1
|
Chen Y, Yu X, Li W, Tang Y, Liu G. In silico prediction of hERG blockers using machine learning and deep learning approaches. J Appl Toxicol 2023; 43:1462-1475. [PMID: 37093028 DOI: 10.1002/jat.4477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
The human ether-à-go-go-related gene (hERG) is associated with drug cardiotoxicity. If the hERG channel is blocked, it will lead to prolonged QT interval and cause sudden death in severe cases. Therefore, it is important to evaluate the hERG-blocking property of compounds in early drug discovery. In this study, a dataset containing 4556 compounds with IC50 values determined by patch clamp techniques on mammalian lineage cells was collected, and hERG blockers and non-blockers were distinguished according to three single thresholds and two binary thresholds. Four machine learning (ML) algorithms combining four molecular fingerprints and molecular descriptors as well as graph convolutional neural networks (GCNs) were used to construct a series of binary classification models. The results showed that the best models varied for different thresholds. The ML models implemented by support vector machine and random forest performed well based on Morgan fingerprints and molecular descriptors, with AUCs ranging from 0.884 to 0.950. GCN showed superior prediction performance with AUCs above 0.952, which might be related to its direct extraction of molecular features from the original input. Meanwhile, the classification of binary threshold was better than that of single threshold, which could provide us with a more accurate prediction of hERG blockers. At last, the applicability domain for the model was defined, and seven structural alerts that might generate hERG blockage were identified by information gain and substructure frequency analysis. Our work would be beneficial for identifying hERG blockers in chemicals.
Collapse
Affiliation(s)
- Yuanting Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinxin Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
2
|
Altrocchi C, Van Ammel K, Steemans M, Kreir M, Tekle F, Teisman A, Gallacher DJ, Lu HR. Evaluation of chronic drug-induced electrophysiological and cytotoxic effects using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Front Pharmacol 2023; 14:1229960. [PMID: 37492082 PMCID: PMC10364322 DOI: 10.3389/fphar.2023.1229960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction: Cardiotoxicity is one of the leading causes of compound attrition during drug development. Most in vitro screening platforms aim at detecting acute cardio-electrophysiological changes and drug-induced chronic functional alterations are often not studied in the early stage of drug development. Therefore, we developed an assay using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that evaluates both drug-induced acute and delayed electrophysiological and cytotoxic effects of reference compounds with clinically known cardiac outcomes. Methods: hiPSC-CMs were seeded in 48-well multielectrode array (MEA) plates and were treated with four doses of reference compounds (covering and exceeding clinical free plasma peak concentrations -fCmax values) and MEA recordings were conducted for 4 days. Functional-electrophysiological (field-potentials) and viability (impedance) parameters were recorded with a MEA machine. Results: To assess this platform, we tested tyrosine-kinase inhibitors with high-cardiac risk profile (sunitinib, vandetanib and nilotinib) and low-cardiac risk (erlotinib), as well as known classic cardiac toxic drugs (doxorubicin and BMS-986094), ion-channel trafficking inhibitors (pentamidine, probucol and arsenic trioxide) and compounds without known clinical cardiotoxicity (amoxicillin, cetirizine, captopril and aspirin). By evaluating the effects of these compounds on MEA parameters, the assay was mostly able to recapitulate different drug-induced cardiotoxicities, represented by a prolongation of the field potential, changes in beating rate and presence of arrhythmic events in acute (<2 h) or delayed phase ≥24 h, and/or reduction of impedance during the delayed phase (≥24 h). Furthermore, a few reference compounds were tested in hiPSC-CMs using fluorescence- and luminescence-based plate reader assays, confirming the presence or absence of cytotoxic effects, linked to changes of the impedance parameters measured in the MEA assay. Of note, some cardiotoxic effects could not be identified at acute time points (<2 h) but were clearly detected after 24 h, reinforcing the importance of chronic drug evaluation. Discussion: In conclusion, the evaluation of chronic drug-induced cardiotoxicity using a hiPSC-CMs in vitro assay can contribute to the early de-risking of compounds and help optimize the drug development process.
Collapse
Affiliation(s)
- C. Altrocchi
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - K. Van Ammel
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - M. Steemans
- A Division of Janssen Pharmaceutica NV, Cell Health Assessment Group, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - M. Kreir
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - F. Tekle
- A Division of Janssen Pharmaceutica NV, Statistics and Decision Sciences, Global Development, Janssen R&D, Beerse, Belgium
| | - A. Teisman
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - D. J. Gallacher
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| | - H. R. Lu
- A Division of Janssen Pharmaceutica NV, Global Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen R&D, Beerse, Belgium
| |
Collapse
|
3
|
Mamoshina P, Rodriguez B, Bueno-Orovio A. Toward a broader view of mechanisms of drug cardiotoxicity. CELL REPORTS MEDICINE 2021; 2:100216. [PMID: 33763655 PMCID: PMC7974548 DOI: 10.1016/j.xcrm.2021.100216] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiotoxicity, defined as toxicity that affects the heart, is one of the most common adverse drug effects. Numerous drugs have been shown to have the potential to induce lethal arrhythmias by affecting cardiac electrophysiology, which is the focus of current preclinical testing. However, a substantial number of drugs can also affect cardiac function beyond electrophysiology. Within this broader sense of cardiotoxicity, this review discusses the key drug-protein interactions known to be involved in cardiotoxic drug response. We cover adverse effects of anticancer, central nervous system, genitourinary system, gastrointestinal, antihistaminic, anti-inflammatory, and anti-infective agents, illustrating that many share mechanisms of cardiotoxicity, including contractility, mitochondrial function, and cellular signaling.
Collapse
Affiliation(s)
| | - Blanca Rodriguez
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Alfonso Bueno-Orovio
- Department of Computer Science, BHF Centre of Research Excellence, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Zhang Y, Qian H, Wu B, You S, Wu S, Lu S, Wang P, Cao L, Zhang N, Sun Y. E3 Ubiquitin ligase NEDD4 family‑regulatory network in cardiovascular disease. Int J Biol Sci 2020; 16:2727-2740. [PMID: 33110392 PMCID: PMC7586430 DOI: 10.7150/ijbs.48437] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022] Open
Abstract
Protein ubiquitination represents a critical modification occurring after translation. E3 ligase catalyzes the covalent binding of ubiquitin to the protein substrate, which could be degraded. Ubiquitination as an important protein post-translational modification is closely related to cardiovascular disease. The NEDD4 family, belonging to HECT class of E3 ubiquitin ligases can recognize different substrate proteins, including PTEN, ENaC, Nav1.5, SMAD2, PARP1, Septin4, ALK1, SERCA2a, TGFβR3 and so on, via the WW domain to catalyze ubiquitination, thus participating in multiple cardiovascular-related disease such as hypertension, arrhythmia, myocardial infarction, heart failure, cardiotoxicity, cardiac hypertrophy, myocardial fibrosis, cardiac remodeling, atherosclerosis, pulmonary hypertension and heart valve disease. However, there is currently no review comprehensively clarifying the important role of NEDD4 family proteins in the cardiovascular system. Therefore, the present review summarized recent studies about NEDD4 family members in cardiovascular disease, providing novel insights into the prevention and treatment of cardiovascular disease. In addition, assessing transgenic animals and performing gene silencing would further identify the ubiquitination targets of NEDD4. NEDD4 quantification in clinical samples would also constitute an important method for determining NEDD4 significance in cardiovascular disease.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Hao Qian
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Boquan Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shilong You
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shaojun Wu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Saien Lu
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Pingyuan Wang
- Staff scientist, Center for Molecular Medicine National Heart Lung and Blood Institute, National Institutes of Health, the United States
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, China Medical University; Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning, China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
5
|
Dyballa S, Miñana R, Rubio-Brotons M, Cornet C, Pederzani T, Escaramis G, Garcia-Serna R, Mestres J, Terriente J. Comparison of Zebrafish Larvae and hiPSC Cardiomyocytes for Predicting Drug-Induced Cardiotoxicity in Humans. Toxicol Sci 2019; 171:283-295. [PMID: 31359052 PMCID: PMC6760275 DOI: 10.1093/toxsci/kfz165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular drug toxicity is responsible for 17% of drug withdrawals in clinical phases, half of post-marketed drug withdrawals and remains an important adverse effect of several marketed drugs. Early assessment of drug-induced cardiovascular toxicity is mandatory and typically done in cellular systems and mammals. Current in vitro screening methods allow high-throughput but are biologically reductionist. The use of mammal models, which allow a better translatability for predicting clinical outputs, is low-throughput, highly expensive, and ethically controversial. Given the analogies between the human and the zebrafish cardiovascular systems, we propose the use of zebrafish larvae during early drug discovery phases as a balanced model between biological translatability and screening throughput for addressing potential liabilities. To this end, we have developed a high-throughput screening platform that enables fully automatized in vivo image acquisition and analysis to extract a plethora of relevant cardiovascular parameters: heart rate, arrhythmia, AV blockage, ejection fraction, and blood flow, among others. We have used this platform to address the predictive power of zebrafish larvae for detecting potential cardiovascular liabilities in humans. We tested a chemical library of 92 compounds with known clinical cardiotoxicity profiles. The cross-comparison with clinical data and data acquired from human induced pluripotent stem cell cardiomyocytes calcium imaging showed that zebrafish larvae allow a more reliable prediction of cardiotoxicity than cellular systems. Interestingly, our analysis with zebrafish yields similar predictive performance as previous validation meta-studies performed with dogs, the standard regulatory preclinical model for predicting cardiotoxic liabilities prior to clinical phases.
Collapse
Affiliation(s)
- Sylvia Dyballa
- ZeClinics SL, IGTP (German Trias and Pujol Institute), Badalona 08916, Spain
| | - Rafael Miñana
- ZeClinics SL, IGTP (German Trias and Pujol Institute), Badalona 08916, Spain
| | - Maria Rubio-Brotons
- ZeClinics SL, IGTP (German Trias and Pujol Institute), Badalona 08916, Spain
| | - Carles Cornet
- ZeClinics SL, IGTP (German Trias and Pujol Institute), Badalona 08916, Spain
| | - Tiziana Pederzani
- ZeClinics SL, IGTP (German Trias and Pujol Institute), Badalona 08916, Spain
| | - Georgia Escaramis
- CIBER Epidemiology and Public Health
- Department of Biomedicine, Faculty of Life Science and Health, University of Barcelona 08036, Barcelona, Spain
- Research Group on Statistics, Econometrics and Health (GRECS), UdG, Girona 17071, Spain
| | | | - Jordi Mestres
- Chemotargets SL, Parc Científic de Barcelona, Barcelona 08028, Spain
- Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute, Barcelona 08002, Spain
- University Pompeu Fabra, PRBB (Barcelona Biomedical Research Park), Barcelona 08002, Spain
| | - Javier Terriente
- ZeClinics SL, IGTP (German Trias and Pujol Institute), Badalona 08916, Spain
| |
Collapse
|
6
|
Minegishi S, Ishigami T, Kawamura H, Kino T, Chen L, Nakashima-Sasaki R, Doi H, Azushima K, Wakui H, Chiba Y, Tamura K. An Isoform of Nedd4-2 Plays a Pivotal Role in Electrophysiological Cardiac Abnormalities. Int J Mol Sci 2017; 18:ijms18061268. [PMID: 28613240 PMCID: PMC5486090 DOI: 10.3390/ijms18061268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 01/15/2023] Open
Abstract
We have previously shown that neural precursor cell-expressed developmentally downregulated gene 4-2 (Nedd4-2) isoforms with a C2 domain are closely related to ubiquitination of epithelial sodium channel (ENaC), resulting in salt-sensitive hypertension by Nedd4-2 C2 targeting in mice. The sodium voltage-gated channel alpha subunit 5 (SCN5A) gene encodes the α subunit of the human cardiac voltage-gated sodium channel (I Na), and the potassium voltage-gated channel subfamily H member 2 (KCNH2) gene encodes rapidly activating delayed rectifier K channels (I Kr). Both ion channels have also been shown to bind to Nedd4-2 via a conserved Proline-Tyrosine (PY) motif in C-terminal with subsequent ubiquitination and degradation by proteasome. Therefore, loss of Nedd4-2 C2 isoform might be involved in electrophysiological impairment under various conditions. We demonstrate here that Nedd4-2 C2 isoform causes cardiac conduction change in resting condition as well as proarrhythmic change after acute myocardial infarction (MI). The Nedd4-2 C2 knockout (KO) mice showed bradycardia, prolonged QRS, QT intervals, and suppressed PR interval in resting condition. In addition, enhancement of T peak/T end interval was found in mice with surgical ligation of the distal left coronary artery. Morphological analyses based on both ultrasonography of the living heart, as well as histopathological findings revealed that Nedd4-2 C2 KO mice show no significant structural changes from wild-type littermates under resting conditions. These results suggested that Nedd4-2 with C2 domain might play an important role in cardio-renal syndrome through post-transcriptional modification of both ENaC and cardiac ion channels, which are critical for kidney and heart functions.
Collapse
Affiliation(s)
- Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Hisho Kawamura
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Tabito Kino
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Lin Chen
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Rie Nakashima-Sasaki
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Hiroshi Doi
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Yumi Chiba
- Department of Nursing, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
7
|
Stereoselective Blockage of Quinidine and Quinine in the hERG Channel and the Effect of Their Rescue Potency on Drug-Induced hERG Trafficking Defect. Int J Mol Sci 2016; 17:ijms17101648. [PMID: 27690007 PMCID: PMC5085681 DOI: 10.3390/ijms17101648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/03/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023] Open
Abstract
Diastereoisomers of quinidine and quinine are used to treat arrhythmia and malaria, respectively. It has been reported that both drugs block the hERG (human ether-a-go-go-related gene) potassium channel which is essential for myocardium repolarization. Abnormality of repolarization increases risk of arrhythmia. The aim of our research is to study and compare the impacts of quinidine and quinine on hERG. Results show that both drugs block the hERG channel, with quinine 14-fold less potent than quinidine. In addition, they presented distinct impacts on channel dynamics. The results imply their stereospecific block effect on the hERG channel. However, F656C-hERG reversed this stereoselectivity. The mutation decreases affinity of the two drugs with hERG, and quinine was more potent than quinidine in F656C-hERG blockage. These data suggest that F656 residue contributes to the stereoselective pocket for quinidine and quinine. Further study demonstrates that both drugs do not change hERG protein levels. In rescue experiments, we found that they exert no reverse effect on pentamidine- or desipramine-induced hERG trafficking defect, although quinidine has been reported to rescue trafficking-deficient pore mutation hERG G601S based on the interaction with F656. Our research demonstrated stereoselective effects of quinidine and quinine on the hERG channel, and this is the first study to explore their reversal potency on drug-induced hERG deficiency.
Collapse
|