharmacological properties of metal complexes can be fine-tuned by varying the nature of the ligand and donor atoms. Copper-containing coordination compounds are effective antitumor agents, constituting a less expensive and safer alternative to classical platinum-containing chemotherapy, and are also effective as antimicrobial, antituberculosis, antimalarial, antifugal, and anti-inflammatory drugs. 64Сu-labeled coordination compounds are promising PET imaging agents for diagnosing malignant pathologies, including head and neck cancer, as well as the hallmark of Alzheimer's disease amyloid-β (Aβ). In this review article, we summarize different strategies for possible use of coordination compounds in the treatment and diagnosis of various diseases, and also various studies of the mechanisms of antitumor and antimicrobial action.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexey Naumov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Dmitry Guk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
| | - Alexander Majouga
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991 Moscow, Russia; (A.N.); (D.G.); (A.E.); (E.B.); (A.M.)
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000 Moscow, Russia;
- Mendeleev University of Chemical Technology of Russia, Miusskaya Ploshchad’ 9, 125047 Moscow, Russia
| |
Collapse
|
5
|
Ajeeshkumar KK, Vishnu KV, Navaneethan R, Raj K, Remyakumari KR, Swaminathan TR, Suseela M, Asha KK, Sreekanth GP. Proteoglycans isolated from the bramble shark cartilage show potential anti-osteoarthritic properties. Inflammopharmacology 2019; 27:175-187. [PMID: 30600472 DOI: 10.1007/s10787-018-00554-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/14/2018] [Indexed: 01/09/2023]
Abstract
Osteoarthritis (OA) causes articular cartilage destruction, initiating pain and inflammation in the joints, resulting in joint disability. Medications are available to manage these symptoms; however, their effects on the disease progression are limited. Loss of proteoglycans (PGs) was reported to contribute articular cartilage destruction in OA. Therapeutics approaches were previously studied in the animal models of OA. In the present study, we investigated the oral efficacy of four dosages of PGs (25 mg/kg, 50 mg/kg, 100 mg/kg and 200 mg/kg), isolated from the bramble shark cartilage, in an animal model of OA. Indomethacin was used as a bioequivalent formulation. Primarily, the mass spectrum analysis of the purified PGs obtained from bramble shark cartilage revealed the presence of two unique peptides including AGWLSDGSVR and LDGNPINLSK, that showed sequence similarity with aggrecan core-protein and epiphycan, respectively. The levels of C-reactive protein and uric acid in the OA rats were reduced when treated with PGs. Histopathology analysis displayed less cartilage erosion and neovascularization in OA rats treated with PGs. The X-ray imaging presented higher bone density with 200 mg/kg dosage of PG treatment in OA rats. The expressions of the inflammatory modulators including TNF-α, IL-1β, MMP13, NOS2, IL-10 and COX-2 were found to be moderated with PG treatment. In addition, PG treatment maintained the activities of antioxidant enzymes, including SOD and catalase in the joint tissues with a higher GSH content, in a dose-dependent manner. Taken together, our preliminary findings report the anti-osteoarthritic properties of PGs and recommend to evaluate its efficacy and safety in randomized trials.
Collapse
Affiliation(s)
| | - Kalladath Venugopal Vishnu
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Kochi, Kerala, India
| | - Raju Navaneethan
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Kochi, Kerala, India
| | - Kumar Raj
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi, Kerala, India
| | | | - Thangaraj Raja Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi, Kerala, India
| | - Mathew Suseela
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Kochi, Kerala, India
| | - Kurukkan Kunnath Asha
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Kochi, Kerala, India.
| | - Gopinathan Pillai Sreekanth
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Jackson GE, Elmagbari FM, Hammouda AN, Bonomo RP. Solution equilibria and the X-ray structure of Cu(ii) complexation with 3-amino-N-(pyridin-2-ylmethyl)propanamide, a pseudo-mimic of human serum albumin. Dalton Trans 2016; 45:17010-17019. [DOI: 10.1039/c6dt02974d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper complexes have anti-inflammatory activity in the treatment of inflammation associated with rheumatoid arthritis (RA).
Collapse
|
7
|
Chenopodium ambrosioides L. Reduces Synovial Inflammation and Pain in Experimental Osteoarthritis. PLoS One 2015; 10:e0141886. [PMID: 26524084 PMCID: PMC4629912 DOI: 10.1371/journal.pone.0141886] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022] Open
Abstract
The chronicity of osteoarthritis (OA), characterized by pain and inflammation in the joints, is linked to a glutamate receptor, N-methyl-D-aspartate (NMDA). The use of plant species such as Chenopodium ambrosioides L. (Amaranthaceae) as NMDA antagonists offers a promising perspective. This work aims to analyze the antinociceptive and anti-inflammatory responses of the crude hydroalcoholic extract (HCE) of C. ambrosioides leaves in an experimental OA model. Wistar rats were separated into six groups (n = 24): clean (C), negative control (CTL-), positive control (CTL+), HCE0.5, HCE5 and HCE50. The first group received no intervention. The other groups received an intra-articular injection of sodium monoiodoacetate (MIA) (8 mg/kg) on day 0. After six hours, they were orally treated with saline, Maxicam plus (meloxicam + chondroitin sulfate) and HCE at doses of 0.5 mg/kg, 5 mg/kg and 50 mg/kg, respectively. After three, seven and ten days, clinical evaluations were performed (knee diameter, mechanical allodynia, mechanical hyperalgesia and motor activity). On the tenth day, after euthanasia, synovial fluid and draining lymph node were collected for cellular quantification, and cartilage was collected for histopathological analysis. Finally, molecular docking was performed to evaluate the compatibility of ascaridole, a monoterpene found in HCE, with the NMDA receptor. After the third day, HCE reduced knee edema. HCE5 showed less cellular infiltrate in the cartilage and synovium and lower intensities of allodynia from the third day and of hyperalgesia from the seventh day up to the last treatment day. The HCE5 and HCE50 groups improved in forced walking. In relation to molecular docking, ascaridole showed NMDA receptor binding affinity. C. ambrosioides HCE was effective in the treatment of OA because it reduced synovial inflammation and behavioral changes due to pain. This effect may be related to the antagonistic effect of ascaridole on the NMDA receptor.
Collapse
|