1
|
Toma CM, Imre S, Farczadi L, Ion V, Marc G. Enantioselective binding of carvedilol to human serum albumin and alpha-1-acid glycoprotein. Chirality 2023; 35:779-792. [PMID: 37221930 DOI: 10.1002/chir.23595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023]
Abstract
Carvedilol, a highly protein-bound beta-blocker, is used in therapy as a racemic mixture of its two enantiomers that exhibit different pharmacological activity. The aim of this study was to evaluate the stereoselective nature of its binding to the two major plasma proteins: albumin and alpha-1-acid glycoprotein. The determination of the plasma protein-binding degree for carvedilol and its enantiomers was achieved using ultrafiltration for the separation of the free fraction, followed by LC-MS/MS quantification, using two different developed and validated methods in terms of stationary phase: achiral C18 type and chiral ovomucoid type. Furthermore, molecular docking methods were applied in order to investigate and to better understand the mechanism of protein-binding for S-(-)- and R-(+)-carvedilol. A difference in the binding behavior of the two enantiomers to the plasma proteins was observed when taken individually, with R-(+)-carvedilol having a higher affinity for albumin and S-(-)-carvedilol for alpha-1-acid glycoprotein. However, in the case of the racemic mixture, the binding of the S enantiomer to alpha-1-acid glycoprotein seemed to be influenced by the presence of its antipode, although no such influence was observed in the case of albumin. The results raise the question of a binding competition between the two enantiomers for alpha-1-acid glycoprotein.
Collapse
Affiliation(s)
- Camelia-Maria Toma
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Silvia Imre
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Center of Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Lenard Farczadi
- Center of Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Valentin Ion
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Center of Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Demir H, Gulsun T, Ozkan MH, Nemutlu E, Sahin S, Öner L. Assessment of Dose Proportionality of Rivaroxaban Nanocrystals. AAPS PharmSciTech 2020; 21:228. [PMID: 32767034 DOI: 10.1208/s12249-020-01776-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rivaroxaban (RXB) is a class II drug, according to the Biopharmaceutics Classification System. Since its bioavailability is low at high doses, dose proportionality is not achieved for pharmacokinetic parameters. However, when taken with food, its bioavailability increases at high doses. In this study, nanocrystal technology was used to increase the solubility and, hence, the bioavailability of RXB. Pluronic F127, pharmacoat 603, and PVP K-30 were used as stabilizers to prepare RXB nanosuspension, combining ball mill and high pressure homogenization methods. Particle sizes of RXB in nanosuspension (formulation A:348 nm; formulation B:403 nm) and nanocrystal formulations (formulation A:1167 nm; formulation B:606 nm) were significantly reduced (p < 0.05) compared to those of bulk RXB. In both formulations, 80% of the drug dissolved in 30 min. For dose proportionality evaluation, 3, 10, and 15 mg/kg of RXB nanosuspensions (formulation B) were administered to rabbits. The dose proportionality for AUC and Cmax of RXB nanocrystals was assessed by the power model, variance analysis of pharmacokinetic parameters, linear regression, and equivalence criterion methods. Dose proportionality for AUC was achieved at doses between 10-15 and 3-15 mg/kg. In conclusion, the preparation of a nanocrystal formulation of RXB improved its dissolution rate and pharmacokinetic profile.
Collapse
|
4
|
Xie Z, Chen M, Goswami S, Mani R, Wang D, Kulp SK, Coss CC, Schaaf LJ, Cui F, Byrd JC, Jennings RN, Schober KK, Freed C, Lewis S, Malbrue R, Muthusamy N, Bennett C, Kisseberth WC, Phelps MA. Pharmacokinetics and Tolerability of the Novel Non-immunosuppressive Fingolimod Derivative, OSU-2S, in Dogs and Comparisons with Data in Mice and Rats. AAPS JOURNAL 2020; 22:92. [PMID: 32676788 DOI: 10.1208/s12248-020-00474-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022]
Abstract
In this study, we characterized the pharmacokinetics of OSU-2S, a fingolimod-derived, non-immunosuppressive phosphatase activator, in mice, rats, and dogs, as well as tolerability and food effects in dogs. Across all species tested, plasma protein binding for OSU-2S was > 99.5%, and metabolic stability and hepatic intrinsic clearance were in the moderate range. OSU-2S did not significantly modulate CYP enzyme activity up until 50 μM, and Caco-2 data suggested low permeability with active efflux at 2 μM. Apparent oral bioavailability in mice was 16% and 69% at 10 and 50 mg/kg, respectively. In rats, bioavailability was 24%, 35%, and 28% at 10, 30, and 100 mg/kg, respectively, while brain/plasma ratio was 36 at 6-h post-dose at 30 mg/kg. In dogs, OSU-2S was well tolerated with oral capsule bioavailability of 27.5%. Plasma OSU-2S exposures increased proportionally over a 2.5-20 mg/kg dose range. After 4 weeks of 3 times weekly, oral administration (20 mg/kg), plasma AUClast (26.1 μM*h), and Cmax (0.899 μM) were nearly 2-fold greater than those after 1 week of dosing, and no food effects were observed. The elimination half-life (29.7 h), clearance (22.9 mL/min/kg), and plasma concentrations of repeated oral doses support a 3-times weekly dosing schedule in dogs. No significant CBC, serum biochemical, or histopathological changes were observed. OSU-2S has favorable oral PK properties similar to fingolimod in rodents and dogs and is well tolerated in healthy animals. This work supports establishing trials of OSU-2S efficacy in dogs with spontaneous tumors to guide its clinical development as a cancer therapeutic for human patients.
Collapse
Affiliation(s)
- Zhiliang Xie
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA
| | - Min Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA
| | - Swagata Goswami
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Rajes Mani
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Dasheng Wang
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA
| | - Chris C Coss
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Larry J Schaaf
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - John C Byrd
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ryan N Jennings
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Karsten K Schober
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 448 VMAB, 1900 Coffey Rd., Columbus, Ohio, 43210, USA
| | - Carrie Freed
- University Laboratory Animal Resources, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie Lewis
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Raphael Malbrue
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Chad Bennett
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - William C Kisseberth
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA. .,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 448 VMAB, 1900 Coffey Rd., Columbus, Ohio, 43210, USA.
| | - Mitch A Phelps
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 506 Riffe Building, 496 W. 12th Ave., Columbus, Ohio, 43210, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
5
|
Martinez-Hernandez E, Blatter LA. Effect of carvedilol on atrial excitation-contraction coupling, Ca 2+ release, and arrhythmogenicity. Am J Physiol Heart Circ Physiol 2020; 318:H1245-H1255. [PMID: 32275472 DOI: 10.1152/ajpheart.00650.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carvedilol is an FDA-approved β-blocker commonly used for treatment of high blood pressure, congestive heart failure, and cardiac tachyarrhythmias, including atrial fibrillation. We investigated at the cellular level the mechanisms through which carvedilol interferes with sarcoplasmic reticulum (SR) Ca2+ release during excitation-contraction coupling (ECC) in single rabbit atrial myocytes. Carvedilol caused concentration-dependent (1-10 µM) failure of SR Ca2+ release. Failure of ECC and Ca2+ release was the result of dose-dependent inhibition of voltage-gated Na+ (INa) and L-type Ca2+ (ICa) currents that are responsible for the rapid depolarization phase of the cardiac action potential (AP) and the initiation of Ca2+-induced Ca2+ release from the SR, respectively. Carvedilol (1 µM) led to AP duration shortening, AP failures, and peak INa inhibition by ~80%, whereas ICa was not markedly affected. Carvedilol (10 µM) blocked INa almost completely and reduced ICa by ~40%. No effect on Ca2+-transient amplitude, ICa, and INa was observed in control experiments with the β-blocker metoprolol, suggesting that the carvedilol effect on ECC is unlikely the result of its β-blocking property. The effects of carvedilol (1 µM) on subcellular SR Ca2+ release was spatially inhomogeneous, where a selective inhibition of peripheral subsarcolemmal Ca2+ release from the junctional SR accounted for the cell-averaged reduction in Ca2+-transient amplitude. Furthermore, carvedilol significantly reduced the probability of spontaneous arrhythmogenic Ca2+ waves without changes of SR Ca2+ load. The data suggest a profound antiarrhythmic action of carvedilol in atrial myocytes resulting from an inhibitory effect on the SR Ca2+ release channel.NEW & NOTEWORTHY Here we show that the clinically widely used β-blocker carvedilol has profound effects on Ca2+ signaling and ion currents, but also antiarrhythmic effects in adult atrial myocytes. Carvedilol inhibits sodium and calcium currents and leads to failure of ECC but also prevents spontaneous Ca2+ release from cellular sarcoplasmic reticulum (SR) Ca2+ stores in form of arrhythmogenic Ca2+ waves. The antiarrhythmic effect occurs by carvedilol acting directly on the SR ryanodine receptor Ca2+ release channel.
Collapse
Affiliation(s)
- E Martinez-Hernandez
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois
| | - L A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
6
|
Liva SG, Coss CC, Wang J, Blum W, Klisovic R, Bhatnagar B, Walsh K, Geyer S, Zhao Q, Garzon R, Marcucci G, Phelps MA, Walker AR. Phase I study of AR-42 and decitabine in acute myeloid leukemia. Leuk Lymphoma 2020; 61:1484-1492. [PMID: 32037935 DOI: 10.1080/10428194.2020.1719095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This phase I trial sought to determine a biologically safe and effective dose of AR-42, a novel histone deacetylase inhibitor, which would lead to a doubling of miR-29b prior to decitabine administration. Thirteen patients with previously untreated or relapsed/refractory AML were treated at 3 dose levels (DL): AR-42 20 mg qd on d1,3,5 in DL1, 40 mg qd on d1,3,5 in DL2 and 40 mg qd on d1,3,4,5 in DL3. Patients received decitabine 20 mg/m2 on d6-15 of each induction cycle and 20 mg/m2 on d6-10 of each maintenance cycle. One DLT of polymicrobial sepsis and multi-organ failure occurred at DL3. Two patients achieved a CRi and one patient achieved a CR for an ORR of 23.1%. The higher risk features of this patient population and the dosing schedule of AR-42 may have led to the observed clinical response and failure to meet the biologic endpoint.
Collapse
Affiliation(s)
- Sophia G Liva
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Christopher C Coss
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jiang Wang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - William Blum
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Rebecca Klisovic
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Bhavana Bhatnagar
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Katherine Walsh
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Qiuhong Zhao
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, City of Hope, Duarte, CA, USA
| | - Mitch A Phelps
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alison R Walker
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|